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ABSTRACT

Inter-pixel capacitive coupling can exist in a non-destructive detector array if the detector nodes change volt-
age as they integrate charge and the design of the device allows for an electric field to exist between adjacent
collection nodes. Small amounts of inter-pixel capacitance can cause large errors in the measurement of pois-
sonian noise versus signal, and all subsequently derived measurements such as nodal capacitance and quantum
efficiency. Crosstalk and MTF can also be significantly influenced by interpixel capacitance. Two 1K × 1K
Raytheon SB226-based hybridized silicon P-I-N arrays were tested for nodal capacitance and MTF. Initial re-
sults indicated unexpected and unexplainably large nodal capacitance, poor MTF, and odd edge spread. It was
hypothesized that inter-pixel capacitive coupling was responsible for these discrepancies. A stochastic method
of measuring the coupling using 2D autocorrelation and Fourier Transform techniques was devised and imple-
mented. Autocorrelation of the shot noise in the images revealed a correlation consistent with 3.2% interpixel
capacitive coupling. When the effects of the measured interpixel capacitance were taken into account, the initially
measured nodal capacitance of 56 fF was found to be in error, 30% higher than the corrected nodal capacitance
measurement of 43 fF. Large discrepancies between the theoretical and observed edge spread response were also
greatly reduced. A simulation of the electric field in the pin detector intrinsic region predicted an interpixel
coupling very close to the observed coupling. Interpixel capacitance was also observed in 2K × 2k Raytheon
SB304-based InSb detector arrays, but was not strongly evident in a bare SB226 multiplexer.
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1. INTRODUCTION

In a previous paper, Moore et.al.1 recently suggested that inter-pixel capacitance can create large errors in
the “signal versus noise squared” method of estimating nodal capacitance,2 and presented data supporting this
suggestion. In this paper, the effects of inter-pixel capacitance and the mechanisms which cause them are
investigated in more detail.

Inter-pixel capacitance is expected to become more significant with modern arrays. As photodetector array
designers continue to strive for the simultaneous qualities of high pixel density (small distance between pixel cen-
ters) high quantum efficiency, low latent images and low dark current (100% fill factor, closely spaced pixels) and
high sensitivity (low capacitance detection nodes) the stray capacitance to neighboring pixels will be significant.
Detector nodes must be conductive in order to change voltage from accumulated charge. Stray capacitance to
a detector node is reduced by moving adjacent conductors away in the design. Thus, the nearest conductors to
the pixels in the lowest capacitance detector arrays will be the neighboring pixels.

2. BASIC MECHANISM

Inter-pixel capacitive coupling causes detector nodes to influence the voltages of neighboring detector nodes. To
influence a neighboring node, the detector node must lose some of its signal. It does not change voltage as much
as it would have, had its neighboring nodes accumulated the same amount of charge.
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A photodetector array of the type considered here may be modeled as an array of capacitors Ci,j , each
receiving a signal Q̄i,j . The bar is used here to indicate that the charge is the accumulated photocurrent entering
node i, j over some time t:

Q̄i,j =

τ=t∫

τ=0

Ii,j (τ) dτ (1)

The output of the array is ideally a voltage Vi,j such that

Vi,j =
Q̄i,j

Ci,j

. (2)

This is a simplification. Pixels are frequently non-linear; the capacitance changes with voltage. This non-linearity
may be ignored in the analysis that follows, as the stochastic signal considered (the Poissonian noise) will be
very small. This non-linearity can also cause significant error in measurement of conversion factor.3 Typically,
all capacitors Ci,j are (roughly) equal by fabrication, and the subscript i, j is omitted from C. There are slight
variations in nodal capacitance that are ignored here. With this simplification, the array can be modeled as a
linear shift-invariant4 (LSI) system, outputting an array of voltages:

Vi,j =
∞∑

m=−∞

∞∑

n=−∞

Q̄m,nh (i−m, j − n) (3)

where ideally

h (i, j) =
δ (i, j)

Cnode

. (4)

and δ (i, j) is the discrete 2D “unit impulse” or “delta function”.

The equivalent continuous representation of the array’s discrete nature,

g (x, y) =

i=∞∑

i=−∞

j=∞∑

j=−∞

g (i, j) δ (x− i) δ (y − j). (5)

is used, where convenient, in the analysis that follows.

Equation 4, although very simple, has been the nodal electrical model to date. Crosstalk in detector arrays
(and systems) from various other sources has been considered.5,6,7,8,9,10 The optical system’s PSF frequently
contributes to observed results. “Optical crosstalk” (reflection of light within the detector) may also be significant
if penetration depth is large. Crosstalk from diffusion of carriers, referred to in several of these references as
“electrical crosstalk,” is considered most frequently.

Inter-pixel capacitance provides a new “electrical crosstalk” mechanism. This is modeled as small coupling
capacitors between detector nodes, as in Figure 1. Photocurrent into a single detector node returns via multiple
paths. Using Kirchoff’s current law, it can be seen that the total charge entering the single node (at the top of
Figure 1) is equal to the total charge appearing electrically on that node’s voltage V and its neighbors,

Q̄ =

τ=t∫

τ=0

I (τ) dτ =

τ=t∫

τ=0

∑

n

In (τ)dτ =
∑

n

τ=t∫

τ=0

In (τ) dτ =
∑

n

Qn. (6)

where In is the current through the nth nodal capacitance and Qn is the charge appearing electrically on that
capacitance.

Thus,

∑

n

Vn =
∑

n

Qn

Cnode

=

∑
n

Qn

Cnode

=
Q̄

Cnode

. (7)
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Figure 1. By Kirchoff’s current law, the current entering the single node at the top is the sum of all the currents leaving
all of the nodes at the bottom.

and the photocarriers collected in a single node appear upon readout to be distibuted into several nodes, but
only the nodal capacitance Cnode appears in the “DC” output of the detector array. The impulse response of
the detector nodes in this one-dimensional model is

h (n) =
Qn

Q̄Cnode

. (8)

This readily applies to a two dimensional array; the nature of the network of coupling capacitors in Figure 1 is
unimportant with respect to Kirchoff’s current law and could just as easily have been a “black box.”

It is convenient to normalize out the nodal capacitance using Cnode = 1, and express the impulse response
such that it represents a deviation from the ideal response. Thus,

h (i, j) =

τ=t∫
τ=0

Ii,j (τ) dτ

τ=t∫
τ=0

Isrc (τ) dτ

. (9)

and
i=∞∑

i=−∞

j=∞∑

j=−∞

h (i, j) = 1. (10)

It can additionally be noted that
h (i, j) >= 0. (11)

since inter-pixel capacitance pulls the voltages of neighboring nodes in the same direction, and

h (i, j) <= 1. (12)

as the circuit is passive and cannot create an output greater than its input. Symmetry is reasonable to assume.
There is strong evidence that interpixel capacitive coupling is not symmetrical around defective (“hot”) pixels
in InSb arrays. Normal pixels likely have slight variations as well, but the average coupling is symmetrical.

h (i, j) = h (−i,−j) . (13)

3. RESPONSE TO POISSONIAN NOISE

Photocurrent arrives in detector nodes quantized by the charge of an electron. Photon arrival and diffusion in
the detector are both stochastic processes, and without correlation mechanisms in photon arrival and diffusion,∗

∗Known correlation mechanisms in photon arrival (such as Hanbury-Brown-Twiss) and diffusion (such as carrier-carrier
interaction) seem unlikely to be significant here.
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the individual collection events may be assumed statistically independent. Thus, charge collected by detector
nodes may be expressed as a mean signal component Mi,j plus a “white” noise image Ni,j

Ōi,j = Mi,j +Ni,j . (14)

The white noise image has a uniform power spectral density,

SN (ξ, η) = lim
T→∞

E
{
|F {Ni,j}|

2
}

2T
= lim

T→∞

E
{
|FN (ξ, η) |2

}

2T
= σ2

N . (15)

but the impulse response from the interpixel capacitive effect causes the charge in a detector’s nodal capacitance
to differ from the charge collected by the detector node. The observed voltage output is:

Vi,j =
Mi,j +Ni,j

Cnode

∗ h (i, j) . (16)

In the absence of a gain mechanism, i.e., assuming one electron per photon, the variance of the noise image is
equal (in quanta) to the mean signal M .

The difference Di,j of a pair of identically acquired images V 1 and V 2 results in a noise image that is twice
the variance of the original images’ noise components. The difference cancels out the signal component, leaving
only the noise:

Di,j = V 1
i,j − V 2

i,j =
N1

i,j −N2
i,j

Cnode

∗ h (i, j) . (17)

which is typically compared to the mean of the sum of the images to obtain an estimate of the conversion factor.
Uniform illumination Mi,j = M is typically used, but has not been assumed yet. If the noise difference image
can be considered a stationary 2D random process, (this covers random spatial variations in illumination and
pixel response) the power spectral density of the noise image in Equation 17 is

SD (ξ, η) = lim
T→∞

E
{
|F {(Di,j) ∗ h (i, j)} |2

}

2T
= 2 lim

T→∞

E
{
|FN (ξ, η)H (ξ, η) |2

}

2T
= 2σ2

N |H (ξ, η) |2. (18)

Thus, the power spectral density of the observed difference image yields information about the interpixel capac-
itive effect. Since the input signal (the noise on the charge collected by the nodes) is white, the output spectrum
is proportional to the squared magnitude of the Fourier transform of the impulse response.

Direct measurement of the power spectra of random processes is generally discouraged; autocorrelation tech-
niques are preferred. The Weiner-Khinchine relation

S (ξ, η) =

+∞∫

−∞

+∞∫

−∞

R (x, y) e−j2πξxe−j2πηydxdy = F {R (x, y)} . (19)

expresses the power spectral density of a 2D random process in terms of its autocorrelation function. The power
spectral density of a 2D stationary random process SV (ξ, η) is obtained by measuring uts autocorrelation, then
taking the Fourier transform of the autocorrelation.

Combining Equations 18 and 19 results in:

F {RD (x, y)} = 2σ2
N |H (ξ, η) |2. (20)

or, equivalently:
F {RD (x, y)} = 2σ2

N |F {h (x, y) ∗ h (x, y)} |. (21)

Since h (x, y) is non-negative and even, no phase information is actually removed by the magnitude operator and

F {RD (x, y)}

2σ2
N

= [F {h (x, y)}]
2
. (22)
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Figure 2. Convolution of 1D coupling impulse response with itself.

Taking the inverse Fourier transform of Equation 22 yields

RD (x, y)

2σ2
N

= h (x, y) ∗ h (x, y) . (23)

and the normalized autocovariance is equal to the convolution of the impulse response with itself. Taking the
square root of Equation 22 first (this can be done here since h (x, y) and H (ξ, η) are both even and non-negative)
and then taking the inverse Fourier transform results in

F
−1

{[
F {RD (x, y)}

2σ2
N

] 1

2

}
= h (x, y) . (24)

This is a direct expression which may be used to obtain the impulse response of inter-pixel capacitance from the
autocorrelation of the shot noise in a difference image.

The total power of the output power spectral density in Equation 18 is the mean square output, and by
Parseval’s relation, is:

D2 = RD (0, 0) = 2σ2
N

+∞∫

−∞

+∞∫

−∞

|H (ξ, η)|
2
dηdξ = 2σ2

N

+∞∑

i=−∞

+∞∑

j=−∞

h2 (i, j). (25)

Thus, the sum of the squares of the impulse response is the attenuation of the white input noise caused by the
interpixel capacitance. This value is always less than or equal to one.

Since the impulse response h (i, j) has unit area, its convolution with itself does also, and the summation of
Equation 23 results in:

+∞∑

i=−∞

+∞∑

j=−∞

RD (i, j) = 2σ2
N . (26)

This is a direct expression for the shot noise collected by the input nodes, and may be used to estimate “noise
squared” in lieu of the frequently applied variance estimator

R̂D (0, 0) =
ˆ
D2 =

∑
i,j

(Di,j)
2

N − 1
. (27)

which does not account for interpixel coupling.

Figure 2 illustrates the convolution of Equation 23 in one dimension. For simplicity, the “second neighbor”
coupling is assumed to be zero. Since the center node loses α of its charge to each of its two neighbors, its
response is low by 2α. If α is small, 1− 2α ≈ 1 and the nearest-neighbor coefficient in the convolution result is
R(1) ≈ 2α. In two dimensions, neglecting “second neighbor” and “diagonal neighbor” coupling, the center node
loses 4α of its charge, α to each of its four nearest neighbors, and the resulting convolution is shown in Figure 3.

The center term of the convolution, R (0, 0)/2σ2
N = h2 ≈ (1− 4α)2 ≈ 1− 8α, also expressed in Equation 25,

is the relative mean square output of the noise compared to what would be measured without any interpixel
coupling — the factor by which conversion gain is in error when interpixel capacitance is significant. The
approximation 1− 8α holds for small amounts of coupling, and illustrates the magnitude of error this effect can
cause. 1.25% coupling to a neighbor can cause a 10% error in estimated conversion factor.
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Figure 3. Convolution of 2D coupling impulse response with itself.

4. INTERPIXEL CAPACITANCE AND DETECTIVE QUANTUM EFFICIENCY.

The true measure of a detector array’s performance is its detective quantum efficiency (DQE.) DQE is the squared
SNR at the output of the array compared to the squared SNR incident at the surface of the array. Shaw11

generalized the definition of DQE for imaging application to include a spatial frequency dependence. Stochastic
scattering from diffusion reduces DQE at high spatial frequencies,8 and in an otherwise perfect detector, DQE
is reduced by the square of T (ω) = T (2πξ), the scattering MTF:

DQE (ω) = |T (ω) |2. (28)

In fully depleted arrays, stochastic scattering has a gaussian MTF. In detectors with per-pixel depletion, the
MTF is approximately:12

T (ω) =
2e−ω

1 + e−2ω
. (29)

where ω is the spatial frequency in radians per thickness of the detector. (Thinner detectors have better MTF.)

Interpixel capacitance also reduces MTF, with a transfer function of approximately

T (ξ, η) =

(
(1− 2α) + 2α cos

(
πξ

2

))(
(1− 2α) + 2α cos

(πη

2

))
. (30)

for small α. Here, ω is spatial frequency in cycles per pixel. The minimum is at the Nyquist frequency of
one cycle per two pixels. It is very easy to mistakenly attribute the effects of interpixel capacitive coupling to
diffusion. Interpixel capacitance is a deterministic scattering mechanism however, and attenuates photon noise
and signal identically. Thus, interpixel capacitance has no effect upon DQE, and its effect should be distiguished
from diffusion MTF for the purpose of accurately evaluating the DQE(ω) of an array.

5. MECHANISMS OF INTER-PIXEL CAPACITIVE COUPLING

In the previous paper,1 it was suggested that the inter-pixel coupling mechanism was between the indium
bumps. This hypothesis was incorrect. The coupling exists mainly as fringing fields between the edges of the
pixel implants. As an illustration of this, two different types of detector are considered here, and couple pixel to
pixel with two different field paths. The first is a hybridized Silicon p-i-n array for visible imaging, a detector
with fully depleted bulk. The second is a hybridized Indium Antimonide array for infrared imaging, a “per-pixel
depleted” detector.

The hybridized Silicon p-i-n array, shown in Figure 5, is somewhat unusual in that it operates with the
detector bulk fully depleted. Electric fields exist throughout the bulk. A metal grid, deposited on thick oxide
between the pixels, controls the electrical state of the silicon gap between the pixel implants. This voltage is
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Figure 4. (Left) When the detector bulk is unbiased, inter-pixel capacitive coupling through the bulk is impossible. The
insulating area below the implant allows the only coupling.

Figure 5. (Right) When the detector bulk is biased as in Silicon p-i-n arrays, inter-pixel capacitive coupling through the
bulk is possible. The insulating area below the implant allows additional coupling, but a “ field control” grid between the
pixels reduces coupling here.

biased to keep the gap out of both inversion and accumulation. The presence of this grid, unintentionally, also
prevents significant inter-pixel coupling in the space between the indium bumps; it heavily influences the potential
in this region, where significant coupling otherwise would occur. It does this, unfortunately, by increasing the
nodal capacitance. Arsenic-doped Silicon IBC detectors13 (for 5-30 micron infrared) are similar to the Silicon
pin arrays in that they are operated with partially or fully depleted bulk.

The Indium Antimonide array, depicted in Figure 4 is a more typical detector. The bulk is doped opposite
that of the implants, and each pixel maintains a separate depletion region close to the pixel implant. The bulk of
the detector, however, is conductive. No electric field, and therefore no inter-pixel capacitive coupling, can exist
in the detector bulk. There is no metal grid controlling the surface state in the gaps between pixels, however,
(although some per-pixel depleted arrays do have field control grids) and inter-pixel coupling can exist here.
Mercury-Cadmium-Telluride detector arrays (and others) are typically similar to this.

5.1. Simulation of coupling in P-I-N arrays

A simulation of the potential between the pixels and the back bias surface of the p-i-n array was performed using
a Python script employing the “numarray” Python module developed by Space Telescope Science Institute. A
pixel-to-pixel spacing of 27 microns, detector thickness of 185 microns, and a gap of 5 microns (estimated) were
used in the simulation. Detector node voltages were fixed at ground and the back bias fixed at 30 volts. The
intrinsic region was modeled as purely intrinsic. The potential at each point in a rectangular grid was iteratively
solved for, and the electric field at the edge of the pixel implants was derived from these potentials. The center
pixel was varied slightly, the potentials were readjusted, and fields re-derived. The results are shown in Figure 6.

The trace in Figure 6 with long dashes represents the field with all pixels at ground potential and the back
bias at 30 volts. The area underneath this curve is proportional to the charge created by a 30 volt bias. Reducing
the bias on the center pixel by 0.5 V resulted in the trace with short dashes. A change in voltage of one-sixtieth of
the back bias has caused the pixel to lose approximately one-sixth of its charge. Since the pixel’s capacitance to
the back bias is known from parallel plate calculation (and experiment) to be 0.25 fF, this implies approximately
2.5 fF of capacitance from the pixel to its two simulated neighbors. (Since the simulation was one-dimensional,
its results are representative of the line response.) Doubling this result yielded an estimate of the coupling in
a two-dimensional array. Simulation of the field in a per-pixel depleted array such as the Indium Antimonide
arrays was not done. This is a trickier simulation, and involves solving for the geometry of the depletion zones
along with the potentials.
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Figure 6. A simulation of the electric field in the bulk of the p-i-n detector with 30 volts of bias.

6. INTER-PIXEL CAPACITANCE IN SILICON P-I-N ARRAYS

The previous paper1 detailed the evaluation of nodal capacitance and edge spread in Silicon P-I-N arrays. This
is reviewed briefly here, with some elaboration on initial expectations, the initially confusing measurements, and
their ultimate explanation.

6.1. Expected Nodal Capacitance and Edge Spread

The prototype silicon P-I-N (pin) detector arrays were expected to exhibit ultra-low nodal capacitance (33 fF),
due to the large distance (185 microns) between their “parallel plates”. The strong electric field in the depleted
“i” region would rapidly sweep photocarriers into detector nodes (3 nanoseconds) and sharp imaging (≈ 4µm
diffusion spread) was anticipated. The overall point spread expected was the convolution of a 2D gaus and a 2D
rect:

psfpixel (x, y; b) = [rect (x) rect (y)] ∗ gaus (x, y; b) . (31)

Noise squared versus signal initially indicated 56 fF. Some of the extra capacitance was immediately accounted
for — bias sensitivity tests indicated that approximately 18.3 percent of the total nodal capacitance was to the
grid.

Edge spread testing used a sharp edge mask in direct contact with the array surface. The resulting edge
spread did not fit the model well at all, but repeated attempts produced the same result, and the same spread
was seen with long wavelength near IR and short wavelength blue.

Finally, the inter-pixel capacitance mechanism was considered, and it explained both observations.

6.2. Inter-pixel Capacitance Measurement in the p-i-n Array

The impulse response of the readout was measured by performing spatial autocorrelation of the poissonian noise
in 1800 multiply-sampled difference patches, 50 by 50 pixels in size. The raw results of this processing are shown
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Figure 7. Autocorrelation summation observed in silicon PIN array.

-2613 987 611 -638 -1 1175 514 1640 656
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Figure 8. Autocorrelation summation for InSb SB304-008.

in Figure 7. Then, making use of Equation 24, the 2D Fourier Transform of this autocorrelation was taken, each
term in the transform was replaced by its square root, and the 2D inverse transform was normalized to a DC
response of 1, yielding an estimate of the readout impulse response. The central value was estimated at 0.871,
the four nearest neighbors were 0.027, and the four diagonal neighbors were 0.00525.

A 2K × 2K SB304-based Indium Antimonide array was measured for interpixel capacitance, and the resultant
data is shown in Figure 8. A simpler method, illustrated in Figures 2 and 3 may be used to quickly estimate
interpixel coupling from the autocorrelation data when the coupling is of this magnitude — simply compare half
of a nearest neighbor autocorrelation coefficient to the central value. This quicker method is valid when the
coupling to a nearest neighbor is 2.5 percent or less, as it assumes the central node is “near unity”.

The interpixel capacitive effect in the InSb array is roughly half that of the Silicon pin array. Since the
dielectric constant of the epoxy in the InSb array is slighly less than half the dielectric of the Si of the pin array,
but the InSb pixels may be slightly closer together, this result makes sense.

As a control, a bare SB226 multiplexer was also tested for inter-pixel capacitive effects. A small amount
appears to be present, however it is less than 0.5 % coupling. This makes sense too, as the dielectric constant
of vacuum is a fraction of that of the epoxy or silicon. It does suggest that interpixel capacitive coupling might
exist in monolithic CMOS arrays.

6.3. Corrections to the p-i-n models and measurements

With interpixel capacitance included, three components create the overall point spread function of the pin
device — diffusion in the detector, capture by square pixels, and inter-pixel capacitive effects. Only vertical
and horizontal edges were used for evaluation, thus the expected ESF was the convolution of the readout’s 1D
impulse response, a 1D rect for the pixel, and an integrated gaussian:

esfpixel (x; b) = (0.0375rect (x+ 1) + 0.925rect (x) + 0.0375rect (x− 1)) ∗

x∫

0

gaus (x′; b) dx′. (32)
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Figure 9. Autocorrelation summation for bare SB226 multiplexer.

Figure 10. (Left) Plot of noise squared versus signal in silicon pin array, showing both uncompensated and compensated
noise readings.

Figure 11. (Right) Edge spread in Silicon p-i-n array, showing both original expected (uncorrected) and best-fit corrected
models.

Figure 11 shows pin edge spread data compared to two models — uncorrected and corrected. The dashed
line is the original model that considered only diffusion and square pixels. It is the edge spread derived from the
point spread of Equation 31. The solid line is the corrected model considering interpixel capacitance as well as a
best-fit gaussian spread, from Equation 32. This corrected model fits the data much better. (The same gaussian
spread was used in both models.)

For the conversion factor measurement, the effect of the readout response on the noise measurement must be
considered. As shown in Equation 7 the signal component (low spatial frequency) is unaffected. This is not the
case at high spatial frequencies, where most of the poissonian noise image energy is. Using the relationship in
Equation 25, the noise attenuation caused by interpixel capacitance was calculated:

∑

i,j

h2 (i, j) = 0.8712 + 4
(
0.0272 + 0.005252

)
= 0.762 = 1.313−1. (33)

Thus, an initally calculated conversion factor of 2.4e−/ADU (the solid trace of Figure 10) was corrected to be
1.83e−/ADU (the dashed trace) and the nodal capacitance, previously 56 fF, was corrected to be:

C = 1.6 · 10−19(coul/e−) · 1.83(e−/ADU) · (1ADU/6.1µV) · 0.9 = 43fF. (34)

7. A THIRD ELECTRICAL CROSSTALK — SETTLING TIME

An additional kind of “electrical crosstalk,” in which a pixel value does not settle fully before it is sampled, can
also affect noise squared versus signal measurements. Some evidence of this crosstalk can be seen in the first and
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last values of the middle row of Figure 8. The SB304, like the SB226, has four interleaved outputs, so the “next
pixel” on any output is four columns over in the output image. If the output does not fully settle, a “fourth
column” crosstalk will emerge in the autocorrelation. The other correlation arrays taken from the SB226 do not
show this fourth column effect. The 1K × 1K SB226 has a smaller column bus capacitance than the 2K times
2K SB304 and settles faster. Also, the SB226 was operated in a system with only two A/D converters, and extra
settling time was added for switching between the outputs. Hot pixel data from the SB304 did not seem to agree
with the correlation data for fourth column crosstalk (hot pixels showed more crosstalk), but column bus settling
is non-linear (eventually becoming slew rate limited) for larger signal swings, so this was not unexpected.

8. DISCUSSION

Measuring conversion factor and nodal capacitance on CMOS imagers using noise-squared versus signal is a tricky
business. Pain and Hancock’s3 method to address non-linear pixel response illustrates this as well. Although
the error mechanism they address is very different from the error mechanisms addressed here, there is a basic
similarity — if the noise is measured using a different effective gain than the signal measurement, the square of
this gain error will appear in the conversion factor. This measurement is very sensitive.

Measuring the readout’s impulse response due to interpixel capacitance by using autocorrelation requires
some care, as the correlation is very small compared to the noise, let alone to the signal. Large amounts of data,
a stable light source, multiple sampling, and cosmic ray rejection are all necessary. Adequate signal and multiple
sampling to raise the shot noise above the read noise is necessary. Excessive signal, however, brings the stability
of the lamp into consideration. Long integration times stabilize some things, but make cosmic rays more likely;
cosmic events can create large correlations, but are easily detected and rejected in most cases. It is desirable that
the (uniform) image presented on the array be lacking in high spatial frequency content (a de-focused optical
system is best) as vibration coupled with slight non-uniformities in the incoming optical signal may create some
correlation in the output.

9. SUMMARY

A mechanism that causes detector nodal voltages to differ from the charge collected by those same detector
nodes, interpixel capacitance, is presented. Its specific mechanisms in both fully depleted and per-pixel depleted
arrays are investigated, and its effect on point spread and estimation of conversion factor are investigated. A
technique for measurement of interpixel capacitance is presented and applied to real measurements on Silicon
p-i-n arrays, resulting in better agreement between models and observed data.
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