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Abstract

The unexplained source of the extended flat portion of rotation curves
of galaxies is attributed to dark matter in the galactic halos.

1. We show it is extremely implausible that any galactic halo is made
of particles.

2. We show that if halos are made of fluctuations in a simple classic scalar
field, one can produce observed rotation curves.

3. If we consider a universe filled with abuting scalar field halos, we can
define a new average cosmological fluid whose density scales as ℜ–2,
where ℜ is the cosmological scale factor. It is possible that this can result
in the “quintessence” effect.

~

Observations
The rotation curves, Vrot versus r, of many galaxies are composite, with baryonic material responsible
for the inner portion r < Rh and halo dark matter (HDM) responsible for the extended “flat” portion of
the curves at large r > Rh. Poisson’s equation gives the density structure of a idealized DM halo to be:
For r ≤ Rh we adopt r(r) ≈ 〈r〉 and r(r) = 1/3〈r〉(Rh/r)2 for Rh ≤ r ≤ R� (for Vrot(r) = Vh) . Here R� >5 – 10 Rh
. Often the luminous underlying galaxy extends to greater than ~1 – 2Rh. As representative, we use
values for the Milky Way,  Vh = 200 – 210 km/s and Rh ~ 5 kpc, giving 〈r〉 ~ 6 × 10–24 g cm–3 with the
luminous matter’s average density clearly exceeding this when r ≤ ~2.5 kpc.
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• A scalar field satisfactorily represents observed halos
– An (unquantized) scalar field, f, provides an adequate phenomenological description of the

halo DM. Steady-state spatial fluctuations in this field form gravitational potential wells into
which baryonic matter may flow, possibly forming luminous galaxies in their center regions.
The halos correspond to steady state solutions of the generic field equation:

• The field's past history
– We suggest that these halos arose as very small amplitude unstable field fluctuations,

df ~ 10–4, carried along with the cosmological CDM. With appropriate boundary conditions,
the growth of fluctuations is limited by the nonlinear term. Only solutions spherically
symmetric in the central regions can grow. From this initial value, it takes ~10 m–1/c ~105

years to develop to finite amplitude, therefore they could not have been important in the
very early days of the universe. We assume adequate damping occurs and guess that values
of m are determined by values of the local Jeans’ wavenumber associated with the onset
of instability of the CDM at the time of radiation-CDM equipartion.

c−2∂tt
2 f −∇2f = m2f(1− f2). (1)
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• Solutions
– To the lowest order in the amplitude a < 1, a halo solution is:

– To order ~a3, the solution is approximately

which shows that the effect of the non-linear term, for small a, is to produce a slight phase shift.

– Associated with the field equation is an energy momentum tensor which can be used as
the source term of a gravitational field. Using the f0 solution to represent an isolated halo
extending to r = Rt � m–1, one can calculate the gravitational acceleration on a nonrelativistic
particle f.  The halo mass will be defined observationally by f ≡ –GMhalo/r2. One finds for
the rotational velocity:

Vrot(r) = (2R�/3r)1/2Vh for r ≥ R�. For mR� � 1, the mass of the halo is given by

(Formally, Vh is defined in terms of the field's amplitude a by (Vh/c)2 ≡ a2α2/2, where α2

is a universal coupling constant.)

– For the Milky Way, other arguments suggest an amplitude of amw
2    ≈ 1/3. Since Rh � 5 kpc, one

determines m–1 � 3.2 kpc by setting 2mRh ≡  p. Observations inadequately determine R�; one
can only conclude R� > 40 kpc from Figure 1. If R� = 100 kpc, Mhalo = 6 × 1011 MO. For other
galaxies, m and a will have different values. The figures show that this representation of the
observed rotation curves is really very good when the inferred baryonic contributions are small.

Vrot(r) = Vh[1 − sin2mr/(2mr) − 1
3

(r / R�)2 ]1/2 for r ≤ R� , and

GMhalo = 2Vh
2R� /3

(3)

(4)

(5)

f ≈f0 = a sin(mr) mr (2)

f ≈ a sin m ∫ (1− f0
2)dr mr (1− f0

2)( ) ,1
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The halo gravitational potential wells are specified by the energy momentum tensor Tab determined by δ
once a Lagrangian L(f) is chosen. The associated field equation is given by δL/δf = 0. We use this as a Lagrangian L = –1/2α2La

a

+ Λ where Lij = f,if, j + mimj[f2(1–1/2f2)–l]. Here mi is an assigned time-like vector, mama = m2, x0 = ct, and f is dimensionless.
We take L to have the same dimension, (length)–2, as the Riemann scalar R; it is connected to it by the dimensionless coupling
constant a2. The usual coupling constant k = 8pGc–2 is used only in interpreting results, in converting mass density into
(wavenumbers)2 and vice versa. The parameters Λ and l do not affect the behavior of f; they are introduced to allow us to
shape the extent of each individual dark matter halo. Equation (1) is the associated field equation; its form restricts any coupling
to dark matter, baryon, and photon fields to occur in the m2 term. The energy-momentum tensor is Tij = a2(Lij – 1/2 gijLa

a) + gij Λ.

For the radially symmetric interior Schwarzschild metric, dt2 = B(r)dt2 – A(r)dr2 – r2dΩ2, standard relations give:

and c2f is the radial gravitational acceleration a nonrelativistic particle experiences. The ‘constant’ in equation (5) is determined
by boundary conditions; since it is small, on the order of (Vh/c)2, we will ignore it. At a boundary, l is chosen so that ∂ in
AB/∂r = 0. The time evolution of small instabilities, etc., is discussed in a preliminary version of this work, in astro-ph/0308054.

rA−1 = r − (kr0 + Λ)r2dr;∫
InAB = (2kr0)r dr + constant; and∫
f ≅ −Γtt

r = − (2A)−1∂r B.

kr0 = 1
2

a2[(m2f2 + (∂rf)2) + (∂tf)2 − lm2 ]
where

(9)

(10)

(11)

(12)

Appendix: technical details

⎡⎣ ⎤⎦ –g (Tab/2)dgab–g  L =
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1
2

• Dark halos made of particles are generally unstable.
– For a halo's outer region,  r > Rh, assuming sphericity and hydrostatic equilibrium, one can

solve for an equation of state P = P(r). Using r ∝ r–2 to replace r as the independent variable,
one finds P =   Vh

2r + P0 (where P0 ∝ rVh
2/2c2 ≅ constant) so that for r > Rh we must have an

isothermal sphere solution, with a characteristic thermal velocity ~Vh for the DM. If the
equation of state does not change for r ≤ Rh, the isothermal Bonnor–Ebert solutions [see
Alves, Lada, and Lada (2001)] with finite central density are appropriate; these have only a
very small range in r in which r ∝  r–2 and are Jeans unstable for Rt > 20 kpc and large halos
will collapse.

• Halo properties inferred from galaxy–galaxy collisions
– If galaxy–galaxy halo collisions have occured, the putative DM particles must be strongly

radiative, otherwise, after collision the halos should have relaxed adiabatically, contrary
to observations.

– If the particles really do satisfy a collisionless Boltzman equation, then galaxy collisions
should produce highly asymmetric halos. Before collision, the particles’ average velocity
must be of order Vh or less for them to remain bound to a galaxy. Their individual trajectories
would then be modified by the nonspherically symmetric gravitational potentials present
during the long galaxy collisions and there are no restoring forces to re-establish halo
spherical symmetry after collision.

• Halos must be bounded.
– If the halo density profiles r ∝  r–2 are not shaped by gravitational forces, then “edges” of

halos must be imposed and defined by a physical mechanism; this cannot be done if the
putative halo particles are noninteracting. If edges are not defined because the number of
halos in a shell (r, r + dr), is ∝ r2, the overlap of outer regions of distant unbounded halos
will produce an unacceptably high local energy density (Olber's paradox!).

~
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Rotational models for the Milky Way
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• A simple model (m–1 = 3 kpc, Vh = 210 km/s), shown by the red line, is superimposed on the
compilation of gas cloud observations by Clemens (1985, assuming R0 = 8.5 kpc Θ = 220 km/s)
with Clemens’ points for t > R0 lowered by 10 km/s (= Θ – Vh). (The vertical lines represent Clemens’
estimates of the effects due to uncertainties in the distances. Also, the points for r < R0 show
systematic errors, ~10 km/s, because the gas clouds depart from purely circular motions.)

• The dashed curve uses a nonlinear improvement to the simple model, using a2 = 1/3. It introduces
a slight phase shift which might match the “wiggles” in the observations.

• As shown, the curve corresponds to a low stellar galactic disk contribution to the rotation curve.
Different assignments of the disk contribution and also of Θ can be accomodated by rescaling
the halo field equation in the range Vh = 179 to 220 km/s.
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A rotation curve for NGC4605
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• The simple m–1 = 1.6 kpc, Vh = 80 km/s model is compared to the combined CO
and Hα rotation curve for the NGC4603 halo for Bollatto et al. (2002). They have
removed a luminous disk contribution (blue) determined from K-band observations.
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Rotation curves for two low mass galaxies

• Rotation curve model m–1 = 5 kpc Vh = 80
km/s compared to the observations (filled
circles) of McGaugh and de Blok (1998)
for F5 83–1. No disk component has been
subtracted. (The open circles are the
author’s estimates of the halo when a
crude disk has been subtracted; it is
compared to the halo model m–1 = 4.33
kmc  Vh = 74 km/s by the dashed curve.)

• Rotation curve model m–1 = 2.5 kpc;
Vh = 43 km/s compared to the observations
of Carignan and Beaulieu (1989) for
DDO 154. No disk component has
been subtracted.

(b)
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The edges of halos and the Λ–term
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• It is very important to determine an edge for a halo so that its mass can be defined.

• Formally, the edge of an isolated field galaxy’s halo can be described the same way that the edge
of an ordinary body is by requiring a discontinuity in the source term f at some r = R�. One may
then attach an exterior Schwarzschild solution, f = 0, to the spherical interior solution. The choice
of R� depends upon a halo's past history. Clearly a halo should be terminated when its energy
density falls below the critical cosmological density.  This places an upper limit R� ~ 1.6 h–1 Mpc
on Milky Way-like galaxies.

• Another procedure is possible for a cluster of contiguous halos when one halo runs into another.
Take each interior halo's boundary to be the surface on which a test body experiences zero
gravitational attraction directed towards its center; this divides the cluster into cells. For the
simplest case in which all halos are similar and roughly equispaced with spacing 2Rs, then within
one interior cell for m–1 � r ≤ Rs, the gravitational acceleration to a halo's center must have an
additional term:

where lm2 = a2Rs
–2 as before and we need Λ = a2 lm2 so f → 0 as r → Rs. This neglects

the higher-order multipole terms ~(r/2Rs)nRs
–1; n ≥ 1.

f = −(a2/2)[a2/ r − lm2r/3] + Λr/3, (6)



The edges of halos and the Λ–term (cont.)
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• In each cell the first two terms represent the halo ‘bump’ itself, while Λr/3 represents a differential
tidal force present because of the neighboring galaxy halos. The Λ–term causes the entire cluster
to experience an expansion force. If the Milky Way halo is typical, the expansion velocity at the
edge Rs is Vh    3 ~ 115 km/s. It is important to realize this is not mysterious. Suppose one had
many elastic spheres touching. In any one, a test body would experience a tidal force caused
by the neighboring spheres and the sphere itself would experience a distortion. The sum of
all such distortions in a given direction would add up, and the entire cluster would appear
to have expanded.

• Each cell contains a halo ‘bump’ with mass of the same form as equation (5). The mean bump
density is given by (k  ≡ 8pGc–2).

Therefore, the Λ–term always is responsible for one-third of the cluster’s mean density.

k〈rbump 〉 = (7)a2a2Rs
−2 = 2Λ (mRs � 1)2



• The halo DM must play an important role in cosmology today. For, suppose we just guess that
each galaxy has a halo mass ten times its luminous baryon mass, then ΩLDM ~ 10Ωbaryon � 0.3.
(An arbitrary density r is written as r ≡ Ωrc.)

• Define a halo cosmological fluid by regarding all dark halos to be part of a large cluster. We
assume halos are neither created nor destroyed. For convenience, take the halos to be equidistant
from one another with a number density y(t) and use mean values of a2, m2, and halo mass M
= (c2/3G)〈a2〉a2 Rs. Here Rs ≈ 1/2y–1/3 � m–1. Using the results of the previous section, one finds
the halo cosmological fluid has a density given by

• We have explicitly assumed that the very large scale variations in galaxy (or halo) density can
be averaged over, with y〈a2〉 being our crude approximation to the pair-correlation function y–1/3.
As before, Λ is 1/2 the previous term.

Cosmology and quintessence
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(8)krfluid = 8
3

p y y−1/3 + Λ ≡ Ωhalo rcrit〈(Vh /c)2〉 .



Cosmology and quintessence (cont.)
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• The form of this equation for representing halos so bounded is secure and is remarkable in that
both terms scale as ℜ–2, where ℜ is the cosmological scale factor. The pressure associated with
this cosmological fluid is p = –rfluid/3. (This follows from conservation of energy with this scaling.)

• Suppose the average galaxy is somewhat smaller than the Milky Way with 〈a2〉 ∼ (2/3)amw
2

(corresponding to Vh ~ 170 km/s); then using for y a mass (or luminosity) weighted Schechter
function y � 0.014h3 halos Mpc–3, one finds for this halo fluid Ωhalo ~ 0.67, independent of h, with
one-third of this due to the Λ/k term.

• This estimate is quite uncertain but it permits us to point out an interesting scenario. Suppose
we take at present WotherCDM ~ 1/3 ≅ (1/2)Whalo, as representing the usual cold DM whose density
scales in time as ordinary matter, ∝ℜ(t)–3. At present, the halo fluid would dominate
with ℜ(t) ∝ t. Going back in time to when ℜ =1/3, one sees the reverse would have been true,
ΩotherCDM ~ 2ΩhaloDM; then the scale factor would have had a different time dependence,
ℜ(t) ∝ t2/3. This would mean that in the time between z = 2 and the present, the universe would
have been observed to experience an accelerated growth rate. Such an acceleration has been
observed and is usually referred to as “Quintessence” or “Dark Energy” at work.



Summary

1. This scalar field theory predicts a universal form for halo rotation curves,
equation (4). One finds Vh acts as a scale factor for Vrot and m–1 acts as
the scale factor for r when one is far from the halo edge r/R� � 1. One
expects to find “wiggles” of ~5% to 10% Vrot on the onset of the horizontal
portion of the curve.

2. The cosmic fluid representing the averaged halo energy density, given by
equation (8), scales as ℜ–2 where ℜ is the cosmological scale factor. It is
possible that this explains “Quintessence.”
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For more details, see Chap. 3 in Progress in Dark Matter Research, edited by J. Val Blain
(Nova Sci Pub, Hauppauge, NY, 2005). A preliminary version is given in astro-ph/0308054.

The poster is available at http://astro.pas.rochester.edu/lary/halodm.pdf


