
PHY411. PROBLEM SET 14.

December 25, 2023

1. The billiard problem with a circular boundary

Consider a 2D flat billiard problem, where the boundary is a closed loop. A
particle bounces elastically off the boundary giving a map

T : (s, µ)→ (s, µ)

with s ∈ [0, 1] along the boundary and with s periodic. Here µ ∈ [−1, 1] and
µ = cos θ where θ is the angle between particle trajectory and tangent to the
boundary at an impact point.

The angle of a trajectory has θ = 0 if the particle is grazing the boundary and
moving in the direction of increasing s. We assume that T (s, 1) = T (s, 1) and
T (s,−1) = T (s,−1) are fixed points for all s.

One definition of integrability is that there exists a function f (piecewise
continuous) f : (s, µ)→ R such that each set Sc : {s, µ} defined by f(s, µ) = c is
either a union of points or lines.

Consider a billiard problem with a circular boundary.

a) Find some periodic orbits.

Hint: look at the triangle that connects two boundary contact points and the
center of the circle.

A periodic orbit is the set {T i(x)} for i = 0, ..., n− 1 where T n(x) = x. Here n
is a positive integer (usually n > 1) and x is a point that is pair of numbers (s, µ).
Here we take quasiperiodic to mean an orbit that never repeats, though we could
also include the concept of needing two incommensurable frequencies to describe
the orbit.

b) Find some quasiperiodic orbits.

c) Show that the billiard problem with circular boundary is integrable.
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2. On the classical D-Billiard

The D-Billiard is a 2d billiard system with rink that is a truncated circle, as
shown in Figure 1.

Figure 1. A D-Billiard system. The rink consists of a segment con-
nected to an arc. Shown is an example of a chaotic orbit. The hori-
zontal width of the rink is w times the radius of the circle.

Discuss whether the following statements are likely to be true or false for the
D-billiard.

a) An orbit that never bounces off the segment must be periodic.

b) An orbit that bounces off the segment is either periodic or chaotic.

c) A chaotic orbit eventually crosses all points within the rink.

d) A chaotic orbit eventually bounces off all positions on the rink boundary.

e) A chaotic orbit eventually bounces off all positions on the rink boundary at
all possible trajectory angles.

If you would like to gain intuition by integrating some orbits, example code
is in the python notebook Ripple and D Billiard.ipynb which is available on this
page https://astro.pas.rochester.edu/~aquillen/phy411/lectures.html

3. On the Wigner function of a cat coherent state

We denote |α〉 as a coherent state; â |α〉 = α |α〉 where â is the ladder operator
and α is a complex number.

https://astro.pas.rochester.edu/~aquillen/phy411/lectures.html
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Consider a superposition state

|v〉 = c(|α〉+ |−α〉)

This is sometimes called a ‘cat’ state.

a) Find the normalization factor c so that |ψ〉 = c |v〉 gives 〈ψ|ψ〉 = 1. Note,
coherent states are not orthogonal to one another.

For coherent states |α〉 , |β〉,

〈α|β〉 = e−
|α|2
2
− |β|

2

2
+α∗β (1)

b) What is 〈q̂〉 of the cat state?

Hint: use the fact that q̂ = 1√
2

(
â+ â†

)
and that 〈α| q̂ |α〉 =

√
2 Re{α}.

c) What is 〈p̂〉 of the cat state?

Hint: use the fact that p̂ = 1√
2
~
i

(
â− â†

)
and 〈α| p̂ |α〉 = ~

√
2 Im{α}.

Consider a mixed state described with density matrix

ρ̂mix =
1

2
(|α〉 〈α|+ |−α〉 〈−α|)

d) Compute the Wigner function of this mixed state, Wρ̂mix(q, p).

Hint: the Wigner function for a coherent state is

W|α〉〈α|(q, p) =
1

π~
e−(q−〈q̂〉)

2

e−(p−〈p̂〉)
2/~2 (2)

where 〈q̂〉 =
√

2 Re{α} and 〈p̂〉 =
√

2 Im{α}~. The resulting Wigner function
should resemble a sum of Gaussians.

Consider the density matrix ρ̂cat = |ψ〉 〈ψ| with |ψ〉 = 1
2

(|α〉+ |−α〉).

e) Is the Wigner function Wρ̂cat , near zero near the origin in phase space?

To answer this question you could compute the Wigner function for |α〉 〈−α|+
|−α〉 〈α|, which might take a while. Alternatively 〈q̂2〉 computed for the two dif-
ferent density operators might suggest that one of these two cases has a higher
probability of being near the origin in phase space. Note that 〈α| q̂2 |α〉 =
(
√

2 Re{α})2 + 1
2
.
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4. Point operator and Weyl transformation

The Wigner function takes an operator and produces a function in phase space.
The Weyl transformation takes a function of phase space and produces an oper-
ator.

The Wigner function of a state |ψ〉 can be written in terms of a point operator

Â(q, p) =
1

2π

∫
dxe−ixp/~ |q + x/2〉 〈q − x/2| (3)

via

W|ψ〉〈ψ|(q, p) = 〈ψ| Â(q, p) |ψ〉 . (4)

(Here I am working in 1 dimensional coordinate space).

The Weyl transformation of a function in phase space f(q, p) is the operator

Φ̂f =

∫ ∫
da db dq dp e−i(aq+bp)eiaQ̂+ibP̂f(q, p) (5)

where Q̂, P̂ are position and momentum operators, respectively.

Show that the Weyl transformation of function f(q, p) can be written in terms
of the point operator

Φ̂f =

∫
dq dp f(q, p)Â(q, p) (6)

It is handy to know that, if operators Â, B̂ commute with their commutator,
[A,B], then

eA+B = eAeBe−
1
2
[A,B]

This is the Baker-Campbell-Hausdorff formula.

5. The displacement operator for coherent states

The displacement operator for coherent states Dα = eαâ
†−α∗â where α is a

complex number.

Show that Dα = e
1
2
|α|2eαâ

†
e−α

∗â

Hint: Use the Baker-Campbell-Hausdorf formula.
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6. Point operator for a discrete system

Consider a finite dimensional Hilbert space with basis |n〉 and n ∈ ZN . We
create a basis using a discrete Fourier transform via |k〉F = 1√

N

∑
n ω

kn |n〉 where

ω = e2πi/N is a complex root of unity.

We construct operators that look like Pauli operators

X̂ =
N−1∑
n=0

|n+ 1〉 〈n| (7)

Ẑ =
N−1∑
n=0

ωn |n〉 〈n| (8)

In the above expression for X̂, addition for |n+ 1〉 is modulo N .

a) Find expressions for X̂, Ẑ in the |k〉F basis.

Hints: use identity I =
∑

k |k〉F 〈k|F , the relations 〈n|k〉F = ωnk√
N

, F 〈k|n〉 = ω−nk√
N

and
∑

j ω
jk = Nδk0.

We create a point operator

Ânk =
1

2
√
N
ωnk/2

∑
x∈ZN

ω−xk |n− x〉 〈n| (9)

where n is a position index, and k is a momentum index.

b) Transfer the point operator into the Fourier basis. It should look similar to
the point operator in the |n〉 basis!

c) Write the point operator in terms of Ẑ, X̂ operators.

Suppose you have a state vector |η̃〉 that is an eigenfunction of the discrete

Fourier transform. It satisfies Q̂FT |η̃〉 = |η̃〉.

d) Show that |η̃〉 is also an eigenfunction of Q†FT .

X̂ is not Hermitian but X̂ + X̂† is Hermitian and so is i(X̂ − X̂†).

Let a variance σ(f̂) =
〈
f̂ 2
〉
−
〈
f̂
〉2

.
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e) Show that σ(X̂ + X̂†) = σ(Ẑ + Ẑ†) and that σ(X̂ − X̂†) = σ(Ẑ − Ẑ†) for the
state |η̃〉.

7. On the quantized kicked rotator

Sample example code is available with the python notebook quantum kicked rotor.ipynb
which is available on this page https://astro.pas.rochester.edu/~aquillen/
phy411/lectures.html

a) Numerically construct a propagator for the quantized kicked rotator which
is directly related to the standard map.

I recommend you use approximate with a discrete Hilbert space. With dimen-
sion N , the angle operator and momentum operators are

θ̂ =
∑
j

2πj

N
|j〉 〈j|

p̂ =
∑
m

~m |m〉F 〈m|F

where |m〉F is the Fourier basis.

The Hamiltonian is

Ĥ =
p̂2

2I
+ k cos θ̂

∞∑
j=−∞

δ(t− jT ) (10)

The propagator across time T is

Û = e−iĤT/~ = Q†FTΛAQFTΛB (11)

where the diagonal matrices

ΛA =
∑
j

e−
ik
~ cos(2πj/N) |j〉 〈j|

ΛB =
∑
m

e−
iT
2~I ~

2m2 |m〉)F 〈m|F . (12)

and the discrete Fourier transform Q̂FT =
∑

jk ω
jk |j〉 〈k| and ω = e2πi/N .

Here we define two dimensionless parameters

α ≡ T~
I

K ≡ kT

I

https://astro.pas.rochester.edu/~aquillen/phy411/lectures.html
https://astro.pas.rochester.edu/~aquillen/phy411/lectures.html
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Note K/α = k/~ where K is the equivalent parameter in the standard map.

b) Compute the eigenvalues for the propagator. Compute the distribution of
differences between phases. Adjust K and α and see if you can see a Wigner
distribution for high K (corresponding to chaotic) and a Poisson distribution for
low K (corresponding to nearly integrable).

c) Are there any obvious differences between the eigenstates for the two cases?

d) Display some eigenstates in phase space.

In part d there is more than one possible choice on how to do this. For the
quantized kicked rotator, I computed the Wigner function with this

Wρ̂(n, k) =
1

2N

∑
x

〈n− x| ρ̂ |n+ x〉ω2xk (13)

8. Propose and work on your own problem!


