
PHY411. PROBLEM SET 1.

September 14, 2023

There is are sample python notebooks on the class website that show how to plot
streamlines of a function and numerically integrate a bunch of orbits to illustrate
phase wrapping. https://astro.pas.rochester.edu/~aquillen/phy411/lectures.
html

1. The harmonic oscillator. The period is independent of amplitude

Consider the harmonic oscillator with Hamiltonian

H(p, q) =
1

2

(
p2 + q2

)
Show that the area S(E) on the phase plane, (p, q), of an orbit with energy E, is
proportional to E and so the period of oscillations for the harmonic oscillator is
independent of energy or oscillation amplitude.

2. Dimensional analysis on the pendulum.

Consider a Hamiltonian for the pendulum with coefficients a, ε

H(p, φ) = a
p2

2
− ε cosφ (1)

Let us take H in units of energy per unit mass and φ as an angle. With this
convention H has unit of velocity2 and p has units of velocity times distance.

(a) Find all the fixed points of the Hamiltonian system

(b) Consider the level curves of the system. Which fixed points are stable and
which ones lie on a separatrix?

(c) How do your previous answers change if ε is negative instead of positive?

(d) How do your previous answers change if a is negative instead of positive?

(e) In a physical system what are the units of a and ε?

(f) Construct a frequency using dimensional analysis and a, ε.
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(g) What is the frequency of libration about a stable fixed point?

(h) Consider an initial condition that is very close to the separatrix. The orbit
will move away from the separatrix exponentially fast. Compute the expo-
nential timescale for the motion.

(i) What is the value of energy for an orbit in the separatrix? What is the value
of energy for an orbit near a stable fixed point?

(j) Using a, ε construct a quantity with units of momentum, p.

(k) What is the maximum p value in the separatrix?

(l) What is the frequency of oscillation (φ̇) for p�
√
|ε/a|?

(m) Construct a map rescaling both time and momentum. For τ a unit less
time variable and P a unit less momentum that are related to t, p by two
coefficients tr and pr:

τ = t/tr

P = p/pr

find tr, pr such that the Hamiltonian in equation 1 becomes

H(P, φ) =
P 2

2
+ cosφ

3. Rescaling time and other transformations

(a) Consider a Hamiltonian H(p, q). How does the Hamiltonian change if t is
rescaled by b to τ = bt? This is relevant to a numerical technique known
as regularization where the Hamiltonian is multiplied by a function (usually
dependent on coordinates) that rescales time.

(b) Show that t→ −t, p→ q and q → p preserves Hamilton’s equations.
(c) Show that t→ −t and p→ −p preserves Hamilton’s equations. This is time

reversal.

4. Plotting level curves for an Andoyer Hamiltonian

A Hamiltonian that describes first order mean motion resonances in Celestial
mechanics and Lindblad resonances in galactic dynamics is an Andoyer Hamil-
tonian

H(J, φ) = J2 + δJ + J1/2 cosφ (2)
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Here J is an action momentum variable and φ an angle. It is customary to plot
level curves for this Hamiltonian in a coordinate system (x, y)

x =
√

2J cosφ y =
√

2J sinφ

so that radius on the plot gives larger J values and angle on the plot corresponds
to φ. The coordinate transformation is canonical so Hamilton’s equations describe
the equation of motion in the new coordinate system.

(a) Transfer the Hamiltonian into coordinates (x, y) showing that the Hamilton-
ian looks like

H(x, y) =
1

4
(x2 + y2)2 +

δ

2
(x2 + y2) +

1√
2
x (3)

(b) Plot the level curves as a function of x, y for different values of δ including
positive and negative ones. Illustrate that there are either 1 or 3 fixed points.

(c) Classify the fixed points as stable or unstable based on the phase curves.
(d) How do the Hamiltonian level curves change if you flip the sign of the cosine

term in the Hamiltonian?
(e) Using Hamilton’s equations for x, y find a cubic equation with roots giving

the x values for the fixed points.
(f) Explain why this system either has 1 or 3 fixed points. Using the cubic

equation, find what δ values give three fixed points rather than just one.
(g) Draw a bifurcation diagram for the fixed points.

5. Double well potential

Consider the following Hamiltonian

H(q, p) =
p2

2
+ V (x)

with quadratic potential function

V (x) = −2Bx2 + x4

With B > 0 the potential has two potential wells.

a) Orbits can remain in one potential well with x > 0 or x < 0 at all later times.
What condition on the energy determines whether a particle remains confined to
one of the potential wells?

b) Find the fixed points for the system and determine whether they are stable
or hyperbolic.
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c) Plot level curves of the Hamiltonian in phase space (x, p). What does the
separatrix look like?

d) What is the period of orbits that librate about one of the stable fixed points?

e) What are orbits near the origin like?

6. Pendulum on a rotating axis

Consider a system with force f(x) = − sin(x) +M ;

ẍ = − sinx+M

(a) What is a Hamiltonian description for this system?
(b) Why is it called a pendulum on a rotating axis?
(c) Plot level curves
(d) Plot streamlines
(e) How do the streamlines, level curves and number of fixed points depend on

the value of M?

Now add dissipation

ẍ = sinx+M − αẋ
α > 0.

(f) Again, find the fixed points
(g) Taking into account energy loss with time, draw streamlines.
(h) Discuss the appearance of a periodic orbit in the case M > 1

(this system is much discussed and illustrated by Strogatz in his book on
Non-linear Dynamics and Chaos).

7. On the Legendre Transform

Find the Legendre Transform of

f(x) = x3

Where is this function convex and allows a Legendre transform?

8. Not Time Crystals

Consider a separable Lagrangian

L(q, q̇) = T (q̇) + V (q) (4)



PHY411. PROBLEM SET 1. 5

that does not depend on time. Because it does not depend on time, the associated
Hamiltonian (energy) should be conserved.

A function f(x), f : R→ R is convex if for ∀x1, x2 ∈ R and ∀t ∈ [0, 1]

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

A twice differentiable function of one variable is convex on an interval if and only
if its second derivative is non-negative in the interval.

Taking a Legendre transform (q̇ → p) The associated Hamiltonian

H(p, q) = pq̇∗(p)− L(q, q̇∗(p))

where q̇∗(p) is a solution to this condition

p =
∂L(q̇∗)

∂q̇
. (5)

We assume that this function can be inverted and that we can find q̇∗(p).

(a) Equations 4 and 5 imply that p = T ′(q̇∗). Show that

dq̇∗(p)

dp
=

1

T ′′(q̇∗(p))

(b) An extremum energy must occur at fixed points where

∂H

∂p
=
∂H

∂q
= 0.

Show that q̇∗(p) = 0 at a fixed point.
(c) The second derivatives at a minimum must be positive. Show that the re-

quirement
∂2H

∂2p
> 0

implies that T ′′(q̇∗(p)) > 0 at the fixed point. This means that the kinetic
energy function must be convex at the minimum energy.

Most of these results are violated if the function for q̇∗ cannot be inverted.

See Classical Time Crystals, Shapere, A. Wilczek F. 2012, Phys. Rev. Lett.
109, 160402

9. Invariance of equations of motion
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(a) Consider related Lagrangians L(q̇, q, t) and L̃(q̇, q, t) with

L̃(q̇, q, t) = L(q̇, q, t) +
d

dt
[G(q, t)]

= L(q̇, q, t) + q̇
∂

∂q
G(q, t) +

∂G

∂t
, (6)

where G(q, t) is a smooth function. The actions S, S̃ on a curve q(t)

S(q(t)) =

∫ tb

ta

dt L(q̇, q, t)

S̃(q(t)) =

∫ tb

ta

dt L̃(q̇, q, t). (7)

Show that the difference action S− S̃ over a path starting at qa at t = ta and
going to qb at t = tb is only a function of qa, qb, ta, tb.
This means that the variations of the path integral are identical, ∂S = ∂S̃
and so that the equations of motion for L and L̃ are identical.

10. On dissipation

Consider a dissipation function F(q̇) that will help us represent a velocity
dependent force. Modify Lagrange’s equation so that they become

d

dt

∂L

∂q̇
− ∂L

∂q
= −∂F

∂q̇
. (8)

(a) For a Lagrangian in the form L = q̇2

2
+V (q), show that Lagrange’s equations

in the form of equation 8 (with a dissipation function) are consistent with a
damping force per unit mass −∂F

∂q̇
.

(b) Defining energy as

E = q̇
∂L

∂q̇
− L

show that for a time independent Lagrangian (giving equation of motion
consistent with equation 8)

dE

dt
= −q̇∂F

∂q̇
(9)

This gives work due to dissipation.
(c) A damped harmonic oscillator is described by

mẍ+ bq̇ + kq = 0 (10)
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This has a damping force and energy is not conserved.
What dissipation function F and Lagrangian gives the equations of motion?

(d) We can derive the equations of motion without a dissipation function and
with a time dependent Lagrangian or Hamiltonian.
Show that the Euler-Lagrange equations yield the equation of motion (equa-
tion 10) with a time dependent Lagrangian

L(q, q̇, t) = ebt/m
(
m

2
q̇2 − k

2
q2
)
. (11)

(e) Do a Legendre transformation and show that the Hamiltonian corresponding
to this Lagrangian is

H(p, q, t) = e−
bt
m
p2

2m
+ e

bt
m
k

2
q2 (12)

(f) Show that Hamilton’s equations are consistent with equation 10.
(g) Hamilton’s equations implies that ∂H

∂t
= dH

dt
. What is dH

dt
for the Hamiltonian

of equation 12? Is it equal to the dissipation rate with energy dissipation
rate Ė = −bq̇2 consistent with the equations of motion?

The second half of this problem is by K. S. Lam.

11. On phase wrapping

Consider the Hamiltonian

H(I, θ) = ωI + bI2

in action angle variables where ω and b are constants. The action I is a conserved
quantity because the Hamiltonian is independent of θ. One of Hamiltonian’s
equations is

θ̇ =
∂H

∂I
= ω + 2bI. (13)

Suppose two particles are initially both at angle θ = 0 and initially have action
variables I1 and I2.

How long does it take before the first particle is delayed or advanced in its orbit
by ∆θ = 2π compared to the second particle?

12. A numerical illustration of phase wrapping
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For the pendulum, the libration period depends upon amplitude. The pendu-
lum Hamiltonian

H(p, φ) =
p2

2
− ε cosφ (14)

Assign a bunch of particles initial conditions with φ ∼ 0, and momentum p ∼
p0 ±∆p. This distribution is initially confined in a small region in phase space.

Show that after some integration time, the distribution shears out in phase
space.

Example code showing phase wrapping for an anharmonic oscillator is available
in a python notebook on the class website.

13. The phase space distribution function

The number of stars in the Milky Way Galaxy per unit volume in phase space
can be described with a distribution function

f(x,v, t)dx3dv3

(a) Ignoring the birth and death rate of stars and encounters between them,
explain how conservation of volume in phase space is consistent with

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0 (15)

where Φ(x) is the gravitational potential. This equation is known as the
collisionless Boltzmann equation.

(b) Suppose there is a frame moving with velocity V in which the velocity dis-
tribution is constant (independent of time). The distribution function can
be written as

f(x−Vt,v).

The velocity V can be called a pattern speed. Compute the collisionless
Boltzmann equation for this distribution function. What constraint can be
inferred on Φ and f?

(c) With million of stars with precise distances and space motions from the GAIA
DR3 release, it is now possible to compute spatial gradients of the velocity
distribution function. Consider a velocity distribution in a small region (like
the solar neighborhood) of the Galaxy. Explain why ∂f

∂v
= 0 at a peak in the

velocity distribution.
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(d) Assuming a constant pattern speed, and that we do not know the exact form
of the gravitational potential Φ, explain how the pattern speed V might be
measured from spatial gradients of the phase space distribution function.

Note: This is related to the Weinberg-Tremaine method for measuring a pattern
speed of a bar or spiral arm. I attempted to do this with the GAIA DR2 data
and it failed miserably. Apparently the assumption of a constant pattern speed
is a bad one for the velocity distribution in the solar neighborhood.

14. Propose and work on your own problem!


