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0.1 Introduction

Birkhoff Normal form notes taken from an old set of Rajeev’s notes and these are based
on Gustavson, F. G. 1966, AJ, 71, 680. A nice explanation and connection to KAM is
given in an Introduction to dynamical systems by Arrowsmith and Place (in library, green
book). In future expand using this book perhaps.

Use of Hamilton-Jacobi equation originally taken from the 3 body problem book by
Innanen? Transformation to Poincaré or Delauney coordinates is also illustrated in Mor-
bidelli’s book. Rough outline of KAM theory is following Morbidelli’s book, but should be
improved and expanded perhaps by following Sylvio Ferraz-Mello’s book. Lie derivatives
should be explained more carefully. Problems could be added on the Birkhoff normal form
and with Lie derivatives. Lagrange’s equations and how they follow from the Hamiltonian
in canonical coordinates could be illustrated.
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1 The Birkhoff Normal form

Suppose we have a Hamiltonian

H(q, p) =
1

2

∑
i

ωi(p
2
i + q2i ) +O(3)

that consists of N harmonic oscillators and some higher order terms that are cubic in p, q.
We can regard the Hamiltonian as a power series

H(q, p) =
∞∑
r=2

Hr(q, p)

where
Hr(q, p) =

∑
|A|+|B|=r

HABq
a1
1 q

a2
2 q

a3
3 ...p

b1
1 p

b2
2 ...

and |A| = a1 + a2 + a3...an, and |B| =
∑

i bi. In other words

Hr(q, p) =
∑

|A|+|B|=r

HAB

∏
i

qaii p
bi
i

and Hr is a polynomial with degree r = |A|+ |B|.
We desire a way to perform a canonical transformation to remove orders of the Hamil-

tonian with r > 2 .
It is convenient to introduce the operator

D =
∑
i

ωi

(
qi
∂

∂pi
− pi

∂

∂qi

)
This operator is reminiscent of the exterior derivative. Consider a one form

f r = Hr(p, q)
∑
i

ωi(qidqi + pidpi)

and take its exterior derivative

df r =
∑
i

ωi

(
qi
∂Hr

∂pi
− pi

∂Hr

∂qi

)
dpi ∧ dqi

= (DHr)dpi ∧ dqi

If DHr = 0 then the one form f r is closed as df r = 0.
The operator

D =
∑
i

ωi
∂

∂θi
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where θi are normal to the coordinate Ii = 1
2(q2i + p2i ).

What types of polynomials of order r are in the kernel of D? In other words what one
forms in written like f r are closed? Let us operate on Ii = 1

2(p2i + p2i )

DIi =
ωi
2

(2qipi − 2piqi) = 0

Likewise
DIni = nIn−1i DIi = 0

All powers of Ii are in the kernel of D.
More generally we can transfer polynomials in q, p to eigenvectors of D. The vector

zj = qj + ipj is an eigenvector of D with eigenvalue iωj . The vector z̄j = qj − ipj is
an eigenvector of D with eigenvalue −iωj . So D can be diagonalized in a basis where
polynomials are written with respect to z, z̄. The product zj z̄j = q2j + p2j = 2Ij .

Operating on a product (and only taking into account one degree of freedom)

Dzaz̄b = ω(q∂p − p∂q)(q + ip)a(q − ip)b

= ω
[
qai(q + ip)a−1(q − ip)b − qbi(q + ip)a(q − ip)b−1

−pa(q + ip)a−1(q − ip)b − bp(q + ip)a(q − ip)b−1
]

= ω(q + ip)a−1(q − ip)b−1 [qai(q − ip)− bqi(q + ip)− pa(q − ip)− pb(q + ip)]

= ω(q + ip)a−1(q − ip)b−1i(a− b)(q2 + p2)

= ωi(a− b)za−1z̄b−1zz̄
= ωi(a− b)zaz̄b

Taking into account the other degrees of freedome

DzAz̄B = i
∑
i

ωi(ai − bi)zAz̄B

where zA = za11 z
a2
2 ... and likewise for z̄B. If

∑
i ωi(ai−bi) = 0 then DzAz̄B = 0. Polynomi-

als in the kernel of D can be expressed as polynomials in z, z̄ such that
∑

i ωi(ai− bi) = 0.
A pseudo inverse of a polynomial for the part that is not in the kernel can be constructed

with

D−1zAz̄B =
zAz̄B

i
∑

i ωi(ai − bi)

if the denominator is not zero and D−1zAz̄B = 0 otherwise. If Hs is transformed to depend
on z, z̄ we then can set

ws = D−1Hs

Operating on ws with D we find Dws = Hs.
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How do we make a canonical transformation to remove order by order in the Hamilto-
nian? Let us use a generating function of old coordinates and new momenta

S(q, P ) =
∑
i

qiPi + ws(q, P )

where ws(q, P ) is a polynomial in q, P that is of order s.
New coordinates are given by

Qi = qi +
∂ws

∂Pi

And momenta are related by

pi = Pi +
∂ws

∂qi

The new Hamiltonian is
H(q, p) = K(Q,P )

Recall our original Hamiltonian has

H = H0 +H1

with
H0 =

∑
i

ωi
2

(p2i + q2i )

and H1 has polynomials that are higher order (order 3). Our canonical transformation, to
first order in the changes can be written

qi = Qi −
∂ws

∂Pi
(P,Q)

pi = Pi +
∂ws

∂qi
(P,Q)

Inserting these H0 gives to first order in the changes

H0(q(Q,P ), p(Q,P )) =
∑
i

[
ωi
2

(P 2
i +Q2

i ) + ωi(Pi
∂ws

∂Q
−Qi

∂ws

∂P
)

]
+ ..

=
∑
i

[ωi
2

(P 2
i +Q2

i )−Dws
]

+ ..

Meanwhile the higher order H1 term can be written solely in terms of P,Q. But because it
is higher order, its term should match the first order term above. Taking only the lowest
order terms

H(q(Q,P ), p(Q,P )) =
∑
i

[ωi
2

(P 2
i +Q2

i )−Dws
]

+H1(P,Q)
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If we have chosen ws so that Dws = H1 then the two terms cancel and we are left with a
Hamiltonian that only depends on P 2

i +Q2
i .

As long as there are no resonances out to order s this procedure can be done consecu-
tively.

By iterating this procedure a polynomial Hamiltonian can be reduced to normal form
to any order (as long as there is no resonance condition). If the frequencies are linearly
independent to all orders then we can construct a complete set of conserved quantities
Ii = p2i + q2i . However, the series often does not converge. If the series always converged
then all systems would be integrable. Even with a non-integrable system it may be useful
to compute the first few orders achieving a good approximate solution.

How can we write an arbitrary polynomial in terms of z, z̄?

q =
1

2
(z + z̄) p =

1

2i
(z − z̄)

Suppose H3 = q3

H3 = q3 =
1

8
(z + z̄)3 = z3 + z̄3 + 3z2z̄ + 3zz̄2

Operating with D on this

DH3 =
iω

8

(
3z3 − 3z̄3 + 3(2− 1)z2z̄ + 3(1− 2)zz̄2

)
=

iω

8

(
3z3 − 3z̄3 + 3z2z̄ − 3zz̄2

)

D−1H3 =
1

8ωi

(
z3

3
+
z̄3

−3
+ 3

z2z̄

1
+ 3

zz̄2

−1

)
=

1

8ωi

(
z3

3
− z̄3

3
+ 3z2z̄ − 3zz̄2

)
We now set w3 = D−1H3 and use this to make the canonical transformation.

Not well explained here is how the resonance condition makes problems and why this
works for a Hamiltonian that depends on powers of the action variable. See Arnold ap-
pendix 7 for a terse explanation.

2 The Hamilton-Jacobi equation

The Hamilton-Jacobi equation is a first order differential equation that when solved gives
you conserved canonical momenta. If a complete set of momenta can be found, then the
Hamiltonian system is integrable.
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We consider
H(q, p)

We perform a canonical transformation using a generating function that is a function of
old coordinates and new momenta

S(q, P, t).

New coordinates and old momenta satisfy

∂S(q, P, t)

∂q
= p

∂S(q, P, t)

∂P
= Q. (1)

The Hamiltonian in the new coordinates and momenta

K(Q,P, t) = H (q(P,Q), p(P,Q), t) +
∂S

∂t

= H

(
q,
∂S(q, P, t)

∂P
, t

)
+
∂S

∂t

The Hamilton-Jacobi equation is this equation set to K = 0. In other words

K(Q,P, t) = H

(
q,
∂S

∂P
, t

)
+
∂S

∂t
= 0.

If K = 0 then Hamilton’s equations imply that all momenta are conserved. Hence the
new momenta are conserved quantities. If you can solve this equation, you would find new
momenta P that are conserved quantities. All momenta and coordinates found this way
will be canonical and obey Poisson brackets.

For a higher dimensional system we have vectors of momenta and coordinates, the
generating function S(q,P, t) and

∂S(q,P, t)

∂qi
= pi (2)

∂S(q,P, t)

∂Pi
= Qi. (3)

The new momenta are constants of motion (conserved quantities). Let’s look at varia-
tions in the generating function S(q,P) for a system with Hamiltonian that is time inde-
pendent,

dS(q,P) =
∑
i

[
∂S

∂qi
dqi +

∂S

∂Pi
dPi

]
. (4)
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Because the momenta are constants of motion (conserved quantities) we can ignore the
second term. We can insert equation 2 into the first term giving giving

dS(q,P) =
∑
i

pidqi = p · dq. (5)

The action S can be found by integrating along a trajectory.

S =

∫ q

p(q′)dq′. (6)

Hmm. This is actually an action variable if we have a 2d phase space. However, I am
not sure how to interpret it for a higher dimensional space.

2.1 Finding conserved quantities in the Kepler problem using the Hamilton-
Jacobi equation

Recall the Kepler Hamiltonian in cylindrical coordinates

H(pr, L; r, θ) =
p2r
2

+
L2

2r2
− k

r
. (7)

We take a generating function S(r, θ, P1, P2) in terms of old coordinates and new momenta.
The Hamilton Jacobi equation is

H

(
r,
∂S

∂r
,
∂S

∂θ

)
+
∂S

∂t
= 0

(here H does not depend on θ so this is omitted. The old momenta are

pr =
∂S

∂r
L =

∂S

∂θ
. (8)

Let us assume that S is separable in the coordinates θ, r and time t.

S(r, θ, P1, P2) = Sr(P1, P2, r) + Sθ(P1, P2, θ) + St(P1, P2, t).

The new coordinates

Q1 =
∂Sr
∂P1

Q2 =
∂Sθ
∂P2

. (9)

Using the Hamiltonian (of equation 7) and substituting in for pr, L, the Hamiltonian Jacobi
equation

K =
1

2

(
∂Sr
∂r

)2

+

(
∂Sθ
∂θ

)
1

2r2
− k

r
+
∂St
∂t

= 0 (10)

7



With S separable we can define constants

k1 = −∂St
∂t

k2 =
∂Sθ
∂θ

.

However we notice from comparing this to equation 8 that

k2 = L.

We already knew that the angular momentum was conserved so it should not be a surprise
to see it come out of the Hamilton-Jacobi equation. Integrating these constants

Sθ(θ) = k2θ + constant St(t) = −k1t+ constant

Inserting these new momenta into the Hamilton-Jacobi equation (equation 10)(
∂Sr
∂r

)2

= 2

(
k1 +

k

r

)
− k22
r2

and back into our function for S

S = −k1t+ k2θ +

∫ r

dr′
√

2k1 +
2k

r′
− k22
r′2

(11)

Since K = 0 and K = H + ∂S
∂t = H − k1 = 0 we know that k1 is the energy of the orbit;

k1 = − k

2a
.

Let’s look again at equation 11. The generating function S should be a function of old co-
ordinates and new momenta. Here we have a function of old coordinates and two constants
k1, k2 which we found by assuming that S was separable. At this point we associated the
constants with the new momenta, P1 = k1, P2 = k2.

S(r, θ, P1, P2, t) = −P1t+ P2θ +

∫ r

dr′
√

2P1 +
2k

r′
− P 2

2

r′2
. (12)

We can find our new coordinates

Q1 =
∂S

∂P1
= −t+

∫ r

dr′
[
2P1 +

2k

r′
− P 2

2

r′2

]−1/2
Using

r = a(1− e cosE) dr = ae sinEdE
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and L =
√
ka(1− e2)

Q1 = −t+
a3/2

k

∫
(1− e cosE)dE

= −t+ n−1(E − e sinE)

= −t+M/n

where we have used mean motion n = a3/2/
√
k. The angle −t + M/n can be associated

with the time of perihelion τ . Performing a similar integral it is possible to show that

Q2 = θ − f

with f the true anomaly. We associate the angle, θ − f = ω, the angle of perihelion. To
summarize

Q1 = −t+M/n = τ

Q2 = θ − f = ω

P1 = − k

2a
= energy

P2 =
√
ka(1− e2) = L

These coordinates and momenta are not only conserved but canonical. By redoing the
problem in 3D and adding and subtracting these, it is possible to find more popular sets
of coordinates, the Delauney, modified Delauney and Poincaré coordinates.

3 Some Perturbation Theory

KAM theory begins with a near integrable Hamiltonian that depends on a small parameter
ε.

H(p, q) = H0(p) + εH1(p, q)

Using a perturbative expansion, for each order of ε an attempt is made to construct a
canonical transformation that transforms the Hamiltonian to integrable form. Near iden-
tity canonical transformations are used to do this. Rather than describe canonical trans-
formations in terms of generating functions we describe here a more direct Lie-derivative
approach.

3.1 Lie derivatives and generating near-identity canonical transforma-
tions

Recall that time derivatives of a function can be written in terms of a Poisson bracket with
a Hamiltonian

df

dt
= {f,H}
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We can define a derivative function, known as the Lie derivative

LHf = {f,H}

Here the Lie derivative evaluates the change of a scalar function along the flow of another
vector field. In other words H generates a flow and LH gives the change of f along this
flow.

If we apply the Lie derivative twice

L2Hf = {{f,H}, H}

and likewise i times Lif . The function as a function of time to first order

f(t) = f(0) + t
df

dt
+ ... = f(0) + tLHf(0)...

and to higher order

f(t) = f(0) +

∞∑
i=0

ti

i!
LiHf(0)

The Taylor series generates f as a function of time from a sum of Lie derivatives.
Previously we showed that a Hamiltonian flow (the flow made by a Hamiltonian us-

ing the equations of motion) generated canonical transformations. In other words, the
transformation q(0), p(0)→ q(t), p(t) is a canonical transformation. In the same way other
functions (other than the Hamiltonian) can be used to make a smooth series of canonical
transformations. An advantage of this approach is that near identity transformations are
constructed.

Given a function χ, called a Hamiltonian generating function, we can generate an
infinitesimal transformation for small parameter s of the scalar function f with

f(s) = f(0) + s{f, χ} = f(0) + Lχf(0)

Here s serves like time along the flow generated by ξ. For larger s

f(s) = f(0) +
∑
i

si

i!
Liχf(0)

The function can be a smooth function of q, p and s.
We can make a canonical transformation from q, p to Q,P with generating Hamiltonian

function ξ via

Q(s) = q +
∑
i

si

i!
Liχq

P (s) = p+
∑
i

si

i!
Liχp
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The result is a one parameter family of canonical transformations, depending on s, where
for small s the transformation is near the identity.

We can use for short hand Ssχ for the transformation and let it act on coordinates or
on a Hamiltonian.

3.2 First order canonical transformation of the near integrable Hamil-
tonian

Starting with a Hamiltonian

H(p, q) = H0(p) + εH1(p, q)

we can try to find a series of near identity canonical transformations that allow the Hamil-
tonian to become H̃(p̃), only dependent on momenta.

Suppose we transform a Hamiltonian H with a canonical transformation generated
with the Hamiltonian generating function χ and using small ε to describe how distant the
transformation is from the identity. We get a new Hamiltonian

K = SεχH

Writing this out to second order in ε

K = H + ε{H,χ}+
ε2

2
{{H,χ}, χ}

Now we sub in for H = H0 + εH1

K = H0 + εH1 + ε{H0, χ}+ ε2{H1, χ}+
ε2

2
{{H0, χ}, χ}+

ε3

2
{{H1, χ}, χ}

Now let us expand K to first order in ε,

K = K0 + εK1

Taking only the first order terms we find that

K1 = H1 + {H0, χ}

This equation is known as the homologic equation. We want to design χ so that K1 only
depends on momenta. By solving for χ and K1 simultaneously we can strive to remove the
first order terms that depend on q. We can then repeat the procedure at higher orders. This
is reminiscent of using Newton’s method to converge to a root, but here we are repeatedly
removing the lowest order term in ε.

Using a Fourier series for H1

H1 =
∑
k

ck(p)eik·q
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and a Fourier series for χ

χ =
∑
k

dk(p)eik·q

{H0, χ} = −i
∑
k

dk(p)k · ω0(p)eik·q

where the frequencies ω0 = ∂H0
∂p . We can solve the homologic equation with d0 = 0 and

dk(p) = − ick(p)

k · ω0(p)

and with
K1 = c0(p)

We see the small divisor problem again in the values of dk.

Remark Ferraz-Mello in his book on Canonical perturbation theory, has a nice compar-
ison of perturbation theory using Lie-derivatives (also known as the Hori method?) with
perturbation theory using standard generating functions. Could be illustrated here in the
future.

3.3 Ways out of the small divisor problem and convergence

Using the analyticity of the function:
When taking a Fourier transform of H1, the analyticity of the function ensures that

the coefficients decay exponentially above some |k|. In other words as long as the function
is smooth past some small scale size, the coefficients will decay exponentially above a k
related to that scale size. If each application of a perturbative theory is good to first or
second or third order, then eventually it will converge.
Restricting by a Diophantine condition

By choosing an initial condition, p∗ that satisfies a Diophantine condition

|k · ω(p∗)| >
γ

|k|α
for every k ∈ Zn,k 6= 0. (13)

we can ensure that the divisors are always smaller than some particular value. A trick is
to restrict the setting to an extremely small neighborhood of p∗ and with size dependent
on ε.

By combining the exponential drop of coefficients ck with the Diophantine condition,
we can ensure that the procedure, when repeated, converges. Each iteration can reduce
the error by greater than single power in the iteration parameter, as it true in Newton’s
method.
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Remark The illustration that the perturbation expansion converges in this setting is part
of what is known as KAM theory.

An alternative approach is to use orbit averaging and nearby periodic orbits (rather
than resonances) to place limits on how far a system can vary within a specific period of
time. This approach leverages stickiness of periodic orbits and gives a different theorem
known as the Nekhoroshev theorem. This approach can be called secular perturbation
theory.

The condition for a periodic orbit with period T is that there exists ki ∈ Z, ki 6= 0, for
each frequency

kiωi(p∗) = T (14)

The condition for a nearby periodic orbit is at set of non-zero integers k ∈ Zn such that

|kiωi(p∗)− T | < ε (15)

This contrasts with the condition to be near a resonance which is a set of integers (not all
zero) such that

|ω · k| < ε (16)
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