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0.1 Introduction

The material here is taken from a variety of sources. Newton’s map section following
Holmgren’s book. Circle map stuff from some reviews (H. Bruin, Physica D, 1992, and
a review by Predrag Cvitanovic). The list of rational/irrational number discussion is
currently like a laundry list and not yet nicely related to the dynamical problems. It would
help to add something on the circle map done with perturbation theory (as by Rajeev)
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to illustrate some KAM-like ideas and connect the rational/irrational number discussion
to the dynamics. I had not yet added any complex number dynamics but Milnor’s book
on the topic is nicely accessible. The set of topics here is nicely set up so that I can in
future add a section on KAM theory for maps of the circle (following original paper by
Arnold) that includes a holonomic type of equation (that will look familiar in the context
of near-integrable Hamiltonian KAM theory). I another set of notes I looked a some nice
invertible maps of the circle in an attempt to try to converge to a topological conjugacy
without doing Fourier expansion.

The exploration of the circle map is interesting because in some regimes, the map is
either like a rotation or has periodic orbits depending upon whether its winding number
is rational or irrational. The circle map provides an analogy to weakly perturbed nearly
integrable Hamiltonian systems. A perturbed Hamiltonian system can be transformed via
a series of canonical transformations to resemble an integrable system if the unperturbed
system is sufficiently far away from resonances. This is the focus of Kolmogorov’s theorem
and part of a body of work known as KAM theory. The resonances in the perturbed
Hamiltonian setting are played by the role of rational winding numbers for the circle
map. Instead of using canonical transformations to transform the Hamiltonian system,
perturbation techniques on the circle map can be used to find a topological conjugacy to
a rotation map. A procedure giving the map (giving the topological conjugacy) will only
converge if the winding number is sufficiently irrational. Likewise the procedure giving the
canonical transformation in the Hamiltonian setting will only converge if the frequencies
are distant from resonances.

1 Circle maps and Arnold Tongues

A dissipative oscillator can have asymptotic motion that is periodic. The attractor in this
case is called a limit cycle. When two oscillators are coupled together, the motion is in
a 2-d space equivalent to a torus. When the oscillators mode-lock, the attractor of the
combined system is a periodic orbit on the torus, and when they unlock the trajectory is
quasi periodic, densely covering the torus.

Taking a Poincaré section reduces the torus to a circle. The flow on the torus in this
surface of section becomes an iterated mapping of the circle with a single iteration of the
resulting circle map corresponding to a complete revolution about one axis of the torus.

A map from the unit interval back onto itself can be regarded as a map of the circle
onto itself. The map

θn+1 = [θn + Ω] mod 1 (1)

corresponds to a shift or rotation by Ω.
This is in the class of maps

θn+1 = f(θn)

where f(θ) is a periodic function on the unit interval f(θ + 1) = f(θ).
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We can define a winding number W (sometimes called the rotation number) as

W ≡ lim
n→∞

1

N

N−1∑
n=0

∆θn (2)

with
∆θn = [θn+1 − θn] mod 1

For the rotation map in equation 1 the winding number should be equal to Ω. Sometimes
the winding number is written as

W = lim
n→∞

1

n
θn (3)

The two definitions are should be equivalent, but care should be taken with the modulo
operation. For example for W computed with Equation 2, if the differences ∆θn vary
alternate between ε and 1− ε the winding number computed would converge to 0.5 but it
should be 0 or 1.

The easiest way to compute the winding number sensibly is to use a lift to the real line.
In other words let

φn+1 = f(φn)

with no modulo operator. We no longer require f to be periodic. This sends numbers on
the real line to numbers on the real line. The circle map is recovered with the modulo
operation

θn = φn mod 1

sending intervals on the real line into the unit interval. For a winding number W , φn would
on average keep increasing by W with each application of the map. So we can compute
the winding number with

W = lim
N→∞

1

n
φn

and by not taking the modulo during the mapping. So if you see the winding number written
as given by equation 3 it is actually computed without the modulo operation.

If the winding number is rational and equal to W = p/q then there are periodic fixed
points with period q. The winding number depends on a limit so if the winding number is
rational then orbit must converge to a periodic orbit.

If the winding number is irrational, then there are no periodic orbits. The behavior is
called quasi-periodic. These orbits are dense. This means that given any point and any size
neighborhood containing that point, the orbit will eventually come into that neighborhood.
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1.1 Sine-circle map

We now look at maps that are more complicated than a rotation or a shift

θn+1 = [θn + Ω + g(θn)] mod 1

where g(0) = g(1) so g is a periodic function g(θ + 1) = g(θ). We can also assert that∫ 1
0 g(θ)dθ = 0 as the constant or average value for g can be incorporated in the rotation

Ω. It is useful to consider the lifted map on the real line

φn+1 = f(φn)

with
f(φ) = φ+ Ω + g(φ)

As the integral of g is zero, repeated operations of the lifted map with Ω > 0 should cause
φ to increase forever, giving a non-zero winding number, computed as

W = lim
n→∞

1

n
f(φn)

An example of a circle map, is the much studied sine-map giving rise to a phenomena
called Arnold tongues

θn+1 = [θn + Ω− K

2π
sin(2πθn)] mod 1

This map we can write in terms of the function

fΩ,K(θ) = θ + Ω− K

2π
sin(2πθ)

If K ≤ 1 the map is invertible. This limit for being invertible can be understood by
looking at the fixed point with f ′(θ) = 0.

When K is near zero we recover our shift or rotation map. When K is not zero (but not
greater than 1) for each rational number there is a region in θ where the winding number
is equal to that rational number. The region is mode locked.

The recurrence time N for a particular ε is the smallest integer N such that

‖θN − θ0‖ < ε

and is a good way to numerically identify the rational winding numbers W = p/q with
low q (see Figure 2). Here ‖θN − θ0‖ should be computed so that it is a minimum of
|θN − θ0|, |θN − θ0 + 1|, |θN − θ0 − 1| or a minimum of (θN − θ0) mod 1.

4



Figure 1: a) The winding number with black corresponding to W = 0 and red W = 1
with green W = 1/2. x axis is Ω and ranges from 0-1. y-axis is K and ranges from 0 to
4π. Original artwork created by Linas Vepstas (from wiki). The white dotted line is also
shown on the right panel. b) Winding or rotation number as a function of Ω for K = 1,
also known as the devil’s staircase. I computed this with K = 1 − 10−3 and using 300
iterations of the map.
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Figure 2: a) The recurrence time N is plotted for ε = 0.003 with black N < 10, blue values
of about 50, green shows values of about 140 and red for N > 250. x axis is Ω and ranges
from 0-1. y-axis is K and ranges from 0 to 4π. b) Bifurcation map for Ω = 1/3. Here the
x axis is θn plotted for many iterations. Again the y axis is K ∈ (0, 4π). Original artwork
created by Linas Vepstas (from wiki).
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Figure 3: My attempt to compute the winding number using equation 3. After doing this
I was much more impressed with Linas Vepstas’s artwork!
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1.2 K < 1 quasi-periodic and mode-locking behavior

We can worry about convergence of the winding number. Let

WN ≡
N−1∑
n=0

∆θn
n

If the series
lim
N→∞

WN

converges then the winding number exists and is either rational or irrational and behavior
is either quasi-periodic or mode-locked, respectively.

For K < 1 there are only two types of behavior, quasi-periodic and mode-locked and
the winding number series always converges.

If the winding number is rational, W = p/q, then the map converges to a periodic orbit
with

f q(θi) ∼ θi + p

with θi having q − 1 values.
It is not true that if Ω is rational and K < 1 then the winding number is always

rational. Only if K is small enough is the winding number is equal to Ω. For K < 1 there
is a mode-locked region for every rational winding number.

The largest tongues, ordered by size, occur at Farey fractions. A Farey sequence of order
n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest
terms, have denominators less than or equal to n. For two consecutive rational numbers
in a Farey sequence of the same order, p1/q1 and p2/q2, it is true that p1q2 − p2q1 = 1.
The largest Arnold tongue between the tongues with winding numbers p1/q1 and p2/q2 has
winding number (p1 + p2)/(q1 + q2), known as a Farey sum.

If the winding number is irrational then the map is conjugate to a shift or rotation. In
other words there is an invertible function h on the unit interval and an irrational number
λ, such that

h−1 ◦ fΩ,K ◦ h = g

and with g(θ) = θ + λ a rotation where λ is irrational and equal to the winding number.
It is possible to develop a convergent perturbative method (usually based on Fourier ex-

pansion) to construct h and λ given Ω,K, providing that the winding number is irrational.
For example, see recent work by Llave.

If the winding number is rational, then the map is conjugate to one containing rational
periodic orbits. One could attempt to estimate the width of the Arnold tongues as a
function of rational winding number W = p/q and K. In this case I think it should be
possible to find an invertible function h such that

h−1 ◦ fΩ,K ◦ h = g
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where g is something simple like

g(θ) = θ − ε sin(2πqθ)

or

g(θ) = θ +

2q∏
i=0

(θ − πi/q)

1.3 K = 1 Critical value giving a Cantor set

If K = 1 the situation is considered critical. All the mode-locked regions just barely touch.
There are no irrational winding numbers, but the winding number as a function of Ω is
fractal and called the devil’s staircase.

It is sometimes said that the circle sine-map maps the rationals, a set of measure zero
at K = 0, to a set of non-zero measure for K 6= 0, and a set of measure 1 for K = 1.
The total integrated (integrated here in the sense of Lebesque integration) length of the
frequency-locked intervals goes from w = 0 when K = 0 to w = 1 when K = 1.

Rational numbers are a set of measure zero. For K 6= 0 each rational winding number
gives rise to a tongue of a finite width. But the rational numbers are an infinite set. How
can this set of intervals with rational winding numbers not be of measure 1 and cover the
entire interval? Consider a tongue with winding number p/q, with width ∆w. If ∆w ∼ Kq

or Kq−1, decreasing sufficiently fast as both q increases and K decreases. then the total
width w would be of measure less than 1.

There is a flat region in the devil’s staircase for every rational number.

Question Is it possible to construct a devil’s staircase in different ways? There must be a
flat region for every rational number and the entire set must be of measure 1 and so cover
the entire unit interval.

Question For the sine map, the set of rational winding numbers is of measure 1 at K = 1
and this is the same value of K where the tongues start to overlap. For other circle maps
can tongues start to overlap in one region of Ω before another region?

1.4 K > 1 Period doubling and chaos

In this case tongues overlap and we can have chaotic behavior. See Figure 2 showing a
bifurcation diagram for different values of K at Ω = 1/3. Period doubling and chaotic
trajectories are both seen as we saw previously in the logistic map.

The circle map exhibits a type of universality similar to the logistic map (and in fact
behavior of periodic orbits of the logistic map can be seen in the circle map). Renormal-
ization techniques have also been applied giving a set of universal exponents that describe
convergence of Wn and renormalization of the function.
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1.5 Perturbations

Consider
f(x) = x+ Ω + g(x)

f2(x) = x+ 2Ω + g(x) + g(x+ Ω + g(x))

= x+ 2Ω + g(x) + g(x+ Ω) + g′(x+ Ω)g(x) + g′′(x+ Ω)
(g(x))2

2
+ ....

f3(x) = x+ 3Ω + g(x) + g(x+ Ω) + g′(x+ Ω)g(x)...+ g(x+ 2Ω + g(x+ 2Ω))

= x+ 3Ω + g(x) + g(x+ Ω) + +g(x+ 2Ω) + g′(x+ Ω)g(x) + g′′(x+ Ω)
(g(x))2

2
+ ....

To first order in g

f q(x) = x+ qΩ +

q−1∑
i=0

g(x+ Ωi)

If Ω ∼ 1/q then this first order term averages to zero. Likewise for second order terms as
long as Ω differs from 1/2. The q-th order terms do not average to zero if Ω ∼ 1/q,

f q(x) ∼ x+ qΩ +

q∏
i=0

g′(x+ iΩ)

For g(x) = K/(2π) sin(2πx) the product gives something like

f q(x) ∼ x+ qΩ +Kq sin(2πqx)

This implies that the width of the tongues scales with Kq. The terms that do not average
to zero of lower order would contribution to an offset of the tongue giving a winding number
W = p/q = Ω + ε where ε is an offset.

Remark It would be nice to use a perturbation technique similar to that used for Dio-
phantine numbers and using a conjugacy map, that could be used to estimate width of
Arnold tongues.

1.6 Density maps

f(θ) an invertible map of the unit interval

θi+1 = f(θi)
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It is convenient to compute a derivative

dθi+1

dθi
= f ′(θi) = f ′(f−1(θi+1))

dθi
dθi+1

= Df−1(θi+1)

Density distribution (initially smooth) ρ(θi)

ρ(θi+1)dθi+1 = ρ(θi)dθi

The map gives a new density distribution

ρ(θi+1) = ρ(θi)
dθi
dθi+1

= ρ(f−1(θi+1))
1

f ′(f−1(θi+1))

= ρ(f−1(θi+1))Df−1(θi+1)

Let g(θ) = f−1(θ)
ρ(θi+1) = ρ(g(θi))Dg(θi)

Starting with a constant initial density distribution ρ0(θ) = 1, we generate a map between
density distributions at each iteration of the map,

ρi(θ) = ρ(θi)

Attracting fixed points are points θ∗ where

lim
i→∞

ρi(θ∗)→∞

The distribution approaches a delta function with peak at θ∗.

2 Ways to describe rational and irrational numbers

2.1 Farey sequence

A Farey sequence of order n is the sequence of completely reduced fractions between 0 and
1 which, when in lowest terms, have denominators less than or equal to n. An example

F5 =

{
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
The sequence has the nice property that

PiQi−1 − Pi−1Qi = 1

The number of terms in a given Farey sequence φ(Q) turns out to be an irregular function
of Q.
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2.2 Continued Fractions

Pn
Qn

= [a1, a2, a3....an] =
1

a1 +
1

a2 + ...
1

an

To compute the expansion take the integer part. Then invert the remainder and take its
integer part. Repeat. The expansion terminates for any rational number.

Rational approximations get better if we have large numbers in the continued fraction
of the value we are approximating. By that definition the most irrational number is the
one that has a continued fraction expansion with all 1s. This is the golden mean.

For any irrational number we given an estimate of how irrational it is by summing the
digits in the continued fraction expansion.

A best rational approximation to a real number x is a rational number p/q, q > 0,
that is closer to x than any approximation with a smaller or equal denominator. The
simple continued fraction for x generates all of the best rational approximations for x. To
obtain the best rational approximation from a truncated continued fraction expansion it is
sometimes necessary to increment the last digit in the sequence.

It is possible to estimate the best rational within an interval. Given two numbers x, y
defining an interval, they have the same continued fraction expansion [a1, a2...ak−1..] up to
a particular sequence number ak−1 at which point they start to differ with x having next
integer ak and y have next integer in the sequence bk. The best rational in the interval has
continued fraction expansion [a1, a2...ak−1,min(ak, bk) + 1]

There is a pretty close relation between the Farey sequence and best rational approxi-
mations.

2.3 Irrational Numbers and Diophantine approximation

Rational winding numbers exhibit mode-locking in circle maps. When the winding number
is rational, the orbit converges to a periodic orbit. The orbit is then not dense. There is
no way to make a transformation that transfers the map to a rotation.

In Hamiltonian systems, when the frequency vector of the unperturbed system contains
a resonance ω · k = 0 for some integer vector k ∈ Zn, then it is not possible to remove
perturbations using a perturbative expansion.

In both settings the desired transformation can be done if the perturbation is small
enough and either the frequency or winding number is sufficiently irrational or distant
from rational numbers or resonances, depending on the setting.

A vector ω satisfies a diophantine condition if

|k · ω| > γ

|k|τ
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for every k ∈ Zn, k 6= 0 for some positive numbers γ, τ . Only numbers that are poorly
approximated by rational series satisfy diophantine conditions. Another way of saying this
is that the number is so irrational that it is always pretty far away from any rational
numbers or resonances.

What if I keep looking for higher values of integers? With larger integers you can get
closer to any irrational number. The diophantine condition takes this into account in how
the distance scales with |k|.

Roots of polynomials can be irrational and can be written in terms of a continued
fraction expansion. For example, the gold mean αg = (

√
5 − 1)/2 is the solution to x2 +

x− 1 = 0 and can be written as

αg = (1 + αg)
−1 =

1

1 +
1

1 +
1

1 + ...

Taking the vector
vg = (1, αg)

it is possible to show using the continued fraction expansion that

|k · vg| ≥
1√

5||k||

where ||k|| =
∑

i |ki|. Thus the vector vg is Diophantine with τ = 1 and coefficient
γ = 1/

√
5.

2.4 Pigeonholes

The pigeonhole principle: If one puts n+ 1 pigeons into n pigeonholes, then at least
one pigeonhole will contain at least two pigeons. More generally, if one puts kn+1 pigeons
into n pigeonholes, then at least one pigeonhole will contain at least k + 1 pigeons.

Dirichlet used this principle to prove a result about approximating irrational numbers
by rationals.

Theorem 2.1 Theorem (Dirichlet) Let α be an irrational number, and let N be a positive
integer. Then there is a rational p/q such that the denominator q is between 1 and N and
such that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qN
.

Another way to state this is qα is within 1/N of an integer p.
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Figure 4: A frequency vector ω is shown as the black arrow. Integer vectors k near the
plane perpendicular to ω have low values of |ω · k| and so are near resonance. Larger
integer vectors k are likely to be closer to this plane.

Proof Take the interval [0, 1) and divide it up into N intervals,

[0, 1/N), [1/N, 2/N), [2/N, 3/n)...

Now look at the fractional parts of

0, α, 2α, 3α...Nα

There are N + 1 of these fractional parts and we need to fit them into our N intervals.
So one interval has to contain two of these fractional parts. Let us call them int(rα) and
int(sα). This means that

int(rα)− int(sα) < 1/N

Set q = (r− s) and we have qα within 1/N of an integer. If qα is within 1/N of an integer
then there exists an integer p such that |qα− p| < 1/N .

This proof can be generalized for higher dimensions just keeping track of more pigeon-
holes. For example, consider a frequency vector ω of 2 rational numbers (ωx, ωy). We can
think of this as a direction and ask when is the vector near in integer point on the lattice
(see Figure 5). Then α = ωx/ωy and there exists p, q with q < N such that

|αq − p| < 1

N
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We can also write this as
ωxq − pωy <

ωy
N

giving a Diophantine like condition for distance to resonance.
In three dimensions we can normalize the vector by the first frequency

(ω = 1, α1, α2)

and using the pigeonhole principle there exists p1, p2 and q,q2 < N such that

|α1q1 − p1| <
1

N2
|α2q2 − p2| <

1

N2

These integers give nearly periodic orbits rather than near resonances. Nearly periodic
orbits are specified by an array of integers q such that

q · ω
ω0

is very near an array of integers p rather than an array of integers k such that |k · ω| is
small.

Remark Iteration techniques for finding a conjugacy map for a circle map to a pure ro-
tation often rely on specifying that the winding number is Diophantine. This is specified
so that at each level of the perturbation expansion, the winding number would remain dis-
tant from rational numbers. Estimates of the width of Arnold tongues on the other hand
find that the width depends on which Farey sequence in which it appears. Kolmogorov’s
theorem for a perturbed Hamiltonian system, uses a perturbation expansion of canonical
transformation to transform the Hamiltonian into action angle variables. A diophantine
condition on the frequencies of the unperturbed system is used to ensure that the per-
turbation expansion will converge. This will ensure that at all levels of the perturbation
expansion that no resonances (giving small divisors) will occur.
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Figure 5: A two dimensional frequency vector with irrational slope is likely to be nearer
integer lattice points further from the origin. If we describe the lattice points as integers
kx, ky = p, q then the pigeonhole principle implies that there is a integer q < N and am
integer p such that |ωx/ωyq − p| < 1/N . In two dimensional this also implies that there is
an integer vector k = q, p such that k · ω < C/N which is a diophantine condition.
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3 Newton’s method

Given a differentiable function f(x) on real numbers how can we find its roots? Newton’s
method is a iteration procedure for converging on a root. The idea is to make a map, Nf

using f so that if we keep applying the map to an initial value of x we will converge on a
root. We want the map to have orbits that converge on to roots.

Figure 6: Illustration of Newton’s method for converging to a root of a function.

The map can have interesting dynamics. For example, convergence is not assured.
There may be no roots. In this case the orbits of the map can be chaotic or go to infinity.
If there are more than one root, the basins of attraction for convergence to each root may be
difficult to determine. The map does not always converge onto the nearest root. However,
if there is a nearby root, then Newton’s map converges very quickly, quadratically quickly
in fact.

We start with a point x0, f(x0) and compute the tangent of the function at this point.
We look at the tangent line (with slope f ′(x0)) that goes through x0, f(x0) and find where
it crosses the y axis. The line has equation

y − y0 = f ′(x0)(x− x0) = y − f(x0) = f ′(x0)(x− x0)
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and it crosses the y axis at y = 0 and where

x = x0 −
f(x0)

f ′(x0)

We construct a map
xn+1 = Nf (xn)

with

Nf (x) = x− f(x)

f ′(x)

We can call Nf Newton’s function for f .

Example Let f(x) = x3 − x. The roots are −1, 0, 1. We compute

Nf (x) = x− x3 − x
3x2 − 1

=
2x3

3x2 − 1

The function is well behaved except at x = 1/
√

3. Near roots, the map converges very
quickly. But there are initial conditions that give problems and those for which convergence
is very slow (near x = 1/

√
3).

3.1 Quadratic functions

Let f(x) = ax2 +bx+c and q(x) = x2−A. The two functions Nf , and Nq are topologically
conjugate using the function h(x) = 2ax+ b and with A = b2−4ac. We can show that this

is true by showing that h ◦Nf = Nf ◦ h. We compute Nf (x) = ax2−c
2ax+b and Nq(x) = x2+A

2x .

h ◦Nf = 2a
ax2 − c
2ax+ b

+ b =
2a2x2 + 2abx+ b2 − 2ac

2ax+ b

Np ◦ h =
(2ax+ b)2 +A

2(2ax+ b)
=

2a2x2 + 2abx+ b2 − 2ac

2ax+ b

As a consequence study of Newton’s method on quadratic functions need only consider
two cases f(x) = x2 − 1 which has real roots and f(x) = x2 + 1 which does not.

When f(x) = x2+1 we find Nf = (x2−1)/2x which is pretty badly behaved near x = 0.
Trajectories are chaotic. In fact there is a topological conjugacy with h(x) = cot(x/2) to
the map on the unit circle D(θ) = 2θ which is chaotic.
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Figure 7: A cobweb plot showing trajectory for Newtons map Nf (x) = x − (x2 − 1)/(2x)
for the function f(x) = x2 + 1 which has no roots. The orbit is chaotic.
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3.2 Convergence of Newton’s map

Consider the difference
δn ≡ |xn+1 − xn|

that describes a distance away from convergence. If the map converges δn should decrease.
As we get closer to a root this difference should decrease. We can write this difference

δn =

∣∣∣∣xn − f(xn)

f ′(xn)
− xn

∣∣∣∣ =

∣∣∣∣ f(xn)

f ′(xn)

∣∣∣∣
Let us define a function

r(x) =
f(x)

f ′(x)

so that
δn = |r(xn)|

Now we compute the next difference

δn+1 = |r(xn + δn)|
= |r(xn + r(xn))|
=

∣∣r(xn) + r′(xn)r(xn)
∣∣

=
∣∣r(xn)(1 + r′(xn))

∣∣
r′(x) =

f ′(x)

f ′(x)
− f(x)f ′′(x)

f ′(x)2
= 1− f(x)f ′′(x)

f ′(x)2

1 + r′(x) = −f(x)f ′′(x)

f ′(x)2

= −r(x)
f ′′(x)

f ′(x)

Inserting this back into δn+1

δn+1 =

∣∣∣∣r(xn)r(xn)
f ′′(xn)

f ′(xn)

∣∣∣∣
= δ2

n

∣∣∣∣f ′′(xn)

f ′(xn)

∣∣∣∣
This expressions shows that the distance to the root should decrease quadratically. This
explains why when one is near a root, convergence is rapid and the technique is quite
efficient.
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3.3 Newton’s method as a first order approximation

We want x∗ such that f(x∗) = 0. But we are starting at different value x0. We can search
for δ such that

f(x0 + δ) = 0

Let us expand this to first order in δ.

f(x0) + f ′(x0)δ = 0

To first order

δ = − f(x0)

f ′(x0)

or

x1 = x0 + δ = x0 −
f(x0)

f ′(x0)

Here x1 is the solution to the first order approximation.

Remark Newton’s method appears to be a simple root finding technique. However it can
be applied to functions and estimates of its convergence rate are useful. Add examples
of equations (perhaps cohological equation? or that for allowing one to find a topological
conjugacy to a rotation for the circle map.)

3.4 Examples

Also there are nice examples of connections between maps on the complex plane with
Newton’s method along with some proofs involving topological conjugacy in Holmgren’s
book. It would be nice to add an example, proofing that Newton’s method gives a chaotic
map, using a topological conjugacy to a map on the complex plane?
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