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0.1 Introduction

For bifurcations and maps we are following early and late chapters in the lovely book
by Steven Strogatz (1994) called ‘Non-linear Dynamics and Chaos’ and the extremely
clear book by Richard A. Holmgren (1994) called ‘A First Course in Discrete Dynamical
Systems’. On Lyapunov exponents, we include some notes from Allesandro Morbidelli’s
book ‘Modern Celestial Mechanics, Aspects of Solar System Dynamics.’

In future I would like to add more examples from the book called Bifurcations in
Hamiltonian systems (Broer et al.). Renormalization in logistic map is lacking.

1 Bifurcations of one-dimensional dynamical systems

We have seen in some previous lectures that there are nice relations between dynamical
systems (we explored Hamiltonian systems) and mappings (Poincaré maps). We also saw
an example of a Hamiltonian system with number of fixed points that are dependent on a
free parameter and so there was a bifurcation in the number of fixed points. Here we look
at one dimensional dynamical systems on the real line and maps from the real line back to
itself.

1.1 Saddle-node bifurcation

Let us look at dynamical systems that are derived from maps of the real line back onto the
real line

ẋ = f(x)

For example
ẋ = r + x2 (1)

• When f(x) > 0, then x will increase in time.

• When f(x) < 0, then x decreases in time.

• When f(x) = 0 then we have a fixed point.

It is straightforward to classify fixed points from a plot of the function y = f(x). Fixed
points are where the function crosses the x axis. On the plot x increases in time (goes to
the right) where the function is above the x-axis and decreases in time (goes to the left)
where the function is below the x-axis. It is also easy to see whether a fixed point is stable
by looking at the direction of motion on either side of the fixed point.

For the dynamical system given by equation 1 (see Figure 1(

• When r < 0 there are two fixed points, one stable and one unstable. As r approaches
zero, the two fixed points move together.
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• When r = 0, we can say the fixed point is half stable because even a small change in
r will make it disappear.

• For r > 0, there are no fixed points.

We can also look at the stability of a fixed point by expanding about the fixed point.
We take x∗ a fixed point and expand about it with x = x∗ + y.

f(x∗) = 0 + f ′(x∗)y + ...

The dynamical system near the fixed point

ẏ = f ′(x∗)y

This has solution
y ∝ exp(f ′(x∗)t)

so if f ′(x∗) > 0 then the fixed point is unstable. If f ′(x∗) < 0 then the fixed point is stable.
If f ′(x∗) = 0 then we need to expand to higher order to see how the dynamics behaves
near the fixed point. If f ′′(x∗) 6= 0 then we know that f(x∗) is a local maxima or minima.
We can call this point either half unstable or half stable if a small change in a parameter
like r changes its nature.

The dynamical system of equation 1 displays (as a function of r) a bifurcation. Going
from positive r to negative r we say that a saddle-node bifurcation occurs at r = 0 with
two fixed points appearing. The situation is illustrated in Figure 1.

The system
ẋ = r − x2

also displays a saddle-node bifurcation but the bifurcation diagram is flipped both vertically
and horizontally.

In a sense

ẋ = r + x2 ẋ = r − x2

are representative of all saddle-node bifurcations. Near a fixed point we can locally expand
in a Taylor series. If the Taylor series contains a constant and a quadratic term, then by
rescaling variables, we can transform the equations of motion near the fixed point to look
like one of these two equations. These two models are sometimes call normal forms for the
saddle-node bifurcation.
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Figure 1: a) Fixed points for the dynamical system ẋ = r + x2. When r < 0 the leftmost
fixed point is stable and an attractor and the rightmost fixed point is unstable. When
r > 0 there are no fixed points. The value of r determines whether there are stable or
unstable fixed points. b) Bifurcation diagram for the same system. This is known as a
saddle-node bifurcation.

1.1.1 Example of a saddle-node bifurcation

Let us look at the system
ẋ = r − x− e−x

The fixed points are given by r − x − e−x = 0 but we can’t solve this equation. We can
think about it graphically by considering where a line with slope −x crosses the function
e−x (see Figure 2). We expect that we will have a bifurcation when the line y = r − x is
tangent to the line e−x. When the line y = r − x intersects e−x at two points then there
are two fixed points. When the line y = r − x does not intersect e−x at all then there are
no fixed points. When the line y = r − x intersects e−x at a single point, then the line is
tangent to the curve and we have a bifurcation point. Let us label rc the value of r at the
bifurcation point. For r > rc, there are two fixed points and for r < rc there are none.

Let us now solve for rc. The bifurcation must take place when the two curves are
just touching. At this point the tangent to the curve y = e−x is equal to that of the line
y = r−x. The tangent to y = e−x is −e−x. We set this equal to −1 and solve for x, finding
that the bifurcation happens where e−x = 1 or at xc = 0. What r value is required for this
to be a fixed point? r − 0− 1 = 0, so rc = 1. The bifurcation happens at rc = 1, xc = 0.

Let us expand about x = 0 . We need to expand the exponential e−x ∼ 1− x+ x2/2..
and our function becomes

ẋ = r − x− 1 + x− x2

2
.. = (r − 1)− x2

2
..
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which shows in another way that there is a saddle-node bifurcation at r = 1; see Figure 3.

Figure 2: The system ẋ = r − x − e−x has a bifurcation where the curve y = r − x is
tangent to the curve y = e−x.
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Figure 3: The system ẋ = r − x − e−x has a saddle node bifurcation with with two fixed
points at r > rc with rc = 1. This bifurcation diagram has the same shape as that for
ẋ = r − x2, except shifted in r by 1.

1.1.2 Another example

Consider the system
ẋ = rx− sinx

with rx − sinx plotted in Figure 4. The system has a number of bifurcations but we will
focus on the one that occurs with r ∼ 0.13 at x ∼ 7.7. We can see from the red line in the
figure that when the function rx − sin(x) is above zero (near x = 7.7) there is no nearby
fixed point. For larger r there are two fixed points and the leftmost one is stable and the
rightmost one unstable. So it’s a saddle-node bifurcation.

Let us define a function
f(x, r) = rx− sinx

and consider where the new fixed point first appears. For a particular r = rc value the
curve just touches the x axis, producing a fixed point at x∗ with

f(x∗, rc) = 0
∂f

∂x
(x∗, rc) = 0

Let us expand to first order in r about rc and to second order in x about x∗.

f(x, r) = f(x∗, rc) +
∂f

∂r
(x∗, rc)(r − rc) +

∂f

∂x
(x∗, rc)(x− x∗) +

∂2f

∂x2
(x∗, rc)

(x− x∗)2

2

The first terms is zero (x∗ is a fixed point for r = rc). The third term is zero because the
curve is tangent to the x axis at rc, x

∗. We evaluate the other two terms finding

f(x, r) = x∗(r − rc) + sinx∗
(x− x∗)2

2
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If we define new variables X = x− x∗ and R = x∗(r − rc) we can rewrite this as

f(X,R) = R+
sinx∗

2
X2

and we recognize that this is in the form of a saddle-node bifurcation. A further rescaling
of X can put it in the form R+X2.

As any curve with a minimum dips below the x axis, locally it can be approximated
by a quadratic function. We can shift r and x and rescale both. So any local minimum or
maximum as it crosses the x axis can be made to look like a saddle-node bifurcation.

Figure 4: Saddle node bifurcation of ẋ = rx − sinx. Plotted is y = rx − sinx. There are
saddle-node bifurcations at r ∼ 0.13 and x ∼ ±7.5. These can be seen with the green line
touching the x axis at x ∼ ±7.5.

1.2 Pitchfork bifurcations

Consider
ẋ = rx− x3 (2)

Depending on r there are either 3 roots or 1 root, so there are either 3 or 1 fixed points.
The middle point is unstable (see figure 5). Solve rx − x3 = x(r − x2) = 0 finding fixed
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Figure 5: a) Fixed points for the dynamical system ẋ = rx − x3. When r < 0 there is a
single stable fixed point. When r > 0 there are three fixed points and the center one is
unstable. The value of r determines the number of fixed points. b) Bifurcation diagram
for the same system. This is known as a supercritical pitch-fork bifurcation.

points at x∗ = 0,±
√
r.

When the sign of x3 is flipped then the bifurcation diagram is inverted. For r < 0 there
are three fixed points with the outer two unstable. For r > 0 there is a single unstable
fixed point. The bifurcation is called a subcritical pitchfork bifurcation.

The system is vastly unstable, but can be made stable at large x with the addition of
higher order terms (in x), and giving large amplitude stable branches and some hysteresis
in its behavior as r is varied (see Figure 6b).
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Figure 6: a) Bifurcation diagram for the dynamical system ẋ = rx + x3. This is known
as a sub-critical pitch-fork bifurcation. b) Bifurcation diagram for the dynamical system
ẋ = rx + x3 − x5 that has stable fixed points at large x. This system exhibits hysteresis.
Consider a system starting on the top right at high r. As r decreases the system follows
the top stable curve and only jumps to the x-axis at large negative r. A system that starts
on the left must reside on the stable curve on the x-axis. The system only jumps to high
or low x when r ∼ 0. The two trajectories are not the same. The system with decreasing
r must reach a much lower r value before it makes the transition than the system with
increasing r.
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1.3 Trans-critical bifurcations

We consider the system
ẋ = rx− x2

There is a fixed point at the origin in all cases.

• If r < 0 there is an unstable fixed point at x = −r and the one at the origin is stable.

• If r > 0 there is an unstable fixed point at the origin and an unstable one at x = r.

• If r = 0 then there is a mixed type of fixed point at the origin. We can say that the
fixed points swap locations at the origin.

Figure 7: a) Fixed points for the dynamical system ẋ = rx − x2. When r < 0 there are
two fixed points. The leftmost is unstable and the rightmost is stable. When r > 0 there
are also two fixed points but they have swapped locations. The bifurcation is known as a
trans-critical bifurcation.

1.4 Imperfect bifurcations

Let us recall the models discussed so far

ẋ = r + x2 ẋ = r − x2 saddle-node
ẋ = rx− x2 ẋ = rx+ x2 transcritical
ẋ = rx− x3 supercritical pitchfork
ẋ = rx+ x3 subcritical pitchfork

The saddle and transcritical models are represented by quadratic polynomial systems.
Additional free parameters in these systems will not change the nature of the bifurcation,
it would only shift its location. However, the pitchfork bifurcation models have symmetric

10



bifurcation diagrams and are represented by cubic equations. This implies that we can
change the nature of the bifurcation diagram by adding a third parameter.

Consider
ẋ = h+ rx− x3

with imperfection parameter h. The critical points are solutions to a cubic equation. The
cubic equation has local extrema at r − 3x2 (taking the derivative of h + rx − x3). This
local max occurs at xmax =

√
r/3 and the local minimum at xmin = −

√
r/3. Insert these

values into f(x) = rx− x3 giving values at local maximum and minimum

f(xmax) = 2(r/3)3/2 f(xmin) = −2(r/3)3/2

If |h| < 2(r/3)3/2 and r > 0 then there can be three fixed points otherwise there will only
be one. We can define a critical function

hc(r) = 2(r/3)3/2

When |h| < hc(r) allowing three fixed points but is not zero, then the bifurcation diagram
the pitchfork disconnects into two pieces, with the lowest piece resembling a saddle bifur-
cation and the upper fixed point separate and remaining untouched as r varies (see Figure
8).

Figure 8: a) Fixed points for the dynamical system ẋ = h + rx − x3. When r < 0 there
is one fixed point. Not until r is equal to 3(|h|/2)2/3 are there two additional fixed points.
When h = 0 there is a symmetric pitchfork bifurcation. When h 6= 0 the bifurcation is a
saddle bifurcation. When |h| < 2(r/3)3/2 = hc(r), and r > 0, there are three fixed points,
and the saddle bifurcation appears at r = 3(h/2)2/3.
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Figure 9: Another way to look at the imperfect bifurcations for the dynamical system
ẋ = h + rx − x3 as a function of two parameters h, r. Here the plane below is r vs h.
Vertically we show x for the fixed points. When h < hc(r) and r > 0 there are three fixed
points, otherwise there is only 1.
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1.5 Relation to the fixed points of a simple Hamiltonian system

Recall the Hamiltonian system

H(J, φ) =
J2

2
+ bJ + J1/2 cosφ

that is relevant for mean motion and Lindblad resonances. This system has a two dimen-
sional phase space. It’s actually a two-dimensional dynamical system. However the fixed
points in this system satisfy a cubic equation. We can change variables to x =

√
2J cosφ,

y =
√

2J sinφ via cannonical transformation giving

H(x, y) =
1

2
(x2 + y2)2 +

b

2
(x2 + y2) +

x√
2

taking Hamilton’s equations we find that fixed points occur at y = 0 and

∂H

∂x

∣∣∣∣
y=0

=
x3

2
+ bx+

1√
2

= 0

and satisfy a cubic equation with a linear term with free parameter b. We know we have
either 1 or 3 fixed points. We would have to look at the linearized system about each
fixed point to determine whether the bifurcation is sub or super critical pitchfork – recall
that it was more similar to a supercritical pitchfork bifurcation because two fixed points
were stable. The cubic system has a constant offset 1/

√
2 (which we called an imperfection

parameter). So the system really has a single fixed point that is separate and a saddle
bifurcation appearing at negative b giving two additional fixed points.

This is a two dimensional Hamiltonian system and so is not like the one dimensional
dynamical systems considered here. So why are we discussing it?

If we considered a damped version of our Hamiltonian system then we could imagine
that trajectories would lose energy, decaying to a stable fixed point. So there can be
a relation between end states (attracting orbits) of damped systems and fixed points of
higher dimensional energy conserving systems.

The fixed points in this Hamiltonian system lie on a line, and so belong to a lower
dimensional space and so could be similar to dynamical systems on a line. If the timescale
for the orbit to decay is short compared to the timescale for r or b to vary then the orbit
first decays to a fixed point and then the fixed point moves along the bifurcation diagram.

Here we can classify the type of bifurcation using similar terminology to the one-
dimensional dynamical system, while recognizing that the system is actually higher di-
mensional and the dynamics more complex than a one dimensional dynamical system.

Two dimensional non-area preserving dynamical systems can exhibit a wider range of
phenomena than one-dimensional Hamiltonian systems. In the one-dimensional Hamilto-
nian system, fixed points are either stable (and like the stable fixed point for a harmonic
oscillator) or unstable (and like the unstable fixed points in a pendulum model). However
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in more general two-dimensional dynamical systems, trajectories can spiral in or out of
fixed points, fixed points can be attractors or repellers and orbits can decay to a periodic
orbit.

2 Iteratively applied maps

Instead of considering a dynamical system ẋ = f(x) we now consider a map f(x) that we
apply iteratively (over and over again). We could also write

xn+1 = f(xn)

Given an initial condition x0 we can look at orbits f(x0), f
2(x0), f

3(x0)... where f2(x) =
f(f(x)) and so forth.

A fixed point is a value x∗ such that

x∗ = f(x∗)

For the mapping if
xn+1 = f(xn) > xn

then the value of the iteratively applied map increases. This implies that the system is
increasing when f(x) > x or above a line on the plane y = x.

This setting is different than for the one-dimensional dynamical system (ẋ = f(x)).
There fixed points satisfy f(x) = 0 and x increases when f(x) > 0.

A periodic point is one such that fn(x) = x. We usually label the periodic point with
the lowest natural n such that fn(x) = x.

2.1 Cobweb plots

It is nice to make plots called cobweb plots where we connect points

(x0, x1), (x1, x1), (x1, x2), (x2, x2), (x2, x3), (x3, x3)....

and so on. The cobweb web can show attracting (stable) or repelling (unstable) fixed
points, escape to infinity, attracting periodic orbits or chaotic behavior. See Figure 10 for
an example of xn+1 = c + x3n for different values of c showing attracting and repelling
points. Figure 11 shows an orbit spiraling into a fixed point. Figure 12 shows an attracting
period two orbit.

If f(x) is near but above the line y = x as shown in Figure 10 b) then it make take
many iterations to get through the tight narrow region between the two curves. While the
system is slowly going through the narrow neck it behaves as if it were at a fixed point.
This will be important later when we discuss intermittency or ghost orbits.
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Figure 10: Graphical analysis or cobweb plots of xn+1 = c+ x3n a) with c = 0.1 and initial
condition x0 = 0.9. b) with c = 0.43 and initial condition x0 = −0.8. There is a bifurcation
in the behavior of the fixed points of the map that depends on the value of c. The plot
on the left shows attracting and repelling fixed points. For the plot on the right, while the
trajectory is passing through the narrow neck, it spends a long period of time behaving as
if it were at a fixed point.

Figure 11: Cobweb plot for the mapping xn+1 = cosxn. Note the similarity with damped
oscillations. The initial condition is x0 = −1.2.
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Figure 12: Cobweb plot for the mapping xn+1 = µ sin(πxn) and µ = 0.81. We show an
attracting period two orbit for initial condition x0 = 0.3.

2.2 Stability of a fixed point

Suppose we have a fixed point x∗. What are the orbits like near it? We can consider
xn = x∗ + η and put this into our map

f(x∗ + η) = f(x∗) + f ′(x∗)η + ..

= x∗ + f ′(x∗)η + ..

So xn+1 − x∗ = f ′(x∗)η. Which can be rewritten

ηn+1 = f ′(x∗)ηn

In this way f ′(x∗) is a multiplier. If |f ′(x∗)| < 1 then the fixed point is stable and
if |f ′(x∗) > 1 then the fixed point is unstable. If f ′(x∗) = 1 then higher order terms
determine the stability.

2.3 The Logistic map

The famous logistic map is the innocent looking map

xn+1 = rxn(1− xn)

typically defined over 0 ≤ xn ≤ 1 and 0 ≤ r ≤ 4. The logistic map is motivated by a
simple model for population growth that can be applied to simple systems such as colonies
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of bacteria in the lab. A population that is given infinite amount of food would grow
as Ṅ = rN giving exponential growth. Exponential growth cannot continue, so when
N reaches some limit (due to overcrowding), the population shrinks. This gives a model
Ṅ = rN(1−N/K) where K is a parameter describing the death rate due to overpopulation.
The logistic map is the discrete analog of the logistic dynamical system model.

Figure 13: The logistic map has a single fixed point at the origin for r < 1. At r = 1 the
fixed point at the origin bifurcates and there are two fixed points, one unstable (at the
origin) and the other stable. The absolute value of slope at the stable fixed point increases
as r increases. At large enough r (near r = 3) the slope at the fixed is steeper (lower) than
-1 and the fixed point becomes unstable.

if we set xn+1 = xn and solve we find that rxn(1 − xn) = xn for fixed points. There
is always a fixed point at the origin. There is an additional fixed point at x∗ = 1 − 1/r.
Constrained over 0 ≤ xn ≤ 1 and 0 ≤ r ≤ 4, this additional fixed point only exists for
r ≥ 1. The derivative f ′(xn) = r−2rxn. For the fixed point at the origin f ′(x∗ = 0) = r so
it is stable for r < 1 and unstable at r ≥ 1. At x∗ = 1− 1/r the derivative f ′(x∗) = 2− r.
For 1 < r < 3 the |f ′(x∗)| < 1 and the fixed point is stable. At r = 1 the fixed point at
the origin bifurcates. At r = 3 the second fixed point becomes unstable!

2.4 Two-cycles and period doubling

The bifurcation at r = 3 is called a flip or period-doubling bifurcation. The fixed point
spawns a period 2 cycle.
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Let us look for solutions to f2(x) = x where f2(x) = f(f(x)).

f2(x) = r2x(1− x)(1− rx+ rx2) = r2(x− x2)(1− rx+ rx2)

This is a 4th order polynomial. The roots of f2(x)− x = 0 include x = 0, x = 1− 1/r, the
previously known fixed points. There are two additional roots

x2 =
r + 1±

√
(r − 3)(r + 1)

2r

that are real for r > 3. So the logistic map has a two-cycle for all r > 3. It is convenient
to label these roots as p, q. It’s a two cycle so we know that f(p) = q and f(q) = p.

Let us look at the stability of the two cycle where f2(x2) = x2. Let us look at one of
the points

f2(p+ η) = f(f(p+ η) = f(f(p)) + f ′(f(p))f ′(p)η = p+ f ′(q)f ′(p)η

Note the symmetry. We can evaluate f2(q+η) = q+f ′(p)f ′(q)η. The p, q branches become
unstable together.

As the original fixed point became unstable and spawned a 2-cycle, the 2-cycle becomes
unstable and will span a 4-cycle.
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Figure 14: The map f2(x), the logistic map applied twice, for r = 3 and r = 3.5. At
r = 3.5 there are three fixed points of the map, corresponding to two-cycles in the map
f(x) = rx(1 − x). Only the outer two of these are stable. This illustrates the period
doubling bifurcation. Right hand side shows the bifurcation diagram with the bifurcation
occurring at r = 3. Recall that the fixed point at origin became unstable at r = 1.
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Figure 15: Bifurcation diagram for part of the logistic map (f(x) = rx(1 − x)) showing
both stable periodic and unstable periodic points. This region shows fixed points, period
two and four orbits. Fixed point at origin becomes unstable at r = 1. The attracting fixed
point for r > 1 becomes unstable to period doubling at r = 3. The period two attracting
orbits become unstable at r ∼ 3.4. Renormalization depends on two ratios: the ratio of the
distance in r between period doublings (Feigenbaum’s δ) and the ratio of the tine widths
(Feigenbaum’s α). Both ratios are computed in the limit of large number of doubling.
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Figure 16: For different values of r, the 100-200th iterations of the logistic map, f(x) =
rx(1−x), are plotted starting with initial x0 = 0.5. Note the period three window at about
r = 3.8, and the period doubling at r = 3, 3.4− 3.6.
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2.5 Sarkovskii’s Theorem and Ordering of periodic orbits

Theorem 2.1 Sarkovskii’s theorem: If a continuous function of the real numbers has a
periodic point with prime period three then it has periodic points of all prime periods.

‘Prime period’ three here means not prime as in prime number but prime period as in
it is not a fixed point of the map f(x) but is a fixed point of f3(x). An orbit of prime
period n is a fixed point for fn(x) but not a fixed point for fm(x) for smaller m any natural
number 1 ≥ m > n.

Definition Sarkosvskii’s ordering for natural numbers:

3 � 5 � 7 · · · · · · � 2 · 3 � 2 · 5 � 2 · 7 · · · · · ·
· · · 22 · 3 � 22 · 5 � 22 · 7 · · · · · · 2n · 3 � 2n · 5 � 2n · 7 · · ·

· · · 23 � 22 � 2 � 1

Odd numbers come first, then two times every odd number, then 4 times every odd number,
and so on. Then after all the 2n times odds the sequence is completed by listing powers of
two in inverse order.

A more general theorem by Sarkovskii: Suppose f has a periodic point with period
prime period n. If n � m in Sarkovskii’s ordering, then there is also a periodic orbit with
prime period m.

There is a nice proof of this theorem in Holmgren’s book that is long enough that I am
not trying to recount it here.

The ordering inspires one to look again at the periodic attractors of the logistic map.
The ordering by Sarkovskii does not predict a progression of periodic orbits, just existence
of periodic orbits. The order in which the periodic windows arise is explained by Metropolis,
Stein, and Stein and is called an MSS or U-sequence and is valid for a wide class of unimodal
maps.

Definition A unimodal map is a differentiable map from the unit interval onto the unit
interval f : [0, 1] → [0, 1] with boundary conditions f(0) = f(1) = 0 that has a single
maximum.

The logistic map is a unimodal map. The word unimodal is more commonly used for
probability distributions. For example, a bimodal distribution has two peaks, rather than
one.

The appearance of periodic orbits occurs in two ways. A fixed point can become
unstable undergoing a period doubling bifurcation. The fixed point in f2 can then undergo
a period doubling, and so on giving a cascade of period doublings.
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Figure 17: The map f3(x) for r below and above the location where the period three orbits
appear in the logistic map. There are 6 period three points (where f3(x) crosses y = x),
but only 3 of these are stable. The function f3(x) crosses y = x at an additional point that
is a fixed point for f(x) and is not a prime period three point. This illustrates a tangent
bifurcation giving birth to a period three cycles. The fixed point at x ∼ 0.75 is a period 1
fixed point.
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Figure 18: b) Bifurcation diagram for the appearance of period 3 orbits in the logistic map.
This is known as a tangent bifurcation. The bifurcation happens at about r = 3.82.

The period three cycles do not appear this way. They appear with what is known as a
tangent bifurcation. Each tangent bifurcation produces a stable cycle, that then also gives
rise to a cascade of period-doubling bifurcations.

2.6 A Cantor set for r > 4

When r > 4 the logistic map sends some values of x to values greater than 1. Once an orbit
reaches a value greater than 1, the next application of the map gives a negative number
which is then sent to negative infinity as there are no fixed points for x < 0.

Definition A set Γ ∈ R is called a Cantor set if

a) Γ is closed and bounded. (Sets of real numbers like this are called compact. Bounded
means there is exists a positive number that is larger than all the elements in the set).

b) Γ contains no intervals. It is totally disconnected.

c) Every point in Γ is an accumulation or limit point of Γ.

Definition Let S be a subset of the real numbers. Then x ∈ S is an accumulation or limit
point in S if every neighborhood of x contains an element of S other than x.

24



Figure 19: Top: The map f(x), f2(x), f3(x) for the logistic map f(x) = rx(1 − x) and
with r = 4.2. After a single application of the map a central region is removed. After a
second application of the map, central regions from the two remaining regions are removed,
leaving four regions. After a third application of the map, central regions from the four
remaining regions are removed, leaving eight regions. The continued application of the
map creates a fractal set similar to the Cantor middle thirds set. Points above y = 1 are
sent to negative infinity and this is seen in the cobweb plot in the bottom figure that has
initial condition x0 = 0.76, and r = 4.2. This point is in the removed island of the f3 map.25



Consider the set of points in the unit interval that are left in the unit interval after
repeated applications of the logistic map with r > 4. As is true for the Cantor set, we
can construct the set iteratively. Denote Γ1 as the set of points that are left in the unit
interval after a single application of the logistic map. This set consists of two intervals
and is missing the region near x = 1/2 (see Figure 19). Γ2 is the set of points left after
application of f2, and so on, Γn is the set of points left in the unit interval after application
of fn. We can define the set Γ = ∩ni=1Γn.

To show that Γ is a Cantor set, it is useful to consider points on the end-points of
intervals. The points x = 0 and 1 always remain in the unit interval. But so do the ends
of any of the intervals of any of Γn. Because all the ends of intervals in each of Γn are in
Γ, we can find a series of points that lead to (get closer to) any point. That gives part c
of the definition for a Cantor set. For any separation defining an interval, we can always
find an fn that removes part of the interval. This gives part b of the definition. Part a)
follows because the intersection of closed bounded sets is closed and bounded.

2.7 Route to Chaos

In the regime where period doubling takes place, the logistic map appears hierarchical.
The map while it has 2 fixed points resembles the map with 4 fixed points. Similar the
map with 4 fixed points resembles the map with 2 fixed points. It is possible to construct
a renormalization map to relate the maps between consecutive event in the sequence.
Renormalization depends on the ratio of r values between period doubling events and the
ratio of widths of the bifurcation tines. These are are Feigenbaum numbers. The distance
in r between periodic doubling events decreases during each period doubling. If j is the
period of the fixed points created, the limit as j →∞ occurs at a finite value of r. When
the limit is reached, the orbits become chaotic, though as r is increased further, the system
may have convergence onto periodic orbits again.

The logistic map gives a route to chaos. This particular route to chaos is also relevant
for some Hamiltonian systems. For example, a bifurcation diagram can be constructed for
periodic orbits in the vicinity of a planet or near corotation resonance of a bar in a barred
galaxy. When the periodic orbits become higher period and there are increasingly many of
them the nearer you approach the corotation region in these two settings. Where there are
numerous periodic orbits is also where chaotic orbits are present. This suggests a relation
between the number of periodic orbits and chaotic behavior.

3 Lyapunov exponents

The logistic map exhibits aperiodic orbits that do not converge to a fixed point or to a
periodic point. How is this chaotic? A chaotic orbit has extreme sensitivity to initial
conditions. Orbits separate exponentially quickly. In other words, let us consider an initial
condition x0 and a nearby point x0 + δ0. The separation between the two orbits at each
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iteration
δn = fn(x0 + δ0)− fn(x0)

For the orbits to diverge exponentially

|δn| ≈ |δ0|enλ

where λ is called the Liapunov exponent. A positive Liapunov exponent is a signature of
chaos.

We can approximate

λ ≈ 1

n
ln
|δn|
|δ0|

=
1

n
ln

∣∣∣∣fn(x0 + δ0)− fn(x0)

δ0

∣∣∣∣
=

1

n
ln

∣∣∣∣ ddxfn(x0)

∣∣∣∣ . (3)

We can expand the last expression. Consider

d

dx
f3(x0) =

d

dx
f(f(f(x0))) = f ′(f(f(x0)))f

′(f(x0))f
′(x0) = f ′(x2)f

′(x1)f
′(x0).

More generally

d

dx
fn(x0) =

n−1∏
i=0

f ′(xi). (4)

Using equation 3

λ ≈ 1

n
ln

∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣
=

1

n

n−1∑
i=0

ln
∣∣f ′(xi)∣∣ .

We can take the limit as n→∞ and define the Lyapunov exponent for initial condition x0

λ = lim
n→∞

1

n

n−1∑
i=0

ln
∣∣f ′(xi)∣∣

The exponent depends on x0. The Lyapunov exponent should be the same for all points
in a basin of a single attractor. For stable fixed points or cycles the exponent should be
negative. In some cases λ can be calculated analytically.
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Equation 4 can also be partly expanded, for example into multiples of three

d

dx
fn(x0) =

n/3−1∏
i=0

d

dx
f3(x3i)

or into multiples of p

d

dx
fn(x0) =

n/p−1∏
i=0

d

dx
fp(xpi) (5)

At a p cycle, since the sequence is periodic, all the n/p terms in equation 5 are the
same.

d

dx
fn(x0) =

n

p

d

dx
fp(x0)

Inserting this into the equation 3, the Lyapunov exponent for a p periodic point is

λ =
1

p
ln

∣∣∣∣ ddxfp(x0)
∣∣∣∣

Recall that a stable p cycle is one that has
∣∣ d
dxf

p(x0)
∣∣ < 1 and so has ln

∣∣ d
dxf

p(x0)
∣∣ < 0.

Consequently a stable p cycle has negative Lyapunov exponent.

Figure 20: The tent map has a positive Lyapunov exponent.

Remark Supercritical points that are periodic points d
dxf

p(x) = 0 have Lyapunov expo-
nents going to negative infinity. These special points are used in renormalization because
the function fp locally looks parabolic.
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3.1 The Tent Map

The tent map is

f(x) =

{
rx, 0 ≤ x ≤ 1

2

r(1− x), 1
2 ≤ x ≤ 1

for 0 ≤ r ≤ 2 and 0 ≤ x ≤ 1. This map has the advantage that it is very easy to compute
the Lyapunov exponent.

|f ′(x)| = r

for all x so
λ = ln r.

The tent map can be said to be conjugate to the logistic map. In fact for r = 2 it
can be transformed into the logistic map with parameter r = 4. There is a problem in
the accompanying problem set exploiting this transformation to compute the Lyapunov
exponent of the logistic map for r = 4.

3.2 Numerically computing the Lyapunov exponent of a map

It is straight forward to compute the Lyapunov exponent numerically for a map such as
the logistic map. Start with an initial condition and iterate for a few hundred iterates
to allow transients to disappear. Next compute a large number (a few hundred more)
additional iterates. From these iterates compute the average of the log of the slope or
ln |f ′(xn)| = ln |r − 2rxn|.

Instead of doing this for the logistic map we will do it for the map that has

xn+1 = r − x2n

and derivative f ′(x) = −2x and the result is shown in Figure 21. Not surprisingly there is
a strong relation between the value of the computed Lyapunov exponent and the structure
of the attracting orbits.
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Figure 21: Attracting points (on left) and Lyapunov exponent (on right) computed nu-
merically for the map xn+1 = r − x2n. System is chaotic where the Lyapunov exponent is
greater than zero.

3.3 Entropy

The logarithmic form of the Lyapunov exponent is reminiscent of entropy! A positive
Lyapunov exponent implies there is a loss of information about initial conditions. The loss
of information means the system is becoming randomized, or entropy is increasing. Chaotic
behavior is a source of the random-like behavior that is the heart of statistical physics.

3.4 The Maximum Lyapunov Exponent

In the previous example we discussed the Lyapunov exponent for a one-dimensional map.
We can also consider similar exponential divergence but for multidimensional maps and
for multidimensional dynamical systems.

We need to have a way of defining distance (a metric). Consider a trajectory q(t) with
initial condition q0 and a nearby trajectory qb(t) with initial condition q0 + δq0. We can
look at the distance between the two trajectories

‖δq(t)‖ = ‖q(t)− qb(t)‖

Suppose that the distance between the two trajectories diverges so that

‖δq(t)‖ ∼ ‖δq0‖eλt
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We can define a Maximum Lyapunov Exponent as

λ = lim
t→∞

1

t
ln

[
‖δq(t)‖
‖δq0‖

]
(6)

Note that the exponent is in units of inverse time.

Figure 22: An initial phase space element is stretched in one direction but compressed
in another. In a Hamiltonian system the area is conserved. In a dissipative system area
decreases, but there may still be a direction where the element is stretched. A strange
attractor is such a setting. The stretch rate gives the maximum Lyapunov exponent.

The exponent is denoted the maximum Lyapunov exponent. Why maximum? We
could consider the divergence rate for each component |δqi(t)| separately and we could
consider the divergence rate (for each of these components) for each direction for the initial
separation δq0,j . For each ij we can look at the function δqi(t, δq0,j) This gives us a matrix
and the eigenvalues of this Jacobian matrix can be turned into Lyapunov exponents.

The divergence of the distance between the trajectories for a randomly chosen direction
for δq0 is dominated by the maximum eigenvalue or exponent. The number of positive
Lyapunov exponents indicates the number of directions in phase space along which the
orbit exhibits chaotic or hyperbolic behavior.

Remark The Lyapunov exponent measures a timescale TL = λ−1 for memory of initial
conditions to be lost.

Remark The Lyapunov exponent does not describe how far apart trajectories diverge,
only how quickly they diverge.
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3.5 Numerical Computation of the Maximal Lyapunov Exponent

What is meant by equation 6 is actually

λ = lim
δq0→0

lim
t→∞

1

t
ln

[
‖δq(t)‖
‖δq0‖

]
However it is impractical to set δq0 too small. After integrating for a while the two orbits
may diverge sufficiently to nearly reach boundaries of the system (real systems don’t tend
to be infinitely big) or will grow to such a large value that computation is impractical
(remember it’s diverging exponentially).

We describe a numerical procedure for computing the maximal Lyapunov exponent.
Start with an initial condition q and and a randomly chosen small offset δq0. Integrate
both trajectories for a time T , long enough to measure some divergence but not long enough
to reach a large size scale. Let

s1 =
‖δq(T )‖
‖δq0‖

Now let us start with a new offset

δq1 =
δq(T )

s1

Now we integrate again for time T and renormalize again with s2. For each renormalization
record the factors s1, s2.... Benettin et al.(1980) showed that the maximum Lyapunov
exponent is equivalent to

λ =
1

nT
lim
n→∞

n∑
j=1

ln sj

In practice one cannot integrate forever. How large an n is required before this gives
a good approximation to the maximum Lyapunov exponent? Define an exponent that
depends on how long on has been integrating

λ(nT ) =
1

nT

n∑
j=1

ln sj

and then plot it as a function of nT . As nT (the length of time integrated) increases, the
estimate improves and converges to a constant value.

In practice the function λ(nT ) can be sensitive to initial conditions, intermittency,
nearby resonances and can oscillate in time, making it difficult to get an accurate estimate
of a long time scale limit. Also it is not obvious how to choose the timescale T . This has
led to development of numerical indicators for chaotic behavior though these too involve
adjustment of the scheme.
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Figure 23: How to numerically calculate a maximum Lyapunov exponent. The separation
is occasionally rescaled to keep the trajectory separation in a linearized flow regime.

3.6 Indicators related to the Lyapunov exponent

An indicator can be computed numerically that is different in chaotic systems than non-
chaotic systems. The indicator may be loosely related to the maximum Lyapunov exponent.
For example, the Mean Exponential Growth factor of Nearby Orbits (MEGNO) by Cincotta
& Simó 2002, estimates the divergence rate of nearby orbits weighted by time rather than
just computing the divergence rate.

The distance between two trajectories as a function of time

δ(t) =
d

dt
δ(t)dt

If we assume that δ(t) = eλtδ0 then

δ̇(t) = λδ(t) and λ =
δ̇(t)

δ(t)

We can write the maximal Lyapunov exponent in integral form as

λ = lim
t→∞

1

t

∫ t

0

δ̇(t′)

δ(t′)
dt′

The quantity

Y (t) =
2

t

∫ t

0

δ̇(t′)

δ(t)
t′ dt′
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is known as the Mean Exponential Growth factor of Nearby Orbits or the MEGNO. While
the Lyapunov exponent has units of inverse time Y is unit less. For a quasi periodic
trajectory δ(t) grows linearly with time. Suppose δ(t) = at, then δ̇(t′)t′/δ(t′) = 1 and
Y (t) oscillates about a fixed value of 2. For a chaotic trajectory δ(t) = δ0e

λt we find
δ̇(t′)t′/δ(t′) = λt′ The integral of this with respect to t′ is t2/2 so Y (t) grows giving Y (t)
oscillating about λt. The time running average

Ȳ (t) =
1

t

∫ t

0
Y (t′)dt′

gives 2 for a quasi periodic trajectory and λt
2 for a chaotic trajectory.

At first glance the time average of the Mean Exponential Growth factor of Nearby Orbits
seems to be equivalent to the maximum Lyapunov exponent. However, the MEGNO could
give a more accurate estimate for the Lyapunov time more quickly as it weights later times
in the divergence of the trajectories more heavily.

Also popular is the Fast Lyapunov Indicator introduced by Froeschlé et al. 1997. The
Fast Lyapunov Indicator is the length of time it takes two trajectories to diverge reaching
a chosen value for separation R.
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