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1 What is a resonance?

Resonances can be important when perturbations are weak. In fact when perturbations
are extremely weak, resonances are the only locations where perturbation can over long
periods of time constructively add and so be important. In celestial mechanics, planets are
much less massive than the Sun. Jupiter, the largest planet in our Solar system is only
1/1000-th the mass of the Sun. Nevertheless regions in the inner asteroid belt that are
resonant with Jupiter (and seen in the semi-major axis distribution where they are called
Kirkwood gaps) are almost devoid of asteroids. In contrast, most asteroids in the outer
asteroid belt are resonant with Jupiter.

The angular rotation rate of an asteroid as it goes around the Sun is approximately the
mean motion n. The mean motion for Jupiter we call nJ . A mean motion resonance is a
condition

in ∼ jnJ
for integers i, j. This condition is one where we expect the perturbations by Jupiter can
strongly affect an asteroid. Otherwise over a long period of time the perturbations will be
out of phase and will average to zero. Integrate the above equation to obtain an angle

φ = iλ− jλJ ∼ constant

where λ, λJ are angles known as mean anomalies and λ̇ = n and λ̇J = nJ . A commensura-
bility can be described in terms of a slowly moving angle. We might see two different types
of motion depending upon wether the angle increases or decreases or stays near a particular
value. We describe the motion as librating when the angle oscillates about a fixed value
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or as circulating when the angle keeps increasing or decreasing. A low dimensional system
that illustrates these two types of behavior is the pendulum model.

An integrable model
H(p, φ) = H0(p) + εf(p) cos(φ) (1)

where φ is an angle. We can expand the unperturbed function H0 about a particular
momentum value, p0. Let J = p− p0. The transformation p, φ→ J, φ is canonical.

To second order in J
H0(J) =

a

2
J2 + bJ +H0(p0)

with

b =
∂H0

∂p
(p0)

a =
∂2H0

∂p2
(p0)

Neglecting the constant H0(p0), the new Hamiltonian

H(J, φ) =
a

2
J2 + bJ + εg(J) cos(φ) (2)

where g(J) = f(J + p0). In the case of g(J) = 1, this system is the pendulum except
shifted in J by a frequency b. This can be seen with a canonical transformation shifting J
or J = P − b or by plotting the Hamiltonian level curves on a J, φ coordinate plot.

Why is b a frequency? This follows as φ is an angle, ∂(bJ)∂J = b and Hamilton’s equations

give φ̇ = ∂H
∂J .

1.1 Dangers of low order approximations

Again consider our Hamiltonian model

H(p, φ) = H0(p) + εf(p) cos(φ)

Suppose we only expanded H0 to first order in p about p0, again with J = p − p0. Then
we would have neglected the quadratic term and we would find

H(J, φ) = bJ + εg(J) cosφ

Let us look for fixed points.

J̇ = −∂H
∂φ

= εg(J) sinφ = 0

We find that φ = 0, π at a fixed point.

φ̇ =
∂H

∂J
= b+ εg′(J) cosφ = b± εg′(J)
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where on the last step the plus sign corresponds to φ = 0 and the minus sign for φ = π.
If g(J) = constant and b 6= 0 then there are no fixed points! But we know that the
system expanded to p2 (equation 2 is like a pendulum. When a is neglected, we loose some
important aspects of the dynamics.

If g(J) is not constant then can consider inverting g′(J). For example if g(J) = J1/2

and
H(J, φ) = bJ + εJ1/2 cosφ

then the fixed point at π occurs at b = ε
2J1/2 or

Jfix =
( ε

2b

)2
(3)

For small values of b (near resonance) we find only a single fixed point at large J .

Figure 1: Level curves of Hamiltonian H(J, φ) = J2/2 + δJ + εJ1/2 cosφ in the coordinate
system with x =

√
2J cosφ, y =

√
2J sinφ. Here we have chosen δ < 0 so that there are

three fixed points, all on the x axis. The rightmost one (shown as an orange point) is
unstable.

We can transform coordinates with the canonical transformation

x =
√

2J cosφ y =
√

2J sinφ
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Figure 2: Level curves of Hamiltonian H(J, φ) = bJ + εJ1/2 cosφ in the coordinate system
with x =

√
2J cosφ, y =

√
2J sinφ. The system is equivalent to a harmonic oscillator but

at position x = −ε/(
√

2b), y = 0. The shift diverges as b→ 0. The divergence is an artifact
of the low order of approximation.
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giving

H(x, y) =
b

2
(x2 + y2) +

εx√
2

The fixed point at φfix = π, Jfix =
√

ε
2b is at

xfix = − ε√
2b

yfix = 0

We can shift the coordinate system so that x′ = x − xfix. Inserting this into the new
Hamiltonian we find

H(x′, y) =
b

2
(x′2 + y2) + constant

The new Hamiltonian is just like a harmonic oscillator! Again we have lost some important
aspects of the dynamics as with the quadratic term we would have found stable and unstable
fixed points.

If b is small then in our original coordinate system, the distance to the fixed point is
large. With initial condition x, y = 0, the orbit is a large circle with radius 2xfix. An
extremely large response in J occurs when b is small, or near resonance. And the limit
b → 0 gives an infinite response in J (see equation 3). This too is an artifact of the low
order of approximation. When the quadratic term is added, initial conditions near the
origin do not have orbits that diverge as b→ 0.

We can regard a resonance as a setting where there is a relatively large response. Here,
the distance to resonance is b and the resonance described by the pendulum Hamiltonian.

1.2 A resonance is a commensurability

Now consider a multiple dimensional system with a perturbation in the form cos(k · θ)
where k is a vector of integers. We assume that the unperturbed Hamiltonian is integrable;

H(p,θ) = H0(p)

and expand this about initial momenta p0.

H0(p) = H0(p0) + ∇H0(p0)(p− p0) +
1

2
(p− p0)

tM(p− p0)

where M is the Hessian matrix comprised of second derivatives evaluated at p0. With
J = p− p0

H0(J) = H0(p0) + ∇H0(p0)J +
1

2
JtMJ

We identify
ω = ∇H0(p0)
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Because θ̇ = ∇JH(J,θ), the frequencies ω are the angular rotation rates θ̇ so we can write

H0(J) = H0(p0) + ωJ +
1

2
JtMJ

We can think of a resonance as a condition

k · ω ∼ 0 (4)

We can construct an angle
φ = k · θ (5)

The resonance condition (equation 4) implies that

φ̇ = k · θ̇ = k · ω ∼ 0

so φ is a slow moving angle.
We now consider a full Hamiltonian that is the sum of a part that only depends on

momenta and one that is also a function of angles

H(J,θ) = H0(J) +H1(J,θ) (6)

We often assume that H1 is small. The perturbation term H1 arises from planet-planet
interactions in celestial mechanics or bar/spiral perturbations in the galactic disk setting.
The perturbation term can be expanded in Fourier series.

For the moment we focus on a single cosine term for H1. Taking H0 expanded to second
order, and H1 comprised of a single cosine, the full Hamiltonian

H(J,θ) = ωJ +
1

2
JtMJ + ε cos(k · θ) (7)

where we have dropped the constant.
Using a generating function of old coordinates θ and new momenta I1 and Ii for i ∈

2...N
F2 = (k · θ)I1 +

∑
i=2..N

Iiθi

we find new coordinates

∂F2

∂I1
= k · θ = φ

∂F2

∂θ1
= k1I1 = J1

and for i > 1

∂F2

∂Ii
= θi = φi

∂F2

∂θi
= kiI1 + Ii = Ji (8)
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Inserting these back into the Hamiltonian

H(I,φ) = I21
∑
i,j

1

2
kiMijkj + I1

(
ω · k +

∑
i>1

kiMijIj

)
+ ε cosφ

+
∑
i>1

ωiIi +
1

2

∑
i,j>1

IiMijIj (9)

The Hamiltonian only depends on a single angle φ conjugate to I1. This means all the
other Ii are conserved. The Hamiltonian reduces to

H(I, φ) =
aI2

2
+ bI + ε cosφ+ constant

where b and the constant depend on the conserved quantities and the coefficients a, b can
be read off equation 9. If the I are small (and we started by expanding about some value
of momentum so they should be) then

b ∼ k · ω

is a frequency that describes the distance to resonance. Conserved quantities in equation
8 can be written in terms of the old mometa

Ii = Ji − kiI1 = Ji −
ki
k1
J1. (10)

The momentum J1 varies due to the resonance. The other momenta Ji must vary along
with J1. Correlated changes between momenta can help identify a resonance.

• If there is a single resonant perturbation, then we can transform the Hamiltonian so
that it resembles a pendulum, and the system is integrable.

• The above transformation is robust even if the resonant angle is slow or if k ·ω ∼ 0.

• The transformation allows you to calculate the coefficients a, b. These can be used to
estimate a resonant width (in momentum

√
ε/a), a libration frequency in resonance

(
√
aε) and a distance to resonance (b).

• If there are more than one resonant perturbations then it is usually not possible to
transform the system to a 1 dimensional system.

• A resonance can be identified as important by searching for a slowly varying resonant
angle and correlated momenta variations arising from the conserved quantities.
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1.3 Removal of perturbations with fast angles and the small divisor prob-
lem

Now let us consider the same Hamiltonian

H(J,θ) = H0(J) + ε cos(k · θ) (11)

Now we consider the situation of small ε. Because ε is small we try a canonical transfor-
mation that is near the identity transformation. A canonical transformation that is near
the identify is caused by the generating function

F2(θ, I) = I · θ

A near identity canonical transformation with generating function of old coordinates
and new momenta

F2(θ, I) = I · θ − ε

k · ω
sin(k · θ)

giving relations between old coordinates (θ,J) and new coordinates (θ′, I)

∂F2

∂I
= θ = θ′

∂F2

∂θ
= I− εk

k · ω
cos(k · θ) = J (12)

Inserting these into the old Hamiltonian (equation 11) gives

H(I,θ) = H0

(
I − εk

k · ω
cos(k · θ)

)
+ ε cos(k · θ)

= H0(I)− ε∇H0(I) · k
k · ω

cos(k · θ) + ε cos(k · θ)

Where in the second step we have expanded H0 to first order in ε. As long as we associate
ω = ∇H0(I) then we can arrange for the ε cos(k · θ) term to be cancelled.

• As ω depends on J or I we should have taken into account its dependence in per-
forming the canonical transformation. However to first order in ε the transformation
is correct.

• The canonical transformation can be used to remove non-commensurate or non-
resonant perturbation terms from a Hamiltonian. The behavior of the system in the
new coordinate system is calculated easily, and the behavior in the old coordinates
predicted using the transformation. We only considered a single perturbation term
added to H0 but any perturbation can be expanded in Fourier series with k a vector
of integers. Because non-resonant terms (containing fast angles) can be removed from
the Hamiltonian (via canonical transformation), they are often ignored altogether.
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• The new momenta are close to the old ones (equation 12) as long as the frequency
k ·ω is fast (not small). Fast angles can be ignored. Another way to say this is that
fast perturbations on average do not affect the dynamics.

• If the frequency is not small then the new momenta are not close to the old ones
and the expansion fails. This is the small divisor problem. Attempts to remove the
perturbations with a near identity expansion fail if there are any small divisors (or
slow frequencies or commensurability’s) in the problem.

1.4 Examples of resonances: Lindblad and Mean-motion resonances

In the setting of nearly circular orbits in the mid plane of a disk galaxy we can describe
orbits with

H0(θ, L; θr, Jr) ≈ g0(L) + κ(L)Jr

where L its the angular momentum, θ is azimuthal galaxy in the mid plane of the galaxy,
Jr is the action variable associated with epicyclic oscillations and θr the angle associated
with these oscillations. Here θ̇ = Ω(L) = g′0(L) is the angular rotation rate of a star in a
circular orbit and θ̇r = κ(L) is the epicyclic oscillation frequency. Here L sets the mean
radius of the orbit.

A bar or spiral arm pattern can rotate through the galaxy inducing a perturbation
in the gravitational potential that rotates with angular rotation rate (pattern speed), Ωb.
Lindlblad resonances are locations (radii) in the galaxy where

κ ∼ ±m(Ω− Ωb)

with m an integer.
In the setting of an asteroid and a planet orbiting the Sun. The mean motion (approx-

imately the angular rotation rate) of the planet we denote np and that of the asteroid na.
A mean motion resonance is a radial location where

jnp ∼ kna

with j, k integers.
For both of these examples the resonance condition can be written as

k · ω ∼ 0

with k a vector of integers and ω a vector of frequencies.
While the pendulum Hamiltonian looks like this

H(p, θ) =
p2

2
+ ε cos θ
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Lindblad and first order mean motion resonances are often modeled with the Andoyer
Hamiltonian

H(p, θ) =
p2

2
+ bp+ εp

1
2 cos θ

Here first order refers to an expansion in eccentricity and b gives a distance to resonance.
Where does the p1/2 come from?

If we consider a time dependent potential perturbation (from a nearby planet on an
asteroid or a bar perturbation in a galaxy) a Fourier component of the potential Vm ∼
f(R) cos(m(θ − Ωpt) where R is a radius. Radial motions can be approximated as motion
about a circle with an action variable Jr that is related to radius δR ∝

√
2Jr/κ cosφ where

φ is the epicyclic angle and κ the epicylic frequency. If we then take R = R0 + δR and
expand the potential to first order term in δR that term depends on J

1
2 . Likewise first

order expansions in eccentricity scale with Γ
1
2 where Γ is a Poincaré or Delaunay action

variable and conjugate to an angle sensitive to the angle of pericenter.

2 The periodically varying pendulum

Above we showed that a system perturbed by a single resonance is integrable. But a
system with two resonant perturbations might not be integrable. The periodically varying
pendulum can be written as if the Hamiltonian contains three resonant perturbations and
so lets us explore the situation when two nearby resonances make the system non-integrable
(aka chaotic). Another reason to study this system is that it is a dynamical system that
gives a map from the plane onto itself, and introducing the connection between dynamical
systems and Poincaré maps.

The Hamiltonian for a pendulum

H(p, φ) =
p2

2
− ε cosφ

We know that fixed points occur at p = 0 and φ = 0, π For ε positive the stable fixed point
is at φ = 0. The energy on the separatrix E = H(0, π) = ε. To estimate the width of the

separatrix we now look for p at φ = 0 with this energy p2

2 − ε = ε, giving peaks at

psep = ±2
√
ε.

These are the high and low points of the separatrix.
A pendulum that has length that oscillates with period Pν = 2π/ν

H(p, φ, t) =
p2

2
− ε
(

1 +
2µ

ε
cos(νt)

)
cosφ

=
p2

2
− ε cosφ− µ cos(φ+ νt)− µ cos(φ− νt) (13)
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Each of these terms can be thought as an individual resonance. To explain this we can
consider each term separately. Suppose we have a Hamiltonian with only one cosine term
but it is one of the time dependent terms

H(p, φ, t) =
p2

2
− µ cos(φ− νt)

We perform a time dependent canonical transformation

F2(φ, p
′, t) = (φ− νt)p′

giving new coordinate and momentum

φ′ = φ− νt p′ = p

with new Hamiltonian (gaining a term F2
∂t = −νp)

H(p, φ′) =
p2

2
− νp− µ cosφ′

=
1

2
(p− ν)2 − ν2 − µ cosφ′

We can perform another canonical transformation

F4(P, φ
′′) = (p− ν)φ′′

giving
P = p− ν φ′′ = φ′

and a new Hamiltonian

H(P, φ′′) =
p2

2
− µ cosφ′′

(with a constant ignored). This looks just like a pendulum and has stable orbits near P ∼ 0
which is equivalent to p ∼ ν. So the system essentially looks just like a pendulum but with
stable fixed point shifted so that it is centered at a different p.

Going back to the Hamiltonian in equation 13 we find that there are three resonances,
one at p = 0 (with width set by ε), and the others at p = ±ν each with width set by µ.

2.1 A system with periodically varying parameters

Let us neglect one of the resonances from the forced pendulum model and consider a time
dependent perturbation with just a single perturbation

H(p, φ, t) =
p2

2
− ε cosφ− µ cos(φ− νt) (14)
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Hamilton’s equations give

φ̇ = p

ṗ = −ε sinφ− µ(sinφ− νt) (15)

This system is in the class of systems with periodically varying parameters

ẋ = f(x, t)

with
f(x, t+ T ) = f(x, t)

and x = (φ, p). For our system with Hamiltonian given by equation 14,

T = 2π/ν.

We can look at the map gT

(p(t), φ(t))
gT−−−→ (p(t+ T ), φ(t+ T ))

that is induced by the time dependent Hamiltonian. This is called mapping at a period,
and it sends a position on the plane p, φ to another position on the plane. This map can
be iterated over and over again.

A fixed point in the map gT is a position x = p, φ such that gT (x) = x. This point
corresponds to a periodic orbit in the time dependent Hamiltonian system.

2.2 The system is equivalent to a 2 dimensional Hamiltonian system

The Hamiltonian in equation 14 is a function of three variables q, φ, t. Phase space is
2 dimensional. Because the Hamiltonian is a function of time, energy is not conserved.
This system is equivalent to a Hamiltonian system that is time independent but on a 4
dimensional phase space.

K(p, φ; J, θ) =
p2

2
− ε cosφ− µ cos(φ− θ) + Jν (16)

Hamilton’s equations give
∂K

∂J
= θ̇ = ν

so that θ = νt+ constant. Inserting θ = νt into the Hamiltonian we can see that Hamilton’s
equations for φ, p are the same as for the lower dimensional system (equations 15. Energy
conservation is achieved in the higher dimensional system because Jν varies.

Let us set θ = νt so that θ = 0 at time t = 0. The mapping at a period gT with
T = 2π/ν, does not change θ because θ has period T = 2π/ν. The map gT sends p, φ
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to new values while keeping θ = 0. Because total energy is conserved we can compute J
from the values of q, φ, θ at any later time as long as we know the initial conditions. The
equations of motion imply that the new values of p, φ are independent of J at any time,
though the equations of motion for J depend on the values of p, φ, θ. The mapping at a
period of the 2D time dependent Hamiltonian is equivalent to a surface of section (choosing
a fixed θ for each map) of the 4D time independent Hamiltonian.

In a previous lecture we showed that Hamiltonian flows preserve the symplectic two-
form, so gT preserves the two form

ω = dJ ∧ dθ + dp ∧ dφ

The map preserves θ, and on the surface with θ = 0 any integral involving dJ ∧ dθ would
be zero. In other words, if we start with a distribution of particles initial that is infinitely
thin in θ, it will remain infinitely thin in θ This implies that the two form dp ∧ dφ on the
subspace p, φ is conserved. Thus the mapping gT of p, φ is area preserving in the subspace
defined by p, φ. Because θ advances in time at a steady rate, a mapping at any time gt is
area preserving in the p, φ subspace.

So what is special about mapping at gT ?

2.2.1 Why mapping at a period?

Starting with H(p, q, t) with H(p, q, t+T ) = H(p, q, t) we can construct a new Hamiltonian
in an extended phase space by adding a new angle θ and a a new action J conjugate to our
new angle θ. We define θ = tν with ν = 2π/T . We replace t in the old Hamiltonian with
t = θ/ν. Our new and time independent Hamiltonian in the extended phase space is

K(p, q, θ, J) = H(p, q, t = θ/ν) + Jν

We construct surfaces of section using a plane of constant θ. We can do this for any time
periodic Hamiltonian. We could not replace the time uniquely with an angle if H were not
time-periodic. This gives us a map from t to an interval or phase.

The fact that I can construct a constant Hamiltonian in extended phase space and have
it depend upon an angle is what makes it possible to think of the orbits mapped at a period
as a surface of section. The surface of section gives slices through the orbits in the larger
dimensional space. When mapping at a period, θ is the same for each map. If I mapped
at a different period I would still get an area preserving map but I would be sampling a
different part of the 4D orbit each time as θ would be different for each map.

2.3 Orbits of the mapping at a period

Given an initial conditions x0 = (q0, p0), at time t = 0, the orbit of this point in the
2-dimensional plane (p, q) is the set of points

gT (x0), g
2T (x0), g

3T (x0), g
4T (x0)....
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Figure 3: Mapping at a period T = 2π/ν with ν = 2, ε = 0.4, µ = 0.05 and H(p, φ, t) =
p2

2 − ε cosφ− µ cos(φ− νt). Orbits generated from different initial conditions are shown in
different colors.
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There are three types of orbits in the map at T .

1. Periodic points with giT (x) = x with postive integer i. These correspond to periodic
orbits in the 3-dimensional space of q, p, θ. These include fixed points gT (x) = x.
Periodic points can be classified as hyperbolic or stable depending upon the two
eigenvalues of the linearized flow near them.

2. Quasiperiodic orbits, or tori. The orbit is a set of points on a oval. We can call them
tori if we think about them in the 3-dimensional space of q, p, θ.

3. Area filling orbits.

The three classes of orbits are seen in the map generated in Figure 3.
If the orbits in the surface of section are lines, there is an additional conserved quantity

in the orbit. If the orbits are area filling then there is no additional conserved quantity.

2.4 Lagrangian for the periodically varying pendulum

What is the Lagrangian formalism of this problem like? Starting with the time dependent
Hamiltonian (equation 14), taking the Legendre transformation with p→ φ̇ is straightfor-
ward giving us a time dependent Lagrangian

L(φ, φ̇, t) =
φ̇2

2
+ ε cosφ+ µ cos(φ− νt)

However if we started with the 2D time independent system(equation 16 with 4D phase
space), we have a problem taking the Legendre transform of the second variable as H ∝ J .

2.5 Poincaré Maps

Definition We start with an N dimensional space and a dynamical system with ẋ = f(x).
Let S be an N − 1 dimensional subspace called a surface of section. S must be transverse
to the flow so that no trajectories flow in S, all trajectories flow through S. The Poincaré
map is a mapping from S to itself obtained by following trajectories from one intersection
with S to the next (see Figure 4).

Closed orbits in the dynamical system correspond to fixed points in the Poincaré map.
To make a Poincaré map orbits must cross the chosen surface S many times. Not all

orbits need cross this surface. It is sometimes necessary to specify the direction that an
orbit can cross the plane.

The mapping at a period for the periodically forced pendulum is an example of a
Poincaré map!
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Figure 4: A Poincaré map turns a continuous dynamical system into a discrete map.

2.6 Melnikov’s integral and Deriving Separatrix Maps

Consider a pendulum

H(p, φ) =
p2

2
− ε cosφ. (17)

With ε > 0 the sign of the cosine term makes p, φ = 0 a stable fixed point and about this
point is pendulum libration. Near φ = π with x = φ− π

H ≈ p2

2
− εx

2

2
+ ε

This is a hyperbolic fixed point. The separatrix orbit has energy E = ε. Let us write
frequency

ω0 ≡
√
ε.

At the energy of the separatrix (and using equation 17) the orbit

p2sx = 2ε(1 + cosφsx) = 4ε cos2(φsx/2)

psx = ±2ω0 cos(φsx/2) =
dφsx
dt

dφsx
2ω0 cos(φsx/2)

= dt.

This can be integrated. The separatrix has orbit

ω0t(φsx) = ln

(
tan

(
φsx(t)

4
+
π

4

))
φsx(t) = 4 arctan(eω0t)− π (18)
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with φsx(−∞) = −π and φsx(∞) = π.
Consider again the periodically forced pendulum

H(p, φ, t) =
p2

2
− ω2

0 cosφ− µ cos(φ− νt− τ0)

where τ0 let’s us specify an initial phase offset for the two terms. We consider an orbit
that starts at the hyperbolic fixed point of the unperturbed system. Because

dH

dt
=
∂H

∂t
= µν sin(φ− νt− τ0)

we can estimate the energy change for a orbit that starts near this hyperbolic fixed point.
The change in energy is approximated from the separatrix orbit

∆H ≈
∫ ∞
−∞

dt µν sin(φsx(t)− νt− τ0)). (19)

Here φsx is given in equation 18. The integral goes from negative infinity to positive infinity.
We expand

∆H ≈
∫ ∞
−∞

dt µν
[
sin(φsx(t)− νt) cos τ0 − cos(φsx(t)− νt′) sin τ0

]
=

∫ ∞
−∞

dt′ µλ
[

sin(4 tan−1(et
′
)− π − λt′) cos τ0

− cos(4 tan−1(et
′
)− π − λt′) sin τ0

]
(20)

with λ = ν/ω0.
The integral in equation 19 and equation 20 can be written in terms of the Melnikov-

Arnold integral

Am(λ) ≡
∫ ∞
−∞

cos
(m

2
φMA(t)− λt

)
dt (21)

with
φMA(t) ≡ 4 tan−1 et − π. (22)

The integral when evaluated is

Am(λ) =
4π(2λ)m−1

Γ(m)
e−πλ/2 for λ > 0 (23)

= −4 Γ(m+ 1) sin(πm)

|2λ|m+1
e−π|λ|/2 for λ < 0. (24)
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Following Chirikov (1979), we approximate by taking only one of the terms in equation
20. Perhaps they are about the same size. Using Melnikov’s integral with m = 2, λ > 0,
equation 19 becomes

∆H ≈ −4πµλ2e
− πν

2ω0 sin τ0. (25)

See Chirikov, B. V. “A Universal Instability of Many-Dimensional Oscillator Systems.”
Phys. Rep. 52, 264-379, 1979.

In the unperturbed system, only the separatrix itself has infinite period. With an
energy near the separatrix energy of ε = ω2

0, what is the orbital period? Let

E = ε(1 + δ) = ω2
0(1 + δ).

We again write dφ/dt in terms of energy

ω0dt =
dφ√

2(E/ω2
0 + cosφ)

(26)

The orbital period T (δ) (as a function of distance from the separatrix)

ω0T (δ) = 2

∫ π

0

dφ√
2(1 + cosφ+ δ)

≈ 2

∫ π

π−c

dφ√
2(1 + cosφ+ δ)

≈ 2

∫ 0

−
√
c

dy√
y2 + 2δ

≈ 2 ln
√

2δ ∼ ln(2δ) (27)

using Laplace’s method to asymptotically estimate the integral for small δ. (I tried
Laplace’s method and had no success, however the expression can be written in terms
of an elliptic function which has an asymptotic limit that you can look up. The result is a
log).

A separatrix map, capturing the chaotic behavior near the separatrix can be con-
structed by considering the change in energy in equation 25 and coupling it to a change in
the phase angle τ0. Together

wn+1 = wn +W sin τ0 (28)

τ0,n+1 = τ0,n + λ ln(32/wn+1) (29)

W = −4πµλ2e−πλ/2 (30)

with λ = ν/ω0 and w the distance in normalized energy (normalized so that it is divided
by ω2

0) from the separatrix.
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The change in τ arises from the dependence of the period on energy near the separatrix
where the period goes to infinity. I see where the factor of λ comes from as the period of
the orbit w.r.t to the perturbation is needed to compute τ0. The choice for the signs are
weird, and I might be missing some factors of π and 2 when I did the period integral in
equation 27.

By considering variations in energy and phase near an unstable region, other stochastic
maps have been created. The Kepler map can be derived by looking at a comet’s orbit.
Each time it enters the inner solar system it is perturbed by a planet. Assumed is a constant
pericenter distance. The change in energy depends on the phase difference between planet
and comet’s orbit. The system is approximated with the Kepler map, a map of energy
and phase. The map is similar to the standard map except the phase advances with a 3/2
power of the momentum and the map is not doubly periodic.

Figure 5: The stable (red) and unstable (green) manifolds of two fixed hyperbolic points
must intersect. The unperturbed separatrix for the pendulum is shown in black.

2.7 Stable and unstable invariant manifolds

Consider a dynamical system ẋ = f(x) with a hyperbolic fixed point x∗.
In the stable manifold is the set of points that asymptotically approaches the hyper-

bolic fixed point.
The unstable manifold is the set of points that originates from the hyperbolic fixed

point (asymptotically backwards in time); see Figure 5 for an illustration of the pendulum.
In a pendulum system with φ periodic, then the hyperbolic fixed points at φ = 0, 2π are
the same point.

With s a point that we take to be an initial condition, we denote xs(t) as a solution to
the dynamical system with xs(t = 0) = s.
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Figure 6: The stable (red) and unstable (green) manifolds of two fixed hyperbolic points
must intersect an infinite number of times.

The stable invariant manifold Ws associated with a hyperbolic fixed point x∗ is all
points s such that

Ws : points s such that lim
t→∞

xs(t) = x∗.

The unstable invariant manifold Wu associated with a hyperbolic fixed point x∗ is all
points s such that

Wu : points s such that lim
t→−∞

xs(t) = x∗.

Consider again the periodically forced pendulum and set the phase of the perturbing
function so that τ0 = 0.

H(p, φ, t) =
p2

2
− ε cosφ− µ cos(φ− νt). (31)

We look at the Poincaré map of the plane (p, φ) to itself, made by mapping at a period
or every 2π. This is an area preserving map.

For the unperturbed case of the perturbed pendulum, the stable and unstable man-
ifolds are the same orbits, which are the separatrix of the conserved and unperturbed
Hamiltonian. For a nonzero perturbation, the Hamiltonian is no longer conserved, as it is
time dependent, and the stable manifolds and unstable manifolds no longer coincide. We
assume that the perturbation is small and that there still exists a hyperbolic fixed point
in the perturbed system.

2.8 The heteroclinic tangle

If the stable and unstable manifolds no longer coincide, where do they go? A stable
manifold cannot cross another stable manifold, and an unstable manifold cannot cross
another unstable manifold, because the crossing point would be asymptotic to two different
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fixed points. A stable manifold or unstable manifold may not cross itself, otherwise that
point would be inconsistent with the uniqueness of solutions to first order differential
equations. However, stable and an unstable manifolds may cross one another.

The point where stable and unstable manifolds cross is called a homoclinic intersection
if the stable and unstable manifolds arise from the same unstable fixed point. It is called
a heteroclinic intersection if the stable and unstable manifolds belong to different fixed
points, as show in figure 5. When the separatrix connects two different hyperbolic points,
the orbit is called heteroclinic. If it forms a loop, as shown in Figure 7, then it is called
homoclinic.

For the perturbed pendulum of equation 31, the first intersection point must occur at
angle φ = π because of symmetry in φ.

The stable and unstable manifolds must cross at some point. If they don’t cross then
they must go to infinity or spiral inward. The manifolds cannot go to infinity because there
are orbits that form a barrier and contain them. Area preservation excludes the existence
of attractors. So the unstable and stable manifolds cannot spiral inward as the dynamics
is Hamiltonian and area preserving.

If the stable and unstable manifolds cross once, then they must cross an infinite number
of times. This is because we can apply the mapping at a period to the intersection point
and we can also apply its inverse to the intersection point. The inverse procedure gives
a new point on the stable manifold that has to be in both stable and unstable manifolds
but it is is closer to a hyperbolic fixed point. Because the mapping at a period is area
preserving the area bounded by the different regions must be the same.

The procedure for estimating the distance between stable and unstable manifolds using
the unperturbed orbit is known as Melnikov’s method. The Melnikov function measures
the distance between stable and unstable manifolds. A zero in this function is a necessary
condition for a hetero or homoclinic tangle and chaotic behavior. The tangle itself is
sometimes called Smale’s horseshoe.

2.9 The Melnikov Method

The Melnikov method establishes when a time dependent perturbation causes chaotic be-
havior in an integrable system.

We have an unperturbed Hamiltonian dynamical system for x = (q, p) with f(x) =
(∂pH0,−∂qH0) for a Hamiltonian function H0(q, p). The equation of motion is

ẋ = f(x) x ∈ R2, t ∈ R. (32)

The system has a particular solution x0(t) that forms a loop and contains a hyperbolic
fixed point. We will call x0(t) the separatrix (it could also be called a homoclinic orbit).
This orbit is at the fixed point at t = ±∞.

We perturb the system with a periodic function g(x, t+ T ) = g(x),

ẋ = f(x) + εg(x, t) (33)
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The unperturbed system should also be Hamiltonian so g(x, t) = (∂pH1,−∂qH1) for a
periodic (in time with period T ) function H1(q, p, t).

Lemma 2.1 The stable and unstable manifolds of the Poincaré map of the dynamical
system in equation 33 intersect at a point not on x0 if and only if the Melnikov function
M(t0) has simple zeros. The Melnikov function is

M(t0) =

∫ ∞
−∞

dt f(x0(t− t0)) ∧ g(x0(t− t0), t) (34)

We try to explain where equation 34 comes from.
Here a ∧ b denotes the area spanned by the 2d vectors a and b. In other words if

a = (ax, ay) and b = (bx, by) then a ∧ b = axby − aybx.
As long as the perturbation is periodic, perturbed orbits wiggle but have to return

to the same energy (H = H0 + H1) value every period T . That places a limit on how
far they can go from x0 if they start on the separatrix orbit x0. The perturbed invariant
manifolds diverge from the separatrix in the p, q plane. We define a normal vector n̂z that
is perpendicular to the separatrix at a position z. The tangent to z for the separatrix orbit
is ẋ = (∂pH0,−∂qH0) evaluated at z. This means that the normal

n̂ ∝ (∂qH0, ∂pH0) = ∇H0 evaluated at z.

Consider points zs, zu on the stable and unstable manifolds of the perturbed system.
Choose time t so that zs, zu, z are all nearby. As the perturbation causes the unstable and
stable manifolds to diverge from the separatrix, we would like to know the component of
zs− zu in the n̂ direction which is perpendicular to the separatrix. This gives the distance
between unstable and stable invariant manifolds at a particular time. The distance between
the points on the stable and unstable manifolds

d(zs, zu, t) =

∣∣∣∣∇H0(z) · (zs − zu)

|∇H0(z)|

∣∣∣∣ .
Here t determines zs, zu, z positions. Now expand this to first order in ε. Because zs = zu
if ε = 0 the first term in the expansion is first order in ε.

d(zs, zu, t) ∼
ε

|∇H0|
|∇H0 · (∂εzs − ∂εzu)|ε=0| . (35)

The derivatives w.r.t. ε only depend upon H1 and they are evaluated at ε = 0. Because
the term on the right is evaluated at ε = 0, you do not need to know the orbits on the
perturbed invariant manifolds! The right hand side of equation 35 is evaluated on the
separatrix. All you need to know is the separatrix orbit and how the orbits are perturbed
via the functions H1 or g.
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The wedge product arises when we replace ∇H0 with f(z), as ∇H0 = (∂qH0, ∂pH0) =
(−fp, fq) where f = (fq, fp). Equation 35 becomes

d(zs, zu, t) ∝M(t) = f(z) ∧ (∂εzs − ∂εzu)|ε=0. (36)

We call this function M(t). With cumbersome math (take time derivative, write itself in
terms of integral of self) you find equation 34. The derivatives w.r.t ε become the function
g evaluated on the separatrix.

Figure 7: Distance between stable and unstable manifolds is computed using the normal
to the separatrix orbit. For points zs and zu on the stable and unstable manifolds the
distance d = |(zs − zu) · n̂|.

If we can show that there is an isolated zero of the Melnikov function for a perturbed
system, this lemma implies that the invariant manifolds intersect and this then implies an
infinite number of intersections and chaotic behavior. Thus finding a zero of a Melnikov
function for a dynamical system is equivalent to showing that it exhibits chaotic behavior.

Apparently, the intersection between unstable and stable manifods is transverse (though
I am not sure how to show that or what it specifically means). This then makes it possible
to say that the dynamical system in the vicinity of x0 is conjugate to the Smale horseshoe
map which exhibits a number of properties associated with chaotic systems.

We could add an example and associated problem on using Melnikov’s method. It
seems much easier to actually apply the lemma than to derive it. To apply the method, first
identify a closed orbit with a hyperbolic orbit in an unperturbed Hamiltonian system. Then
integrate equation 34 along it using the perturbation. If the function has an isolated zero,
then the system must be chaotic. It seems fairly straightforward to follow this numerical
recipe for perturbations on a Hamiltonian system where you can analytically write down
a separatrix orbit. There is series of literature on the derivation of Melnikov’s method in
various settings and applying it to various dynamical systems.

3 The restricted 3-body problem

The restricted 3-body problem is restricted in a number of ways. There are two massive
bodies and a third massless particle, interacting under the influence of gravity. Because
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the third body is massless it does not affect the other two, but its dynamics can be com-
plex. The orbit of the two massive bodies is circular and the third body restricted to the
plane containing the other two; this makes the problem of the third body’s dynamics a 2
dimensional problem with a four dimensional phase space. With respect to the center of
mass we can describe the position of the first and second bodies in terms of their radius
from the center of mass r1, r2 and angles in the orbital plane λ1 = npt, and λ2 = npt + π
where np is the angular rotation rate of the orbit. We denote the masses of the two bodies
m1,m2 giving

np =

√
G(m1 +m2)

(r1 + r2)3

Working in the center of mass frame implies that

m1r1 = m2r2

There is one important unit of time in the problem, n−1p , and one important unit of
length r1 + r2. We can also set

G(m1 +m2) = 1.

This is equivalent to adjusting the units of mass, distance and time. However the problem
is sensitive to the mass ratio

µ ≡ m2

m1 +m2
.

Using these units and the condition that we are working in the center of mass frame

m1 → (1− µ) m2 → µ

r1 → µ r2 → 1− µ

np → 1

The position of the two masses as a function of time is

x1 = µ(cos t, sin t)

x2 = (µ− 1)(cos t, sin t).

Rotation is counter clockwise. In the frame with origin at the center mass and rotating
with the two masses, the two masses are at positions

x1 = µx̂

x2 = −(1− µ)x̂

where x̂ is a unit vector in the x direction. In this rotating frame, the two masses do not
move.
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The motion of the third body depends on the Hamiltonian

H(px, py, x, y, t) =
1

2
(p2x + p2y)−

1− µ
|x1(t)− x|

− µ

|x2(t)− x|
(37)

As shown in previous lectures, and more easily in polar coordinates, we can transfer into
the rotating frame finding a time independent Hamiltonian

H(px, py, x, y) =
1

2
(p2x + p2y)−

1− µ
|x1 − x|

− µ

|x2 − x|
− (xpy − ypx) (38)

where the z component of the angular momentum Lz = xpy−ypx. Since the new Hamilto-
nian is independent of time, it is conserved. This integral of motion is known as the Jacobi
constant.

Inserting the positions of the planets back into equation 38

H(x, y; px, py) =
1

2
(p2x+p2y)−

1− µ√
(x− µ)2 + y2

− µ√
(x+ (1− µ))2 + y2

− (xpy−ypx) (39)

or in polar coordinates

H(r, θ; pr, L) =
p2r
2

+
L2

2r2
− L− 1− µ√

µ2 + r2 − 2rµ cos θ
− µ√

(1− µ)2 + r2 + 2(1− µ)r cos θ
.

(40)
Equations of motion in the corotating Cartesian frame are

ẋ =
∂H

∂px
= px + y

ẏ =
∂H

∂py
= py − x

ṗx = −∂H
∂x

= py − xf(x, y)

ṗy = −∂H
∂y

= −px − yf(x, y)

with

f(x, y) =
1− µ

((x− µ)2 + y2)3/2
+

µ

((x+ 1− µ)2 + y2)3/2
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The equations of motion in polar coordinates are

ṙ =
∂H

∂pr
= pr

θ̇ =
∂H

∂L
=
L

r2
− 1

ṗr = −∂H
∂r

=
L2

r3
− (1− µ)(r − 2µ cos θ)

(µ2 + r2 − 2rµ cos θ)
3
2

− µ(r + (1− µ) cos θ)

((1− µ)2 + r2 + 2r(1− µ) cos θ)
3
2

L̇ = −∂H
∂θ

= rµ(1− µ)
[
(µ2 + r2 − 2rµ cos θ)−

3
2 − ((1− µ)2 + r2 + 2r(1− µ) cos θ)−

3
2

]
sin θ

(41)

3.1 In three dimensions and the effective potential

More generally in 3D the dynamics of a third massless particle orbiting two massive objects
that bound in a circular orbit

H(x, y, z; px, py, pz) =
1

2
(p2x+p2y)−

1− µ√
(x− µ)2 + y2 + z2

− µ√
(x+ (1− µ))2 + y2 + z2

−(xpy−ypx)

(42)
with equations of motion

ẋ =
∂H

∂px
= px + y

ẏ =
∂H

∂py
= py − x

ż =
∂H

∂pz
= pz

ṗx = −∂H
∂x

= py + xf(x, y, z)

ṗy = −∂H
∂y

= −px + yf(x, y, z)

ṗz = −∂H
∂z

= zf(x, y, z)

with

f(x, y, z) =
1− µ

((x− µ)2 + y2 + z2)3/2
+

µ

((x+ 1− µ)2 + y2 + z2)3/2

We can compute the accelerations in the rotating frame

ẍ = 2ẏ + x+ xf(x, y, z)

ÿ = −2ẋ+ y + yf(x, y, z)

z̈ = zf(x, y, z)
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The velocity dependent term is recognized as the Coriolis force. The x, y term is centripetal.
The other term is due to the forces from each point mass.

It is helpful to define r1 the distance to the more massive body and r2 the distance to
the less massive body.

r1 ≡ ((x− µ)2 + y2 + z2)1/2

r2 ≡ ((x+ 1− µ)2 + y2 + z2)1/2

The equations of motion can be written in terms of an effective potential

Veff (x, y, z) = −1

2
(x2 + y2 + z2)− 1− µ

((x− µ)2 + y2 + z2)1/2
− µ

((x+ 1− µ)2 + y2 + z2)1/2

(43)

= −1

2
r2 − 1− µ

r1
− µ

r2
. (44)

The term on the left is the centrifugal term and the potential energy terms from the point
masses are on the right. Using the effective potential the equations of motion are

ẍ = 2ẏ −
∂Veff
∂x

ÿ = −2ẋ−
∂Veff
∂y

z̈ = −
∂Veff
∂z

.

3.2 Lagrange Points

The Lagrange points are equilibrium points in the rotating frame. That means ẋ = ẏ =
ż = 0, ẍ = ÿ = z̈ = 0 and ṗx = ṗy = ṗz = 0. The Lagrange points are critical points of the
effective potential. That means they satisfy

∇Veff = 0.

With the identity
(1− µ)r21 + µr22 = x2 + y2 + z2 + µ(1− µ) (45)

we can write the effective potential as

− Veff = (1− µ)

(
1

r1
+
r21
2

)
+ µ

(
1

r2
+
r22
2

)
− µ(1− µ)

2
(46)
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The Lagrange points satisfy

∂Veff
∂x

=
∂Veff
∂r1

∂r1
∂x

+
∂Veff
∂r2

∂r2
∂x

= 0

= (1− µ)

(
r1 −

1

r21

)
x+ µ

r1
+ µ

(
r2 −

1

r22

)
x− 1 + µ

r2
∂Veff
∂y

=
∂Veff
∂r1

∂r1
∂y

+
∂Veff
∂r2

∂r2
∂y

= 0

= (1− µ)

(
r1 −

1

r21

)
y

r1
+ µ

(
r2 −

1

r22

)
y

r2
. (47)

The requirement that ṗz = 0 at an equilibrium point gives us z = 0. That means we
can use the 2D system to classify the fixed points.

One solution of equation 47 satisfies

r1 −
1

r21
= 0

r2 −
1

r22
= 0

A solution is r1 = r3 = 1. These are the L3, L4 Lagrange points and they are at

L3, L4 : x =
1

2
− µ y = ±

√
3

2
(48)

The L̇ = 0 condition (equation 41) would give Lagrange points at θ = 0, π or where
y = 0. These are the L1, L2, and L3 Lagrange points. Using ẍ = 0 we find that this
condition is satisfied

(1− µ)

(
1− r2

1

(1− r2)2

)
− µ

(
r2 −

1

r22

)
= 0 (49)

which can be written as (
µ

3(1− µ)

)
= r32

1− r2 + r22/3

(1 + r2 + r22)(1− r2)3
(50)

It is convenient to define

α =

(
µ

3(1− µ)

) 1
3

and use α an expansion parameter. Notice this parameter is directly related to the Hill
radius.
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The distance from the lower mass body for L1 (between the two masses) and L2 (outside
the lower mass body) are

L1 : r2 = α− α2

3
− α3

9
...

L2 : r2 = α+
α2

3
− α3

9
...

where these are both on the x axis and near the lower mass body. For small µ, the L1,
L2 Lagrange points are about 1 Hill sphere radius away from the lower mass body. The
distances to the L3 point (on the opposite side) and also on the x axix

L3 : r1 = 1− 7

12

(
µ

1− µ

)
+

7

12

(
µ

1− µ

)2

− 13223

20736

(
µ

1− µ

)3

...

L3 : r2 = 1 + r1

Here I have adopted the expansions given by M+D and Celletti which could be based on
those by Brouwer and Clemence.

3.3 Surface of section

Nearly circular orbits would advance in θ and have radii that oscillate about a fixed value.
Consider an initial condition in the plane with θ = 0, and with r0, pr,0. And let us chose a
value for the Jacobi constant EJ or energy. Given EJ and initial values for three of the the
4 coordinates we can determine the angular momentum, L. This is enough to specify initial
conditions for all variables. So given an EJ , and in the plane θ = 0, for every point in the
planar subspace r, pr we can determine all initial conditions for an orbit (see Figure 9). We
can integrate the orbit until it crosses θ = 0 again. This is a map from r, pr, L → r, pr, L
that preserves EJ and keeps θ fixed. The symplectic two-form in polar coordinates

dω = dθ ∧ dL+ dr ∧ dpr

is preserved because the map is determined by the orbits of the system. Within the
subspace with θ = 0 we can neglect the dθ∧ dL, finding that the map is area preserving in
the subspace r, pr. This gives us a map from the plane r, pr to itself.

Compare this surface of section to the mapping at a period example that is equivalent
to a 2 dimensional system with Hamiltonian in equation 16, but repeated here

H(p, φ; J, θ) =
p2

2
− ε cosφ− µ cos(φ− θ) + Jν (51)
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Figure 8: An illustration of the Lagrange points. The L1, L2 are unstable – this means
that a particle placed near one of them will not stay in the vicinity. The L3, L4 points
are stable. Trojan asteroids are found in the L3 or L4 region associated with Jupiter. The
contours are those of the effective potential. The contours get higher at large radii due to
the centripetal term in the effective potential. They get increasingly negative near each
mass.
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Figure 9: For the restricted 3-body problem, a map can be constructed from the position
of the orbits of energy EJ each time they pass through a plane with a particular value of
θ. This is known as a surface of section and is another way to create an area preserving
map from the Hamiltonian flow. The flow lines are vortex lines and so are null vectors
with respect to the symplectic two-form. Within the subspace for θ = 0 the symplectic
two-form dr ∧ dpr is preserved. The map from r, pr → r,pr is area preserving and it is a
Poincaré map.

Oddly in that system, the map at T = 2π/ν is only dependent on the initial values of
p, φ and not on the energy, whereas the surface of section for the restricted 3-body problem
is dependent on the choice of energy. For the mapping at a period example, there is a
symmetry of the equations of motion J → J+ constant, making it irrelevant what value
of energy is initially chosen. Given initial values of p, φ, the energy sets J (or vice versa)
but J does not influence the equations of motion of the other variables. Consequently the
choice of the energy does not influence the equations of motion.

Surfaces of section can also be constructed for other two-dimensional systems. For ex-
ample, the dynamics of stars in the plane of a barred galaxy can be studied in a similar way
– replacing the function f(x, y) with one that is derived from the barred galaxy potential.

3.4 Nearly circular orbits

Recall that the restricted three-body problem in polar coordinates (equation 40) is

H(pr, L; r, θ) =
p2r
2

+
L2

2r2
− L− 1− µ√

µ2 + r2 − 2rµ cos θ
− µ√

(1− µ)2 + r2 + 2(1− µ)r cos θ

Let us look at the potential

V (r, θ) = − 1− µ√
µ2 + r2 − 2rµ cos θ

− µ√
(1− µ)2 + r2 + 2(1− µ)r cos θ
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Figure 10: A surface of section for the restricted circular 3 body problem. Thess figures
are from Phase space reconstruction in the restricted three-body problem, by Marian Gidea,
Frederick Deppe, and Gregory Anderson, AIP Conference Proceedings 886, 139 (2007);
doi: http://dx.doi.org/10.1063/1.2710051
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We can expand the potential in a Fourier series in θ

V (r, θ) =

∞∑
m=−∞

Vm(r) cos(mθ)

Our Hamiltonian we can write as a sum

H = H0 +H1.

Working in the rotating frame with angular rotation rate equal to one, the unperturbed
system (that is independent of azimuthal angle θ)

H0(pr, L, r) =
p2r
2

+
L2

2r2
− L+ V0(r)

and the perturbation (that is independent of pr)

H1(L, r, θ) =
∑
m6=0

Vm(r) cos(mθ)

In a previous lecture we showed how to transform a Hamiltonian in the form of H0 into
action angle variables, Jr, θr, within the context of the epicyclic approximation, using the
assumption that the orbit is nearly circular. To first order in Jr and ignoring a constant,
this gives

H0(θr, θ; Jr, L) = g0(L) + Jrκ(L)− L+ ....

with g′0(L) = Ω the angular rotation rate for a circular orbit. A canonical transformation
relates mean radius to action angle variables Jr, θr

r = rc(L) +

√
2Jr
κ(L)

cos θr (52)

Let us insert this into H1 and expand to first order in J
1/2
r

H1 =
∑
m6=0

Vm

(
rc +

√
2Jr/κ(L) cos θr

)
cos(mθ)

≈
∑
m6=0

[
Vm(rc) cos(mθ) +

dVm
dr

(rc)

√
2Jr
κ(L)

cos θr cos(mθ)

]

=
∑
m6=0

[
Vm(rc) cos(mθ) +

dVm
dr

(rc)

√
2Jr
κ(L)

1

2
[cos(θr +mθ) + cos(θr −mθ)]

]
(53)
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Locations where θr −mθ are slowly varying angles are called mean motion resonances
or Lindblad resonances. Remember we are in a corotating frame. In the inertial frame and
recovering units these have slow moving angles

φ = θr −m(θ − npt)

or slow frequencies
κ−m(Ω− np) ∼ 0

where Ω = θ̇ is the angular rotation rate of the particle in its nearly circular orbit.

Note the appearance of the J
1/2
r in the coefficient in equation 53! This is the source of

the resonant Hamiltonian we introduced in a previous lecture that looked like

H(J, φ) = J2 + δJ + εJ1/2 cosφ (54)

We can expand H1 to higher orders in Jr to produce resonant terms with coefficients J
n/2
r

with integer n. We can also expand our Hamiltonian with other systems of action angle
variables (like Poincaré coordinates) to find similar types of terms.

Consider the system near a resonance. Because non-resonant terms can contain fast
angles, they can be neglected. They give only small variations to the action angle variables.
Keeping only a single resonant term

H(θr, θ, L, Jr) = g0(L) + κ(L)Jr + a(L)J2
r − L+ εmJ

1/2
r cos(θr −mθ) (55)

where

εm =
dVm
dr

√
2

κ

1

2
. (56)

We have added a second order term a(L)J2
r here expanding the unperturbed Hamiltonian

to second order. We discussed earlier the dangers of a low order approximation near
resonance. The value of a(L) depends on the rotation curve and can be derived with the
canonical transformations introduced in the previous lecture. The Hamiltonian contains
only a single angle φ = θr − mθ. Following a canonical transformation the Hamiltonian
can be put in a form that only depends on this single angle. In this new coordinate
system, there is a conserved quantity (conjugate to the angle that does not appear in the
Hamiltonian). The system can be reduced to the one-dimensional system in equation 54.

3.5 Fixed points and periodic orbits

In the previous example we examined a 2-dimensional Hamiltonian (4d phase space) in
the rotating frame and so independent of time (equation 55) and reduced it to the one
dimensional Hamiltonian equation 54. We know how to find fixed points in this system.
But what are the orbits of these fixed points?
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Recall the relation between radius and θr

r = rc(L) +

√
2Jr
κ(L)

cos θr

When θr = 0 the orbit is at apocenter and when θr = π, the orbit is at pericenter.
A fixed point has a fixed angle φ = θr −mθ where θ is the angle in the rotating frame.

Supposing we have a fixed point with φ = 0. We find that θr = mθ (in the rotating frame).
This lets us draw the shape of the orbit in the rotating frame.

For example if m = 2 the orbit looks like an oval. If m = 4 the orbit looks like a square.
If φ = π and m = 2 the orbit is perpendicular to the φ = 0 case. For φ = π and m = 4 the
orbit is a diamond.

Figure 11: a) Orbits with φ = 0 and φ = θr − 2θ. b) Orbits with φ = π and φ = θr − 2θ.

In the rotating frame these orbits are not fixed, but they are closed or periodic. How
long does it take for an orbit to close? Consider φ = θr−mθ fixed. This gives us a relation
between frequencies

θ̇r = mθ̇

The oscillation period for θr is

Pr =
2π

θ̇r
and that for θ

Pθ =
2π

θ̇
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Figure 12: Orbits with φ = 0 and φ = θr − 4θ.

Using our relation between frequencies we find

Pθ = mPr

We can see that there are m radial oscillation periods per orbital period for these periodic
orbits (in the rotating frame), that correspond to fixed points in our Hamiltonian model.

4 The kicked rotor and the standard map

The Dirac comb is a periodic function that is a sum of delta functions

DT (t) =
∞∑

n=−∞
δ(t− nT )

The spacing between the delta functions is period T .
Consider a Hamiltonian that is separable into two terms and one of the terms contains

the Dirac comb
H(p, θ, t) = H0(p) + f(θ)DT (t)

Hamilton’s equation for θ̇ gives

θ̇ =
∂H0

∂p

ṗ = −∂H
∂θ

= −f ′(θ)DT (t)
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Because of the delta functions, ṗ = 0 except at the times tn = nT . Let us integrate over a
small time window

tn − µ < tn < tn + µ

where µ > 0 is small. At each time tn the momentum p is kicked by

∆p = −f ′(θ(tn))

In between these times p is constant and θ advances with frequency ∂H0
∂p .

Let us take H0(p) = p2

2 and f(θ) = −K cos θ, giving

H(p, θ, t) =
p2

2
+K cos θ

∞∑
n=−∞

δ(t− n)

(and we have set T = 1 which is equivalent to rescaling time so that we use τ = t/T and
then rescaling momentum and K). Here

f(θ) = K cos θ

f ′(θ) = −K sin θ

This gives

θ̇ = p and ∆p = K sin θ

Note θ ∈ [0, 2π].
Let us choose to have pn, θn the values just before the delta function. So pn, θn are the

values for p, θ at times t = n, but just before the delta function. We want to make a map
giving pn+1, θn+1 from pn, θn. To advance to pn+1, θn+1 we first apply the delta function
and update p giving

pn+1 = pn +K sin θn

Until the next delta function p is constant and now equal to pn+1 so θ̇ = pn+1 and

θn+1 = θn + pn+1

With the additional condition that p has periodic boundary conditions, this is the
standard map (or Chirikov-Taylor map) which we restate

pn+1 = pn +K sin θn

θn+1 = θn + pn+1

and both pn and θn are modulo 2π.
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We can rewrite the map as

θn+1 = θn + pn +K sin θn

pn+1 = pn +K sin θn

so that terms on the left are for t = n+ 1 and terms on the right for the previous time at
t = n. In this form the standard map is related to another map called the circle map.

θn+1 = θn + Ω−K sin θn

that forces p to be constant Ω.
When K is not small the standard map is very pretty and displays fixed points, periodic

orbits, orbits that are linear, and area filling orbits. Periodic orbits are surrounded by tori
which can dissolve into objects called Cantori or Aubry-Mather sets. Sometimes linear
orbits cross the entire space (from θ = 0 to 2π) and these are called invariant circles. Some
orbits for K = 0.971635 are shown in Figure 13. The standard map has been discussed in
the context of twist maps.

We can derive an area preserving map from any Hamiltonian in the form

H(p, q, t) = P (p) +Q(q)DT (t)

giving

q̇ = P ′(p)

ṗ = −Q′(q)DT

and ∆q = P ′(p)T and ∆p = −Q′(q).
Question: Why is it that we are choosing a separable Hamiltonian?
Answer: taking H(p, q) = P (p) + f(p, q)DT (t) we get equations of motion

q̇ = P ′(p) + ∂pf(p, q)DT (t)

ṗ = −∂qf(p, q)DT (t)

with f depending upon both p, q with both changing across the delta function, making it
hard to decide how we should use p, q to evaluate the function f at the transition times.

The most common generalization of the standard map is

pn+1 = pn +K sin θn

θn+1 = θn + sign(pn+1)|pn+1|γ (57)

with γ = 1.5 known as the Kepler map. For this map p extends to large values and is
not restricted to a periodic interval. This map is sometimes use to model particle escape,
comet trajectories or cosmic ray acceleration.
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Figure 13: Standard map for K = 0.971635 from wikipedia. Here is the link: https:

//commons.wikimedia.org/wiki/File:Std-map-0.971635.png
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4.1 Lagrangian and minimized discrete orbit path for the standard map

A(θ) =
∑
n

1

2
(θn+1 − θn)2 −K cos θn

where θ is an orbit θ0, θ1...... Instead of integration over a continuous path we have a sum
over the discrete positions in the orbit. Lagrange’s equations give

∂A

∂θn
= −θn+1 − θn−1 + 2θn +K sin θn = 0

With the identification that
pn+1 = θn+1 − θn

we recover the standard map as an orbit that satisfies Lagrange’s equations and so mini-
mizes the sum A. The standard map is an example of a monotone twist map and these are
a subject of Aubry-Mather theory.

Theorem (Aubry & Mather). A monotone twist map possesses orbits for every rotation
number.

4.2 The map is area preserving

The map is derived from a Hamiltonian system so it must be area preserving. However we
can also check that the determinant of the Jacobian must be 1.

To compute the Jacobian we write the map as

pn+1 = pn +K sin θn

θn+1 = θn + pn +K sin θn

where I have grouped values at iteration n + 1 on the left and values for n on the right.
The Jacobian

J = det


∂θn+1

∂θn

∂θn+1

∂pn
∂pn+1

∂θn

∂pn+1

∂pn

 = det

(
1 +K cos θn 1
K cos θn 1

)
= 1

4.3 Connection to the periodically perturbed pendulum and K as a res-
onance overlap parameter

Consider a Hamiltonian that has a function of the Dirac comb

H(p, θ, t) =
p2

2
+KT cos θ

∞∑
n=−∞

δ(t− nT )
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Take the Fourier transform of the Dirac comb

DT (t) =

∞∑
n=−∞

δ(t− nT ) =
1

T

∞∑
m=∞

ei2πm
t
T

=
1

T

∞∑
m=1

(
ei2πm

t
T + e−i2πm

t
T

)
+

1

T

=
1

T

∞∑
m=1

2 cos

(
2πmt

T

)
+

1

T
=

1

T

∞∑
m=−∞

cos

(
2πmt

T

)

=
1

T

∞∑
m=−∞

cos(mνt),

with frequency

ν =
2π

T
.

The factor of 1/T may look mysterious, however integrate a delta function at t = 0 and
match it to the integral over time of one period of the Fourier series. Only the m = 0 term
contributes giving

∫ T
0 dt = T . We insert this form of the Dirac comb into the Hamiltonian

H(p, θ, t) =
p2

2
+K cos θ

∞∑
m=−∞

cos (mνt) . (58)

We use the trigonometric relation cos a cos b = 1
2(cos(a+ b) + cos(a− b)). This gives

H(p, θ, t) =
p2

2
+
K

2

∞∑
m=−∞

[cos (θ +mνt) + cos (θ −mνt)]

=
p2

2
+K

∞∑
m=−∞

cos (θ +mνt) . (59)

This is an infinite sum of resonance terms. The m-th resonance is at p = θ̇ ∼ −mν.
This means that each resonance is separated by ∆p = ν from its neighbors. The width of
each resonance is ∆p =

√
K. The resonance overlap condition occurs when 2

√
K & ν.

When T = 1, then ν = 2π and this condition becomes K ∼ π2. This is is somewhat off
from the K ∼ 1 criterion for chaos dominating in the standard map. However, it might be
about right for predicting when the two major resonant islands touch, but neglects when
other smaller resonant islands touch.

We can think of this system as a collection of resonances separated by ν in frequency.
This means that K acts like a resonance overlap parameter with large K corresponding to
strong overlap. Unsurprisingly K large gives chaotic/area filling trajectories and K small
gives trajectories that are 1 dimensional.
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4.4 Structure in terms of periodic and irrational orbits

An orbit that is a line and contains all θ values is sometimes called a torus. Orbits are
predominantly one-dimensional (lines) or area filling. A orbit that is a curved line that
smoothly goes across the map would be called a torus (filling in between maps with time).
An orbit can be a fixed point or a periodic orbit. Apparently there are also fractal like
structures that are the remnants of tori, just after destruction that are called cantori.

Looking at the structure of the standard map you can see periodic orbits as islands of
stability within a chaotic sea. A regions that divides periodic orbits is like a separatrix and
becomes chaotic as K increases. Resonances that overlap cause a separatrix to become
unstable.

As K is increased, which are the torri that are the last to dissolve into area filling
or chaotic orbits? These are the most ‘irrational’ in the sense of a continued fraction
expansion.

Periodic orbits (islands) can exist even at high K values. We see the dichotomy between
periodic orbits which remain as islands of integrability and regions where resonances destroy
stability.

Periodic orbits are sometimes called ‘sticky’ because orbits that are in their vicinity
can stay near them for long periods of time. This gives intermittent behavior where an
orbit can spend time in two different regions of phase space and behaves differently in each
region, swithing back and forth at random times.

The area filling chaotic regions appear smooth but this is an artifact of the plot. If
if you look at series of iterates, particularly near a region where there are torri, the orbit
spends a lot of time in one spot and then can jump out of it. Often there are small islands
of stability embedded within a chaotic sea.

4.5 Conjunction maps

It is much faster to iterate a map than integrate a set of differential equations. The
approximation made here, where we assume that the perturbation is given as a delta
function can be used to approximation some interesting dynamical systems. For example,
consider a few planets in orbit around the Sun. Each planet primarily feels the effect of a
nearby planet at closest approach or at conjunction. Instead of integrating the complete
equations of motion, we can integrate the orbit of each planet between conjunctions and
then apply a sharp perturbation to each planet. This is known as a conjunction map
and gives dynamics qualitatively similar to the real system. The map can be made to be
symplectic (or area preserving) and so will behave like a Hamiltonian system. The orbits
of comets can be approximated in a similar fashion, by primarily perturbing the comet
when it is at pericenter and assuming that its trajectory is unperturbed while it is in the
outer Solar system.
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4.6 Resonance Overlap and the 2/7-law for the chaotic zone at corotation

We consider a planet with mean motion np and an asteroid in orbit exterior to the planet
with mean motion n. First order mean motion resonances in the form jnp = (j + 1)n.
Corotation would be where n = np, an asteroid like a Trojan asteroid that is rotating with
the planet. The ratio

np
n

=
j + 1

j

Mean motions depend on semi-major axis to the 3/2 power.

np
n

=
j + 1

j
=

(
aj
ap

) 3
2

where aj is the semi-major axis of the j : j + 1 resonance.

aj
ap

=

(
j + 1

j

) 2
3

= (1 + 1/j)
2
3 ∼ 1 +

2

3j
. (60)

We can see that as j increases the resonances get closer and closer together. The resonances
also get stronger as they are closer to the planet. The resonance strength depends on
the planet mass. We can look for the j value that describes when the distance between
resonances is the same size as the distance between resonances.

Distance between resonances we often describe with a frequency. In our case the fre-
quency is that of the mean motion. Setting GM = 1 and ap = 1

aj =

(
j + 1

j

) 2
3

nj =
j

j + 1

nj+1 − nj =
dnj
dj

=
1

j + 1
− j

(j + 1)2
∼ 1

j2

and this gives a distance between two nearby resonances approximately in units of energy
or ap.

How do we estimate the strength of the resonances? We want to estimate the libration
frequency in the resonance. The width of the resonance (in units of semi-major axis or
mean motion) is the range of mean motions that gives |b| < ω where ω is the libration
frequency.

At a j : j + 1 resonance the distance between planet and asteroid is

δ =
aj
ap
− 1 =

2

3j
∼ 1

j
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where we work with distance in units of ap and have used equation 60. The force on the
asteroid as it swings by is µ

δ2
where µ is the mass of perturbing planet compared to that of

the central star. The length of time of encounter depends on the difference of mean motions
or nj − np ∼ j−1 ∼ δ. The resulting kick is a velocity µδ−2δ−1. The velocity change is
tangential and so the total orbital energy change is approximately the same thing and
equal to µδ−3. We let this be the size of a cosine pendulum term and get a frequency that
is the square root of this giving a libration frequency ω0 = µ

1
2 δ−

3
2 and we set that equal

to the frequency between resonances or 1/j2 = δ2. Solve for µ in terms of δ and we find

δ = µ
2
7

for resonance overlap and chaos.
This does not work!!!!!
A somewhat more reliable approach expands the potential perturbation (equation 56)

from the planet in a Fourier series, extracts the relevant term and estimates the size of
resonant libration from the strength of the perturbation term. The powerlaw form of the
perturbation term affects the libration frequency estimate. The 2/7 law is sensitive to how
the resonant libration frequencies depend on planet mass.

The resonance overlap criterion near a planet’s corotation is a good predictor because
the resonances have similar frequencies. Looking back to Chirikov’s use of Melnikov’s
integral, the ratio ν/ω0 ∼ 1. The width of the chaotic region depends mostly on the per-
turbation strength µ and there is only a single timescale in the chaotic region that is the
same as ω0 or the resonance libration frequency. Thus the Lyapunov time is also approx-
imately equal to the resonance libration period. In a setting where resonance separations
and frequencies differ by a large amount, the Melnikov integral would be exponentially
small and even if chaotic behavior is present, we may not care about it because it would
be restricted to a very narrow region in phase space. The corotation region of a planet is
a setting where the chaotic behavior is wide-spread.

The 2/7 law is due to Jack Wisdom, (1980).

4.7 Twist maps

A twist map is an area-preserving map on a rectangle with periodic boundary conditions
in both dimensions.

T : (p, θ)→ (p, θ).

A twist map can be derived from a Poincaré surface of section of a 4-dimensional Hamil-
tonian system. Each time an orbit passes through a particular plane gives a new position
on the plane. The sequence of positions on the plane is an orbit of the map.
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A very boring twist map is

pn+1 = pn

θn+1 = θn + Ω(pn). (61)

We take momentum p ∈ [0, 2π] and θ ∈ [0, 2π] so the map is done modulo 2π. The
frequency Ω(p) is assumed to be a smooth function. It’s like a frequency if we think of
each iteration of the map occurring after a time T . The orbits of the map conserve p. If
we think of p like a radius, the map sends circles into circles. If Ω(pn) increases, higher
values of p give a larger shift in θ. This is described as a twist.

An additional requirement of a twist map is that

∂θn+1

∂pn

∣∣∣∣
θn,pn

6= 0. (62)

This condition implies that there is some twist everywhere. A twist map is monotone if
there is a positive (∃ε > 0) such that

∂θn+1

∂pn

∣∣∣∣
θn,pn

> ε ∀pn, θn (63)

for all pn, θn. This condition implies that the twist is always in the same direction. The
shift in θ always increases.

How can we describe the average angular shift per map iteration in an orbit? Suppose
we compute the average difference in angle after N iterations

1

N

N∑
n=0

(θn+1 − θn).

The rotation number ν of an orbit is defined in terms of the limit

ν = lim
N→∞

1

N

N∑
n=0

(θn+1 − θn) (64)

What happens if θn+1 is near 2π and θn is near 0? This problem arises because the map
operates on a periodic space, θ ∈ [0, 2π]. To better define the winding number we lift θ
onto R. In other words we define another version of the map, the lifted map, T̃ , that does
not take θ modulo 2π. The angle differences in equation 64 are computed using the lifted
map.
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4.8 Generating twist maps using a generating function

The twist map of equation 61 not very exciting. The standard map is a twist map and is
more interesting.

A twist map can be generated using via a generating function, ensuring that it is area
preserving. The generating function is a function of old and new coordinates F (θn, θn+1).

pn = −∂F (θn, θn+1)

∂θn

pn+1 =
∂F (θn, θn+1)

∂θn+1
. (65)

The one form

dF = −pndθn + pn+1dθn+1 (66)

is exact, ensuring that the map is area preserving. A common form for a twist map is

pn+1 = pn + εf(θn)

θn+1 = θn + pn+1 (67)

where f(θ) is periodic. The associated generating function

F (θn, θn+1) =
1

2
(θn − θn+1)

2 + εV (θn) (68)

where

f(θ) =
∂V (θ)

∂θ
. (69)

The generating function, F (θn, θn+1), is also a Lagrangian. Some properties of the map
may be derived from a sum of the Lagrangian that is like an action and is minimized on
an orbit. Because of equation 65 for the momenta,

∂

∂θn
(F (θn−1, θn) + F (θn, θn+1)) = 0 (70)

where θn−1, θn, θn+1 are consecutive values of the map. This equation looks similar to
Lagrange’s equations but for a Lagrangian that is not dependent upon velocities. Hence the
generating function is called a stationary Lagrangian. The analogy is not straightforward
as a stationary Lagrangian would be a function of coordinates at a particular time, and
here the generating function is a function of coordinates at two consecutive iterations of
the map.
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Suppose we start at θj and end at θk. The sum of the stational Lagrangian with these
two endpoints is

S =

k−1∑
n=j

F (θn, θn+1). (71)

If you take the derivative with respect to an angle in the series you find equation 70. The
sum S of the Lagrangian is minimized if the angles in the series are in an orbit of the map.
This sum S is equivalent to an integral of the Lagrangian along a path so it’s like an action.

4.9 Poincaré-Birkoff fixed point theorem

We consider an area preserving map T0 in which the orbits are circles. A central circle C is
preserved by the map T0(C) = C, however points on this circle are rotated. We choose the
circle C so that points on it have a rational winding number νC = N/M for prime integers
N,M . We assume that the winding number is a smooth function of radius. A slightly
larger circle C+ is also preserved by the map but has a higher and irrational winding
number. A slightly smaller circle C− is rotated by T0 but has a smaller and irrational
winding number; νC+ > N/M, νC− < N/M .

Because the map’s orbits are circles and because C has a rational winding number
N/M , the circle C consists of fixed points of the map iterated M times; TM0 (x) = x for
x ∈ C.

Now perturb the map T0 → Tε, where Tε is also area preserving. We assume that
for a sufficiently small perturbation to the map, the relative twist is maintained. That
means that the perturbed map must have small winding numbers at small radius and
larger winding numbers at larger radius.

Consider a ray from the origin that is at angle θ. At some point on this ray we must be
able to find a point z where the angle of z is not changed by the map TMε . Let z = (r, θ)
and TMε (z) = (r′, θ′). At a particular angle θ we should be able to find a point z (at a
particular radius r), such that θ′ = θ. That does not necessarily mean that r′ = r. Now
take all rays originating from the origin and create a loop R that consists of the points for
which the map TMε that preserves the angle. Now look at the loop that is R′ = TMε (R).
If the map Tε 6= T0 then the loop R′ is not the same as R. Because the two loops are area
preserving this means that they must cross each other at least at two points. Where they
cross we have fixed points, of the map TMε . Fixed points must alternate between elliptic
and hyperbolic.

Poincaré-Birkhoff theorem: For any curve C of an unperturbed system with rational
winding number ν = N/M and N,M coprime of the area preserving map T0, (and whose
points are all fixed points of TM0 ), there will remain only an even number of fixed points
under perturbation. That means there we remain only an even number of fixed points of
the map TMε .
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Why did we define C+, C−? Orbits with irrational winding number only weakly deform
under perturbation, whereas the orbit with ration winding number that gave lots of fixed
points (for an iterated map) is more prone to changing shape.

Figure 14: Illustrations relevant for the Pincaré-Birkhoff theorem. On left: The loops
C,C+, C− for the unperturbed map and how they rotate under the map TM0 . The loop C
has a rational winding number ν = N/M . For the perturbed map TMε (R) = R′ we create
a loop R in the following way. For each ray from the origin at angle θ we find a radius
at which the map preserves the angle. The different points that are found at different ray
angles give the loop R. On Right: How loops R and TMε (R) = R′ intersect. The points of
intersection are fixed points of the iterated perturbed map TMε . There are pairs of fixed
points. The elliptic points are labelled with E and the hyperbolic ones are labelled with
H.

Why is this theorem relevant? For twist maps it establishes that under perturbation,
hyperbolic points appear that can then go unstable. In a twist map, the Poincaré-Birkhoff
theorem assures the existence of a hierarchy of stable and unstable fixed points. All the
hyperbolic fixed points lead to chaotic structures via perturbations on stable and unstable
manifolds through the process shown in Figure 6 and in Figure ??. Therefore, chaotic
motion is present in a self-similar manner on all scales.

4.10 Destruction of KAM tori

The nonresonant tori (or orbits) that have not been destroyed by resonances are called KAM
tori. On the standard map, or a monotone twist map and for small mapping parameters,
resonance zones are separated from one another by KAM tori. The mechanism by which
a KAM torus is destroyed and converted to a cantorus is universal to all area-preserving
twist maps. Each KAM torus has an irrational winding number. Every irrational number
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Figure 15: Pairs of hyperbolic fixed points going unstable. The elliptic fixed points are
marked with small blue circles and the hyperbolic ones with green and red circles. Pairs
of hyperbolic and elliptic fixed points are generated via the Poincaré-Birkhoff fixed point
theorem. Stable and unstable manifolds are shown in red and green and cannot intersect,
giving what is called the heteroclinic tangle.
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can be approximated by a unique sequence of fractions, given by a continued fraction, that
converges to the irrational number. Therefore, we can represent every winding number in
terms of a unique continued fraction,

ν = a0 +
1

1 + a1 + 1
1+a2+

1
1+a3...

(72)

where a0, a1... are all integers. A rational approximation to an irrational ν is made by
computing the continued fraction expansion out to a particular index (which ai is the last
one used in the continued fraction expansion). The higher the index, the more accurate
the approximation. The most irrational number, that is most poorly approximated by the
series of rational approximations is the irrational number computed from the sequence of
1s (where ai = 1 for all i). This number is called the golden mean.

KAM tori are destroyed by resonances between degrees of freedom whose periods are
rationally related. Thus, each rational approximate will be associated with a resonance in
phase space and a corresponding island chain. As the parameter K of the standard map
increases, these resonance regions grow and finally destroy their neighboring KAM tori.
The last torus to be destroyed is the one that is the most distant from all resonances and
that is the one that is most poorly approximated by rational approximations. The last
KAM torus to be destroyed is the one with winding number similar to the golden mean.

5 Adiabatic variations

Consider a time dependent Hamiltonian system H(p, q, λ(t)), where λ(t) varies slowly. We
can look at the associated time independent system H(p, q, λ0) where λ0 is fixed.

Suppose we have an orbit in phase space p0(t), q0(t) that is closed in the time indepen-
dent system. When we allow λ to vary, the system is still a Hamiltonian system, which
implies that volume in phase space is conserved. We assume that variation in H takes
place slowly compared to the orbit’s period. In fact, this is the condition for a variation of
H to be ‘adiabatic’.

Because the Hamiltonian varies slowly we can think of the system as a loop in phase
space that is slowly changing shape. For example consider the red loop slowly deforming
into the blue loop in Figure 16. The action is the integral over the closed orbit

I =

∮
pdq.

Even if the orbit is changing shape, the area enclosed by the orbit should be constant. This
means that the action I should be constant for adiabatically varying systems. If the system
is integrable and adiabatically varying, then its behavior can be predicted by varying the
frequencies, not the action variables. which should remain fixed.
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Figure 16: An orbit in phase space slowly changes shape, while keeping its area fixed.
The red and blue lines show the orbit at different times for a slowly varying Hamiltonian
system. The action variable remains fixed for an adiabatically varying system.

5.1 The drifting harmonic oscillator

We consider a harmonic oscillator

H(p, q) =
p2

2
+ λ(t)

q2

2

We start at a fixed time with λ = λ0. We transform to action angle coordinates

H(I, φ) = Iω

with frequency
ω =

√
λ0.

The canonical transformation has I = λ−10 p2/2 + q2/2.
We now consider an adiabatic perturbation. Because the action variable is conserved,

we infer that
H(I, φ, t) = Iω(t)

with
ω(t) =

√
λ(t).

What is the condition for the perturbation to be adiabatic? Notice that λ is in units
of the square of frequency. We can put the drift rate in units of time by estimating 1

λ
dλ
dt .

This should be slow compared to the oscillation frequency of the system itself. This means
that

1

λ

dλ

dt
�
√
λ

for the drift rate to be adiabatic.
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5.2 The drifting pendulum

The pendulum is interesting because it has an orbit, the separatrix, that has an infinite
period. That means that no matter how slowly the system drifts, there is a location in
phase space where the drift rate is not adiabatic. Instead of focusing on an action that
can be conserved, we look at the rate that phase space volume crosses the separatrix. In
other words, we assume that the drift is adiabatic most of the time and only consider
what happens when there is a transition across a region, the separatrix, when the drift
is not adiabatic. Note that, for a drifting Hamiltonian system, volume in phase space is
conserved, even if the drift is not adiabatic.

We take a Hamiltonian for the pendulum

H(p, θ) = a
p2

2
+ bp+ ε cos θ.

Orbits for a fixed pendulum are shown in Figure 17.
Any or all of the coefficients a, b, ε could be time dependent. With these coefficients

time dependent, we can consider

• V+ the rate that the upper separatrix sweeps up phase space volume.

• V− the rate that the upper separatrix sweeps up phase space volume.

• V+ − V− is the volume growth rate of the libration region.

Assuming that the libration region is growing, and that the resonance is moving upward,
the probability that a particle is captured into the libration region is

Pcapture =
V+ − V−
V+

.

When is the drift of a pendulum adiabatic? To answer this question we need to under-
stand characteristic timescales in the problem. First notice that b is in units of frequency.
Notice that we can write

a

2
p2 + bp =

a

2

(
p+

√
b

a

)2

+ constant

A shift in b essentially shifts the momentum origin.
The characteristic libration frequency is ω0 =

√
εa. This can be seen by expanding

about the stable fixed point. This frequency is also characteristic of the time-scale for
divergence from the hyperbolic fixed point in the separatrix.

The width of the resonance is
√

2ε/a (units of momentum). A system is adiabatic if
the time it takes to drift across the resonance is longer than the oscillation period.
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Figure 17: The rate that phase space volume is swept by the red dashed line, showing
the top separatrix is V+. The rate that phase space volume is swept by the bottom
separatrix, the dashed green line, is V−. The probability of capture into the libration
region is Pcapture = V+−V−

V+
.

The time to drift across the resonance width is a/ḃ ×
√
ε/a and this should be larger

than the oscillation period which is of order 1/
√
εa. Altogether this gives

ḃ�
√
εa

for the drift in b to be adiabatic.
If only ε or a are drifting then b should be irrelevant. If only ε is drifting then a condition

for adiabatic drift would be
1

ε
ε̇�
√
εa

If only a is drifting then a condition for adiabatic drift would be

1

a
ȧ�

√
εa

All of these expressions are essentially dimensional!
For an illustration of a drifting system, see Figure 19. Example code is available at

https://astro.pas.rochester.edu/~aquillen/phy411/pylab/drift_integrate.ipynb

or https://astro.pas.rochester.edu/~aquillen/phy411/pylab/drift_integrate.html.
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Figure 18: Illustrations of integrations of a drifting resonant system. Top panels are angle
and bottom panels are momentum. The Hamiltonian integrated is H(p, φ) = p2/2 +

b(t)p + p
1
2 cosφ. The initial condition for both integrations is φ0 = 0.1, p0 = 0.1. On

the left b(0) = −3 and the drift rate ḃ = 0.05. On the right b(0) = 3 and ḃ = −0.05.
On the left the system jumps across resonance. The system is initially librating near
φ ∼ 0 and is circulating at later times. On the right the system is librating at later times
but circulating at earlier times. After being captured into the resonance, the momentum
continues to increase with time.
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Figure 19: Illustrations of integrations of the level curves of the Hamiltonian H(p, φ) =
p2/2 + b− ε cosφ with ε = 1. The axes are x =

√
2p cosφ and y =

√
2p sinφ. From top to

bottom we show b = 0,−1,−3, respectively. A system with a varying b would go from top
to bottom if b is decreasing. A libration region at negative φ ∼ π is born as b decreases,
and there is a separatrix in the bottom panel but not in the others. Particles either jump
to this island or librate at φ ∼ 0 and are pushed to high momentum as b decreases.

6 Closed orbits and averaging

Suppose we have a nearly integrable Hamiltonian system

H(I,θ) = H0(I) + εH1(I,θ).

Chose I such that H0 gives a periodic orbit with duration T . This means that frequencies

ω =
∂H0

∂I
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satisfy
ωT = 2πk, (73)

where k is a vector of non-zero integers.
To zero-th order I is fixed and θ(T ) = θ(0) returns to its initial value after time T . To

zero-th order

θi = θi(0) + ωit = θi(0) + 2πki
t

T
.

Equivalently

θ = θ0 + 2πk
t

T
. (74)

It is convenient to define an angle φ = 2πt/T which goes from 0 to 2π while t ranges from
0 to T . To zero-oth order

θi = θi(0) + kiφ. (75)

We can also write this as

θ = θ0 + kφ. (76)

For the full solution how much does I change after time T? We can approximate this
by averaging over time T . We define the function

fi(I,θ) =
∂H1(I,θ)

∂θi

that is necessarily periodic with respect to each angle. Because İ = −∂H
∂θ ,

İi ∼ −
ε

T

∫ T

0
fi(I,θ)dt

We insert the zero-th order solution

İi ∼ −
ε

T

∫ T

0
fi(I,θ(t = 0) + 2πkt/T )dt

∼ − ε

2π

∫ 2π

0
fi(I,θ0 + kφ)dφ (77)

This depends on an average over the zeroth order periodic orbit.
The function has to start and end at the same value because the orbit is periodic. Take

the Fourier transform of H1 giving

H1(I,θ) =
∑
j

aj(I) cos(j · θ + θ0,j) (78)

fi(I,θ) =
∂H1

∂θi
= −

∑
j

aj(I)ji sin(j · θ + θ0,j) (79)
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Insert this into equation 77

İi ∼
ε

2π

∫ 2π

0
dφ
∑
j

aj(I)ji sin(j · kφ+ k · θ0 + θ0,j) (80)

As both j,k are vectors of integers, this is equal to zero. A constant term cannot contribute
because H1 itself must be periodic and depend upon the angles. The constraint that the
orbit is periodic implies that the momenta cannot change very much.

To do better than this approximation, we need to insert the zero-th order solution for
θ(t) (from equation 74) back into the Hamiltonian and do an expansion to first order in ε.

Suppose we relax the assumption that the unperturbed system is at a periodic orbit to
assuming that it is near a periodic orbit. Equation becomes

ωT = 2πk + δ, (81)

where δ is a vector of small quantities. Equation 74 becomes

θ = θ0 + (2πk + δ)
t

T
(82)

= θ0 +

(
k +

δ

2π

)
φ (83)

Equation 80 becomes

İi ∼
ε

2π

∫ 2π

0
dφ
∑
j

aj(I)ji sin

(
j · kφ+

j · δ
2π

φ+ k · θ0 + θ0,j

)
∼ ε

2π

∑
j

aj(I)jij · δ (84)

I assumed j · δ < 2π, but this might not have been a good idea.
It is always possible to find a nearby periodic orbit for the zero-th order system for any

initial I if T is chosen to be sufficiently large. The size of the chosen T givse a limit on
the size of the frequencies δ and the size of the integers k. For larger T you need larger
integers but frequencies errors are smaller. The change in I after duration time T can be
estimated from the Fourier series. If using a Fourier series to place a limit, it is handy to
place a limit on aj based on |j| and using the smoothness of the function H1.

This discussion is relevant to the idea that periodic orbits are sticky and the Nekhoro-
shev theorem that can be discussed in terms of how periodic orbits place limits on the
extent of drifting possible in a weakly perturbed Hamiltonian system. (See work by Pierre
Lochak).
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