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1 Canonical Transformations

It is straightforward to transfer coordinate systems using the Lagrangian formulation as
minimization of the action can be done in any coordinate system. However, in the Hamil-
tonian formulation, only some coordinate transformations preserve Hamilton’s equations.
Canonical transformations, defined here as those that preserve the Poisson brackets
or equivalently the symplectic 2-form, also preserve Hamilton’s equations. A search for
conserved quantities and symmetries is equivalent to a search for a nice coordinate system
that preserves Hamilton’s equations.

1.1 Poisson Brackets

Consider a function f(q, p, t) and a Hamiltonian H(p, q) where p, q coordinates and mo-
menta. The time dependence of f

df

dt
=
∂f

∂q
q̇ +

∂f

∂p
ṗ+

∂f

∂t

Using Hamilton’s equations we can write this as

df

dt
=
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
+
∂f

∂t

We can write this short hand with a commutation relation known as the Poisson bracket

df

dt
= {f,H}+

∂f

∂t
(1)

with the Poisson bracket for two functions f, g

{f, g} ≡ ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q

For more than one dimension

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
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and using summation notation we neglect the
∑

symbol.
What are the Poisson brackets of functions equal to the coordinates and momenta,

f(q,p) = qi and g(q,p) = pi? We calculate

{pi, pj} = 0 {qi, qj} = 0 {qi, pj} = δij

where

δij =

{
1 for i = j
0 for i 6= j

Coordinates and momenta resemble an orthogonal basis.
Consider the functions f(q, p) = q and g(q, p) = p. Inserting these functions into

equation 1 we recover Hamilton’s equations in terms of Poisson brackets

q̇ =
∂H

∂p
= {q,H}

ṗ = −∂H
∂q

= {p,H}

The Poisson bracket satisfies the conditions for a Lie algebra. For functions f, g, h,

{{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0

{f, g}+ {g, f} = 0

The first of these is called a Jacobi identity, the second is antisymmetry. In addition they
satisfy another condition known as a Leibnitz type of product rule

{f, gh} = g {f, h}+ {f, g}h

A Lie algebra with this extra rule is called a Poisson algebra.

Remark In what contexts are these extra rules important? These relations give the
Poisson bracket Lie bracket-like constraints. The Leibnitz rule makes the Poisson bracket
behave like a derivative. Infinite dimensional continuous systems with equations of motion
corresponding to partial differential equations can be described with a a Hamiltonian and
a Poisson bracket. However, we might lack canonical coordinates. For example the KdV
equation can be described with a Hamiltonian and Poisson bracket but there isn’t a pair
of canonical coordinates.

1.2 Canonical transformations

A canonical transformation is a transformation from one set of coordinates q,p to a new
one Q(q,p), P (q,p) that satisfies the Poisson brackets

{Pi, Pj} = 0 {Qi, Qj} = 0 {Qi, Pj} = δij (2)
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The above Poisson brackets are computed using derivatives of p, q.
Using x = (q1, q2...., p1, p2, ....pN )

{xi, xj} = ωij

with

ω =

(
0 I
−I 0

)
and I the identity matrix.

Given a Hamiltonian, H(p, q, t), we will show that we can find a new Hamiltonian
K(Q,P, t) such that Hamilton’s equations are obeyed in the new coordinate system.

For a function f(Q(p,q),P(p,q)) using the chain rule and using summation notation

∂f

∂qi
=

∂f

∂Qj

∂Qj
∂qi

+
∂f

∂Pj

∂Pj
∂qi

∂f

∂pi
=

∂f

∂Qj

∂Qj
∂pi

+
∂f

∂Pj

∂Pj
∂pi

The Poisson bracket of f(Q(p,q),P(p,q)) and g(Q(p,q),P(p,q))

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

=

(
∂f

∂Qj

∂Qj
∂qi

+
∂f

∂Pj

∂Pj
∂qi

)(
∂g

∂Qk

∂Qk
∂pi

+
∂g

∂Pk

∂Pk
∂pi

)
−
(
∂f

∂Qj

∂Qj
∂pi

+
∂f

∂Pj

∂Pj
∂pi

)(
∂g

∂Qk

∂Qk
∂qi

+
∂g

∂Pk

∂Pk
∂qi

)
=

∂f

∂Qj

∂g

∂Pk

(
∂Qj
∂qi

∂Pk
∂pi
− ∂Qj
∂pi

∂Pk
∂qi

)
− ∂f

∂Pj

∂g

∂Qk

(
∂Qk
∂qi

∂Pj
∂pi
− ∂Qk

∂pi

∂Pj
∂qi

)
+
∂f

∂Qj

∂g

∂Qk

(
∂Qj
∂qi

∂Qk
∂pi
− ∂Qj
∂pi

∂Qk
∂qi

)
+

∂f

∂Pj

∂g

∂Pk

(
∂Pj
∂qi

∂Pk
∂pi
− ∂Pj
∂pi

∂Pk
∂qi

)
=

∂f

∂Qj

∂g

∂Pk
{Qj , Pk} −

∂f

∂Pj

∂g

∂Qk
{Qk, Pj}

+
∂f

∂Qj

∂g

∂Qk
{Qj , Qk}+

∂f

∂Pj

∂g

∂Pk
{Pj , Pk}

If the new coordinates obey the Poisson brackets in equation 2 (so that the transformation
is canonical) then we can insert these relations into the above equation.

{f, g} =
∂f

∂Qj

∂g

∂Pk
δjk −

∂f

∂Pj

∂g

∂Qk
δjk

=
∂f

∂Qj

∂g

∂Pj
− ∂f

∂Pj

∂g

∂Qj
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This is just the definition of the Poisson bracket but with respect to our new coordinates,
P,Q rather than p, q. If the transformation is canonical then we can compute Poisson
brackets using the new coordinates and momenta. If the coordinate transformation is
canonical (the Poisson brackets of equation 2 are obeyed in the new coordinate system)
then the Poisson bracket can be computed in the new coordinate system

{f, g}|pq = {f, g}|PQ
Above we defined canonical transformations without even specifying a Hamiltonian

function. Given H(q,p), Hamilton’s equations give

q̇ = {q, H}|pq ṗ = {p, H}|pq
and using the q, p coordinates. But this is true for any time independent function including
Q(q,p) and P(q,p) so

Q̇ = {Q, H}|pq Ṗ = {P, H}|pq
and the Poisson bracket is computed using the p, q coordinate system. However if the trans-
formation is canonical then the Poisson brackets can be computed using either coordinate
system. So

Q̇ = {Q, H}|PQ Ṗ = {P, H}|PQ
but now we compute the Poisson bracket with the new coordinates P,Q. Thus the new
Hamiltonian is equivalent to the old Hamiltonian but using the new variables;

K(Q,P) = H (q(Q,P),p(Q,P))

You may notice that there is a term missing from this expression. We will discuss time
dependent transformations below.

1.3 Canonical Transformations are Symplectic

A symplectic transformation S, obeys

J = StJS

where

J ≡
(

0 I
−I 0

)
and St is the transpose of S and I the identity matrix. Consider a canonical transformation
P (p, q), Q(p, q) and the Jacobian matrix

S =


∂Q(q, p)

∂q

∂Q(q, p)

∂p
∂P (q, p)

∂q

∂P (q, p)

∂p

 (3)
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Let us compute StJS

StJS =


∂Q

∂q

∂P

∂q
∂Q

∂p

∂P

∂p

( 0 I
−I 0

)
∂Q

∂q

∂Q

∂p
∂P

∂q

∂P

∂p



=


∂Q

∂q

∂P

∂q
∂Q

∂p

∂P

∂p




∂P

∂q

∂P

∂p

−∂Q
∂q

∂Q

∂p



=


∂Q

∂q

∂P

∂q
− ∂Q

∂q

∂P

∂q

∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
∂Q

∂p

∂P

∂q
− ∂Q

∂q

∂P

∂p

∂Q

∂p

∂P

∂p
− ∂Q

∂p

∂P

∂p


=

(
0 {Q,P}

−{Q,P} 0

)
If the coordinate transformation is canonical and the Poisson brackets are satisfied, then
the transformation is symplectic.

Take a look again at equation 3 for the Jacobian matrix of the coordinate transformation
which we repeat here:

S =


∂Q(q, p)

∂q

∂Q(q, p)

∂p
∂P (q, p)

∂q

∂P (q, p)

∂p


If the Jacobian has determinant of 1 then the transformation is volume preserving. We
compute the determinant

detS =
∂Q(q, p)

∂q

∂P (q, p)

∂p
− ∂Q(q, p)

∂p

∂P (q, p)

∂q

= {Q,P}qp, (4)

When the transformation is canonical, Poisson bracket is 1 and the determinant of the
Jacobian is 1. This means that the transformation is volume preserving in phase space.

Remark It can be useful in numerical integrations to use discrete transformations that are
symplectic. A system that varies continuously with time can be advanced with a discrete
time step. A symplectic transformation can be used to transform the system, across a time
interval, approximating the time dependence of the real system.

1.4 Generating Functions for Canonical Transformations

Not every coordinate transformation is canonical. Furthermore, the requirement that Pois-
son brackets are satisfied does not strongly restrict the transformation.
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In many classical mechanics texts, canonical transformations are introduced with gen-
erating functions. Suppose we start with p, q and refer to these as ‘old’. We want to find
a better set of momenta and coordinates, P,Q. We refer to these as ‘new’. Generating
functions are functions of both new and old coordinates and momenta.

Suppose we take a generating function F2(q, P ) of old coordinates and new momenta
and define

p =
∂F2(q, P )

∂q

Q =
∂F2(q, P )

∂P
. (5)

Really we describe the generating function in terms of p, q or P,Q so what we mean by
F2(q, P ) is F2(q(Q,P ), P ). The function F2 has two arguments so we rewrite equations 5
like this:

p = ∂1F2(q, P )

Q = ∂2F2(q, P ) (6)

where ∂1 is the derivative with respect to the first argument of the function F2(, ), and ∂2
is the derivative with respect to the second argument. Taking the second equation (for Q)
we can write

Q = ∂2F2(q(Q,P ), P )

∂Q

∂Q
= 1 = [∂1∂2F2]

∂q

∂Q
(7)

Taking the equation for p (in equations 6) we can write

p(Q,P ) = ∂1F2(q(Q,P ), P )

∂p

∂Q
= [∂1∂1F2]

∂q

∂Q

∂p

∂P
= [∂1∂1F2]

∂q

∂P
+ ∂1∂2F2

We have computed relations for ∂p
∂Q ,

∂p
∂P ,

∂q
∂Q . We don’t need to compute a relation for ∂q

∂P
because it will cancel out from our next computation.

Take the Poisson bracket and insert the relations for ∂p
∂Q and ∂p

∂P

{q, p} =
∂q

∂Q

∂p

∂P
− ∂q

∂P

∂p

∂Q

=
∂q

∂Q

(
∂1∂1F2

∂q

∂P
+ ∂1∂2F2

)
− ∂q

∂P
∂1∂1F2

∂q

∂Q

=
∂q

∂Q
∂1∂2F2

= 1
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where the last step uses equation 7.
The coordinate transformation is canonical as long as we define the new coordinate

and momenta using equations 5. Similar choices can be made for generating functions
that depend on old and new coordinates, old and new momenta or old momenta and new
coordinates. Traditionally these are denoted F1, F2, F3, F4.

1.4.1 Example canonical transformation - action angle coordinates for the
harmonic oscillator

Given coordinates φ, I we consider new coordinates

q(I, φ) =
√

2I sinφ p(I, φ) =
√

2I cosφ (8)

We check the Poisson bracket

{q, p} =
∂q

∂φ

∂p

∂I
− ∂q

∂I

∂p

∂φ

= cos2 φ+ sin2 φ = 1

verifying that this is a canonical transformation. Note that we need a factor of two within
the square root in equation 8 so that the Poisson bracket gives 1 instead of 1/2.

This is a handy canonical transformation for the harmonic oscillator with Hamiltonian

H(p, q) =
1

2

(
p2 + q2

)
In the coordinates I, φ the Hamiltonian is particularly simple

K(I, φ) = I

This system is said to be in action angle variables as I (the action) is conserved and φ̇ is
constant.

Can we find a generating function that gives this canonical transformation from p, q to
I, φ? Consider the generating function of old momenta, p, and new (φ) coordinates,

F3(p, φ) =
p2

2
tanφ

with

∂F3

∂p
= p tanφ = q

∂F3

∂φ
=

p2

2
sec2 φ = I
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From this we find that
tan2 φ = (q/p)2

or
sec2 φ = tan2 φ+ 1 = (q/p)2 + 1

and

q/p = atanφ

1

2
(q2 + p2) = I

consistent with equation 8.

Figure 1: The radius in phase space for an orbit of the harmonic oscillator is equal to
√

2I
where I is the action variable.

1.4.2 The action variable

Let’s look again at our new coordinate and momentum

q(I, φ) =
√

2I sinφ p(I, φ) =
√

2I cosφ (9)

and the associated Hamiltonian in the old and new coordinates H = p2/2 + q2/2 = I.
Notice that q2 +p2 = 2I. In phase space the radius from the origin is

√
2I. Can we instead

use a coordinate that is actually the radius in phase space of the orbit? We could, but it
would not be a coordinate that is conjugate to the angle φ. The canonical momentum that
is conjugate to φ is I as defined above.

We restore the units using a frequency ω0.

H(p, q) =
p2

2
+ ω2

0

q2

2
(10)
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(taking energy per unit mass). The new momenta and coordinates would satisfy

q(I, φ) =
√

2I/ω0 sinφ p(I, φ) =
√

2Iω0 cosφ. (11)

We insert this into the Hamiltonian to find

H(I, φ) = Iω0

This makes it clearer that we have an action I and an angle φ and that ∂H
∂I = φ̇ is a

frequency ω0.
Notice that H = Iω0 is now independent of the angle φ. The Hamiltonian is said

to be action angle coordinates. Recall that because volume is conserved for Hamiltonian
systems, the area in phase space is conserved. The area of an orbit in phase space for a
closed orbit is

A =

∮
pdq

For the harmonic oscillator with H(I, φ) = Iω0, the area of an orbit is set by I alone. As
the radius of the orbit in phase space is R =

√
2I, the area of an orbit that has action

variable I is

A =

∮
pdq = πR2 = 2πI.

Equivalently

A =

∮
Idφ = 2πI.

This inspires a definition for an action variable for a general system (not just the harmonic
oscillator). If you have a closed orbit, the action variable can be defined as

I ≡ 1

2π

∮
pdq. (12)

Remark We defined canonical transformations as transformations that preserve the Pois-
son brackets and below we will show that an equivalent statement is that they preserve
the symplectic two-form. We did not even mention a Hamiltonian in our definition. Often
you see symplectic transformations defined as those that preserved Hamilton’s equations.
However, Arnold gives an example of a transformation that preserves Hamilton’s equations
and does not preserve the Poisson bracket.

2 Some Geometry

Why introduce mathematical jargon? It is perhaps insightful to reformulate dynamics in
a coordinate-free manor and coordinates can be considered arbitrary or chosen for con-
venience, rather than related to the underlying dynamics. The geometric view aids in
thinking about dynamical problems in a more abstract and general way.
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Consider coordinates p as positions or points on a manifold, M. A manifold is a
topological space where each point has a neighborhood that resembles a Euclidean space
of dimension n. A map to the Euclidean space is called a chart. A collection of charts
is called an atlas. Here we assume that our manifold is differentiable which implies that
nearby charts can be smoothly related to one another. Namely, there are transition maps
from one chart to another that are differentiable.

2.1 The Tangent Bundle

A curve is a map from R (parametrized by time t) to the manifold. On each chart (and
near a point p) this gives at each time a vector in RN . If we have a curve c in the manifold
we can consider its image in the local Euclidean space at point x. The tangents to the
curve at the point p are in the tangent space.

The tangent space at position p we can call TpM. The tangent bundle TM consists of
the manifold M with the collection of all its tangent spaces.

It is convenient to use a coordinate basis to describe vectors in the tangent space, for

example (ex, ey, ez) that is sometimes written
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
.

A trajectory is a curve on the manifold. Given a curve on the manifold (described by
t), the tangent to the curve is q̇. In the Lagrangian formalism the manifold coordinates
are specified by q. The Lagrangian is a function of q (coordinate on the manifold) and q̇
(in the tangent space) and time t (along the curve).

In the Hamiltonian formalism the manifold coordinates are specified by phase space
q,p and curves given as a function of the phase space coordinates. Here q̇ and ṗ are both
vectors in the tangent space.

A flow on the manifold is described by velocities which lie in the tangent space at each
point p on the manifold. A vector field on the manifold generates a flow on the manifold.
We put a vector on each point of the manifold.

It is sometimes useful to keep track of the map (based on a chart) from the manifold to
the Euclidean space φ(p) which gives a point x in Euclidean space RN . The inverse of this
map φ−1(x)→ p gives points on the manifold as a function of positions in RN . A function
on the manifold f(p) then can act effectively in the Euclidean space with f ◦ φ−1(x).

2.1.1 Differential forms and the wedge product

We define vectors as lying in the tangent space TpM. We can write vectors as

V = Vi
∂

∂xi
+ Vj

∂

∂xj
+ Vk

∂

∂xk
.

in three dimensions in terms of coordinates in a chart at a particular position in the
manifold. This is an example of a vector in R3.
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Tangents to a curve give vectors. Curves are parametrized by a distance along a curve
or time.

Another example of a vector is given by a trajectory ṗ, q̇ with

V = q̇
∂

∂q
+ ṗ

∂

∂p
.

This is an example of a vector in phase space.
We can define a cotangent space T∗pM dual to the tangent space. An element in the

cotangent space gives a map from the tangent space to TpM → R. An element in the
cotangent space acts on a vector in the tangent space via a dot product.

For example, a differential of a function f is an example of an element of the cotangent
space. The gradient df ∈ T∗pM and acts on a vector V ∈ TpM in the tangent space giving
a real number

〈df,V〉 = V i ∂f

∂xi
∈ R.

df is called a one form. In three dimensions we can write

df =
∂f

∂xi
dxi +

∂f

∂xj
dxj +

∂f

∂xk
dxk

In a tangent space we have the tangent of a curve. Trajectories on the manifold give
tangent vectors. In the cotangent space we have the gradient of a function.

The directional derivative in the direction of vector A = ai
∂
∂xi

of a function f

ai
∂f

∂xi
= 〈A, df〉

is the gradient of a function f in the direction of vector A. This can be described as the
Lie derivative of a function

LAf = ai
∂f

∂xi
. (13)

One forms are members of the cotangent space at a point p or T∗pM. As the tangent
bundle TM is formed of M and its tangent spaces TqM, the cotangent bundle T∗M is
formed of M and its cotangent spaces T∗pM.

Differential forms can be integrated. A one-form can be integrated along a path with
a sum of the values of the form along a bunch of tangent vectors to the path.

A q form maps q vectors in TpM → R and can be described as sums of products of one
forms, for example

aijkdx
i ⊗ dxj ⊗ dxk

is 3 form.
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Consider two vectors

V = vx
∂

∂x
+ vy

∂

∂y

W = wx
∂

∂x
+ wy

∂

∂y

and the two form ω = dx⊗ dy. We operate on V,W with the two form,

ω(V,W) = vxwy.

Another example. Let ω = dx⊗ dy − 3xdy ⊗ dx.

ω(V,W) = vxwy − 3xvywx.

The wedge product, ∧, of one forms is an antisymmetric sum

dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi

dxi ∧ dxj ∧ dxk = dxi ⊗ dxj ⊗ dxk + dxj ⊗ dxk ⊗ dxi + dxk ⊗ dxi ⊗ dxj

−dxi ⊗ dxk ⊗ dxj − dxj ⊗ dxi ⊗ dxk − dxk ⊗ dxj ⊗ dxi

Another example. Antisymmetry implies dx ∧ dy = −dy ∧ dx and dx ∧ dy ∧ dz =
−dx ∧ dz ∧ dy.

With two form
ω = dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi

we compute
ω(V,W) = viwj − vjwi.

A differential form is an antisymmetric q form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr

Differential forms can be thought of as volume elements (think volume of a parallelpiped
calculated from vectors). The exterior derivative

dω =
1

r!

(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ ... ∧ dxµr

The exterior derivate takes an r differential form and gives back an r+ 1 differential form.
The exterior derivative gives the boundary of a volume element. As the exterior derivative
is antisymmetric

d2ω = 0.
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This is related to the fact that in three dimensions ∇×∇f = 0 and ∇ · ∇ × f = 0.
If ω = wxdx+ wydy then

dω =

(
∂wy
∂x
− ∂wx

∂y

)
dx ∧ dy.

This is reminiscent of the cross product.
The geometric formulation is independent of the coordinate system used in the charts.

The coefficients of a vector or a differential-form transform as a tensor.
A form ω is exact if there is a form θ such that dθ = ω.
A form is closed if dω = 0. Every exact form is closed, as d2θ = 0, but not every closed

form is exact.
The generalized version of Stokes’ theorem relates the integral of a form ω over the

boundary of a region ∂C to the exterior derivative dω and the region C.∫
C
dω =

∫
∂C
ω

Compare the above to Stokes’ theorem in three dimensions∫
A
∇× F · dA =

∫
S

F · dS

where A is a surface bounded by a loop S = ∂A. Stokes’ theorem is also equivalent to
Gaus’ law ∫

V
∇ · FdV =

∫
A

F · dA

where V is a volume with boundary A = ∂V . In three dimensions the exterior derivative
gives ∇× or ∇· depending on the dimension of the object that is being integrated. In
three dimensions dS is a one form, dA is related to a two form and dV is related to a three
form.

2.2 The Symplectic form

The one form
θ = qidp

i

has exterior derivative
ω = dθ = dqi ∧ dpi

which is a two form. A manifold with such a two-form (that is not degenerate) is known
as a symplectic manifold. Since ω is a derivative of θ

dω = d2θ = 0.

14



The symplectic form is non-degenerate and exact. (A form ω is exact if there is a form θ
such that dθ = ω).

What does it mean to be non-degenerate? A two-form maps two vectors, η, ξ to a real
number. For every η 6= 0 there exists a ξ such that ω(η, ξ) 6= 0.

The symplectic form is connected with areas. Consider two vector fields V,W at a
point q,p.

V = vqi
∂

∂qi
+ vpi

∂

∂pi

W = wqi
∂

∂qi
+ wpi

∂

∂pi

ω(V,W) =

(
vqi

∂

∂qi
+ vpi

∂

∂pi

)
dqi
(
wqi

∂

∂qi
+ wpi

∂

∂pi

)
dpi

−
(
vqi

∂

∂qi
+ vpi

∂

∂pi

)
dpi
(
wqi

∂

∂qi
+ wpi

∂

∂pi

)
dqi

= vqiwpi − vpiwqi
For each (qi, pi) pair we have the area of the parallelogram defined by (vqi, wpi) and
(wqi, wpi).

1 The total is the sum of the areas of the n parallelograms. Is this is related
to Liouville’s volume theorem? Yes, as we will show the symplectic form is preserved by
Hamiltonian flows.

Consider the two form ω = dq∧dp in a new coordinate systemQ,P so that q(P,Q), p(P,Q).
We compute

dq =
∂q

∂Q
dQ+

∂q

∂P
dP

dp =
∂p

∂Q
dQ+

∂p

∂P
dP.

Inserting these into ω = dq ∧ dp

ω =

(
∂q

∂Q
dQ+

∂q

∂P
dP

)
∧
(
∂p

∂Q
dQ+

∂p

∂P
dP

)
=

(
∂q

∂Q

∂p

∂P
− ∂q

∂P

∂p

∂Q

)
dQ ∧ dP

= {q, p}|P,Q dQ ∧ dP,

where I have written {q, p}|P,Q as the Poisson brackets computed with P,Q. If the coor-
dinate transformation is canonical then the two form can be written

ω = dQ ∧ dP

Canonical transformations preserve the two form ω.

1If A, B are vectors in 3 dimensions, the area of a parallelogram spanned by these two vectors is |A×B|.
If A,B are on the x, y plane, the z component of the cross product gives the area.
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2.3 Generating Functions Geometrically

Consider p, q and P,Q both canonical sets of coordinates. We can look at the one forms

θ1 = pidqi θ2 = PidQi

Because the two sets of coordinates are canonical, the two form

ω = dθ1 = dθ2 = dpi ∧ dqi = dPi ∧ dQi

Consider
θ1 − θ2 = pidqi − PidQi

Because dpi ∧ dqi = dPi ∧ dQi we know that

d(θ1 − θ2) = 0

If we can find a function F (the generating function) such that

pidqi − PidQi = dF

then we ensure that the coordinate transformation is canonical. By specifying that the
difference θ1 − θ2 is the differential of a function we guarantee that dpi ∧ dqi = dPi ∧ dQi
and so that the transformation is canonical. F serves as our generating function. If we
start with the generating function and then use it to give us the coordinate transformation
then we ensure that the coordinate transformation is canonical.

Let our difference in forms be

pdq − PdQ = dF1(q,Q) =
∂F1(q,Q)

∂q
dq +

∂F1(q,Q)

∂Q
dQ. (14)

We associate

p =
∂F1(q,Q)

∂q
P = −∂F1(q,Q)

∂Q

so equation 14 cancels to zero and the transformation is canonical.
Let

qdp−QdP = dF4(p, P ) =
∂F4(p, P )

∂p
dp+

∂F4(p, P )

∂P
dP.

We associate

q =
∂F4(p, P )

∂p
Q = −∂F4(p, P )

∂P

Let
pdq +QdP = dF2(q, P )

16



The plus sign here arises because

d(pdq +QdP ) = dp ∧ dq + dQ ∧ dP = dp ∧ dq − dP ∧ dQ

and this we would require is zero for the transformation to be canonical.

dF2(q, P ) =
∂F2(q, P )

∂q
dq +

∂F2(q, P )

∂P
dP

giving

p =
∂F2(q, P )

∂p
Q =

∂F2(q, P )

∂P

for a canonical transformation.

Remark The sign of the generating functions can be flipped and the transformation is
still canonical.

Given a transformation Q(q, p) and P (q, p) the transformation is canonical (symplectic)
if one of the following forms is exact

σ1 = pdq − PdQ
σ2 = pdq +QdP

σ3 = qdp+ PdQ

σ4 = qdp−QdP.

For the different related generating functions

∂F1(q,Q)

∂q
= p

∂F1(q,Q)

∂Q
= −P

∂F2(q, P )

∂q
= p

∂F2(q, P )

∂P
= Q

∂F3(p,Q)

∂p
= q

∂F3(p,Q)

∂Q
= P

∂F4(p, P )

∂p
= q

∂F4(p, P )

∂P
= −Q.

2.4 Vectors generate Flows and trajectories

Consider a vector field, X, and a curve on the manifold, σ(t, x), that is a map R×M→M
such that the tangent vector at each point, x, on the curve is X. An integral curve σ(t, x0)
that goes through a point x0 on the manifold at t = 0 has tangent

d

dt
σµ(t, x0)

∣∣∣∣
t=0

= Xµ
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I have used local coordinates. The initial condition σµ(t = 0, x0) = xµ0 . Now instead of
requiring σ to only contain a single curve going through x0 we extend σ so that it includes
curves that go through all the points on the manifold. The map σ is known as a flow
generated by the vector field X.

We can define an exponential function exp(Xt) from M to M so that we can move along
the flow from one point to another, σµ(t, x) = exp(Xt)xµ.

A vector field generates a flow all over the manifold.

2.5 The Hamiltonian flow and the symplectic two-form

The symplectic two-form ω = dq∧dp is a map from two vectors to a real number. Consider
two vectors V,W,

V = vq
∂

∂q
+ vp

∂

∂p

W = wq
∂

∂q
+ wp

∂

∂p

recall that
ω(V,W ) = vqwp − wqvp

Now what if we consider the map only using vector V

ω(V, ?) = vqdp− vpdq (15)

This gives a one-form. In this way the symplectic two-form gives us a way to take a vector
(in the tangent space) and generate a one-form (in the cotangent space) from it. Conversely
using the symplectic form ω, we can take a one-form and construct a vector from it, using
equation 15.

Remark By providing an invertible map between vectors and one-forms, ω serves like the
metric tensor in general relativity or Riemannian geometry. However the map is antisym-
metric rather than symmetric and so it is not a metric.

Recall that by specifying a direction, a vector field generates a flow, or given an initial
condition, a trajectory. We can produces trajectories (q̇, ṗ) from a function (H) using this
map.

Consider the one form associated with a Hamiltonian, H(q, p) and use ω to generate a
vector from it.

dH =
∂H

∂q
dq +

∂H

∂p
dp

= ω(V, ?)

= vqdp− vpdq
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On the second line we have used vector V (as written out in equation 15). The V vector
has components

vq =
∂H

∂p
vp = −∂H

∂q

These are associated with q̇ and ṗ for the flow. Let us define (as Arnold) the vector
generated by dH as IdH. The equations of motion (Hamilton’s equations) are equivalent
to ẋ = IdH In this way, a Hamiltonian flow is generated from the Hamiltonian function.

2.6 Extended Phase space

The statements relating the symplectic two-form to Hamiltonian flows can be illustrated
with the one-form (known as the Poincaré-Cartan integral invariant)

σ1 = pdq −Hdt

in what is known as extended phase space or a R2n+1 space that consists of phase space
(R2n) with addition of time or (p,q, t). The exterior derivative dσ1 is a two form. The
odd dimension implies that there always exists some direction (a vector V )

∃V such that dσ1(V, η) = 0 for all vectors η.

The direction, V , we associate with the equations of motion. Flows along this direction
are also called vortex lines. The exterior derivative

dσ1 = dp ∧ dq − ∂H

∂q
dq ∧ dt− ∂H

∂p
dp ∧ dt (16)

Consider the vector

V = −∂H
∂q

∂

∂p
+
∂H

∂p

∂

∂q
+
∂

∂t

Let us insert this into dσ1

dσ1(V, ∗) = −∂H
∂q

dq − ∂H

∂p
dp (from dp ∧ dq)

+
∂H

∂p
dp+

∂H

∂q
dq (from

∂

∂t
)

−∂H
∂q

∂H

∂p
dt+

∂H

∂q

∂H

∂p
dt

= 0

So our vector V is in fact the direction defining the vortex lines. But look again at the
vector V

V = −∂H
∂q

∂

∂p
+

∂H

∂p

∂

∂q
+

∂

∂t

→ ṗ
∂

∂p
+ q̇

∂

∂q
+

∂

∂t
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Figure 2: Vortex lines are shown in red and form the cylinder boundary. The map J takes
base surface c at time t = 0 to top surface gτ c at t = τ .

The flow generated by vector V satisfies Hamilton’s equations.

2.7 Hamiltonian flows preserve the symplectic two-form

Here we are going to use the generalized Stokes’ theorem in extended phase space to prove
that the symplectic two-form is conserved by a Hamiltonian flow.

Consider a surface region in (p, q) (call this c) and its Hamiltonian flow along t, from
t = 0 to a time t = τ causing a transformation gτ c (see Figure 2). The boundary of the
surface at t = 0 would be ∂c. Boundary at t = τ would be ∂gτ c. Flow in time from t = 0
to τ is created with an operator J . Every point on c is given a trajectory from t = 0→ τ
using J . These trajectories are vortex lines and so have tangent equal to the vector V
such that dσ(V ) = 0. The total volume of the cylinder is Jc. The sides of the cylinder are
covered by J∂c. The boundary of Jc or ∂(Jc) is the sum of the top and lower faces, c and
gτ c, and the sides, J∂c.

The generalized version of Stokes’ theorem gives∫
c
dω =

∫
∂c
ω

The integral of a differential form of a boundary of a region in an orientable manifold ∂c
is equivalent to the integral of the exterior derivative of the form dω in the region c.

One consequence of the generalized version of Stokes’ theorem is that the integral of an
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exact form over the boundary of a region is zero. In other words we apply Stokes’ theorem∫
∂c
dσ =

∫
c
d2σ = 0

where the last step is zero because d2 = 0.
Let us integrate the exterior derivative of dσ1 over the surface of the cylindrical volume

∂(Jc) or ∫
∂(Jc)

dσ1

Because of Stokes’ theorem ∫
∂(Jc)

dσ1 =

∫
Jc
d2σ1 = 0

Now we divide ∂(Jc) into three pieces, the bottom of the cylinder c, the top of the
cylinder gtc and the cylindrical surface J∂c. The sum of these three integrals of dσ must
be zero.

Now we perform this sum for the exact two-form dσ1 with σ1 = pdq−H. Integrating dσ1

on the surface J∂c gives zero because the surface is comprised of vortex lines or null vectors.
Consequently integrating dσ1 on the top and both of the cylinder c and gτ c must give the
same result. On these surfaces the vectors are perpendicular to ∂

∂t so dσ1 = ω = dp ∧ dq
the symplectic two-form (see equation 16) and we find that gt preserves the integral of the
symplectic two-form. Since the symplectic two-form gives the volume in phase space, this
is equivalent to Liouville’s theorem and also implies that a transformations generated by
a Hamiltonian flow are canonical transformations.

Previously we showed that a Hamiltonian flow preserved phase space volume (Liou-
ville’s theorem). Phase space volume conservation can also be written in terms of ω, hence
Liouville’s theorem is equivalent to saying that Hamiltonian flows preserve the two-form
ω. Because ω is preserved by a Hamiltonian flow, the flow also generates canonical trans-
formations between coordinates at any two times.

2.8 The symplectic two-form and the Poisson bracket

We ask, if canonical transformations preserve the Poisson bracket and they preserve the
two-form ω what is the relation between the Poisson bracket and the symplectic two form?

The Poisson bracket takes derivatives of functions.

{g, h} =
∂g

∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

= ∇xg
tJ∇xh

= ω(∇xg,∇xh)
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where x = (q,p) and we consider ∇xg,∇xh as vectors. Here

J =

(
0 I
−I 0

)
and ω = dq ∧ dp is the symplectic two form. The above is true only in a canonical basis
where the two-form provides a direct and trivial way to convert between one-forms and
vectors. Really the gradient of a function should be considered a one-form, not a vector.

What if we write the two-form in a non-canonical basis with

ω = fijdx
i ⊗ dxj

and x variables are functions of p, q a canonical set. Here fij an antisymmetric matrix that
effectively gives the wedge product. Now we use the two-form ω to convert between the
differential forms of g, h and vectors V,W with V = vi ∂

∂xi
and W = wi ∂

∂xi
. We assert

that ω operating on V gives us dg,

ω(V, ?) = dg =
∂g

∂xj
dxj

vifijdx
j =

∂g

∂xj
dxj

vifij =
∂g

∂xj
. (17)

Likewise we do the same for h but in the second location in the two-form

ω(?,W ) = dh =
∂h

∂xj
dxj

wjfjidx
i =

∂h

∂xi
dxi

wjfji =
∂h

∂xi
. (18)

Since the symplectic two-form is not degenerate we can invert the matrix fij . We call
the inverse of the matrix F . It satisfies

F ijfjk = δik.

Both f and F are antisymmetric matrices. We invert the above relations

∂g

∂xj
F jk = vifijF

jk (using eqn 17)

= viδki = vk. (19)

Likewise

wi = F ji
∂h

∂xj
(using eqn 18).
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Now let us compute the two-form on these two vectors

ω(V,W ) =
∂g

∂xj
F jkfkiF

il ∂h

∂xl

=
∂g

∂xj
δjiF

il ∂h

∂xl

=
∂g

∂xi
F il

∂h

∂xl

The expression on the right we recognize as similar to a Poisson bracket. So it makes sense
to define

{g, h} =
∂g

∂xj
F jl

∂h

∂xl

in the non-canonical basis. In this sense we can consider the two-form like an inverse of
the Poisson bracket.

This form of the Poisson bracket is sometimes seen in classical field (continuum) models.

Remark It is possible to construct a Poisson bracket that cannot be converted into a
two-form. For example in 3 dimensions, the Poisson bracket

{f, g} = εijkxk
∂f

∂xi
∂g

∂xj
(20)

cannot be inverted as a three dimensional anti-symmetric matrix has no inverse.

2.8.1 On connection to the Lagrangian

Integrating the one form σ1 = pdq −Hdt is like integrating the Lagrangian

Ldt = (pq̇ −H)dt

So σ1 gives us a way to generate the action for the associated Lagrangian.

2.8.2 Discretized Systems and Symplectic integrators

Symplectic integrators provide maps from phase space to phase space separated by a time
∆t. These are symplectic transformations, preserving phase space volume and the sym-
plectic two-form.
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Figure 3: Vortex lines going through a tilted plane. A two-form can be constructed with
degrees of freedom lying in the tilted plane. Because the vortex lines give no area, this
two-form is equivalent to one at a single time.

Figure 4: Orbits covering a torus. A map can be constructed from the position of the
orbits each time they pass through a plane. This is known as a surface of section and is
another way to create an area preserving map from a Hamiltonian flow in 4-dimensional
phase space. The flow lines are vortex lines and so are null vectors with respect to the
symplectic two-form in extended phase space. On a plane that slices the torus, one piece
of the two form can be set to zero. The remain degrees of freedom (in that plane) give a
two form that is preserved by the map. If the Hamiltonian is time independent, the time
dependent part of the two form is zero. The map is symplectic. Note that the time it takes
the red orbit to start from the green plane and return to it can differ from the time it takes
the blue orbit to start from this plane and return to it.
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2.8.3 Surfaces of section

We can also consider surfaces at an angle in the flow of vortex lines (see Figure 3) and
a two form computed at the p, q on this surface but at different times. We can consider
maps generated from between the times it takes to cross a planar subspace (see Figure 4).
There are a number of ways to generate area or volume preserving maps from Hamiltonian
flows. The key point here is that the vortex lines are flow lines and these are null vectors
with respect to the symplectic form.

The illustration in Figure 3 is useful for constructing surfaces of section for time depen-
dent Hamiltonians. The illustration in Figure 4 is used for constructing surfaces of section
in the restricted 3 body problem.

2.9 The Hamiltonian following a canonical transformation

We defined a canonical transformation as one that satisfied the Poisson brackets or equiva-
lently preserved the symplectic 2-form. We did not require that Hamilton’s equations were
preserved, or even required a Hamiltonian to determine whether a coordinate transforma-
tion was canonical. However we showed that Hamilton’s equations were satisfied using a
new Hamiltonian in the old coordinates. This is true as long as coordinate transformation
is time independent.

What happens if the canonical transformation is time-dependent?
For any function f(p, q, t) recall that

ḟ = {f,H}+
∂f

∂t

Following a time dependent canonical transformation Q(p, q, t), P (q, p, t), (satisfying Pois-
son brackets) we can insert Q or P finding

Q̇ = {Q,H}+
∂Q

∂t
Ṗ = {P,H}+

∂P

∂t

A new Hamiltonian is required so that the new coordinates satisfy Hamilton’s equations.
We need to find a function K such that

Q̇ = {Q,K} Ṗ = {P,K}

Consider an extended phase space defined by q, p, t. We are adding time as an extra
dimension. We can construct a form

θ = pdq −Hdt+QdP +Kdt. (21)

We previously defined a one form

σa = pdq −Hdt
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such that dσa(V, η) = 0 for V giving the Hamiltonian flow from H for all vectors η. We
can similarly define a one form

σb = −QdP −Kdt

such that dσb(V, η) = 0 for V giving Hamiltonian flow from K for all vectors η. This follows
from the same argument given previously in section 2.6 above as d2σb = 0. The one form
from equation 21

θ = σa − σb.

So if dθ = 0 then if Hamiltonian flow for H implies that Hamiltonian flow for K is obeyed.
Let θ = dF2 where F2(q, P, t) is a generating function that now depends on t. Remember

we are now working in extended phase space so

dF2(q, P, t) =
∂F2

∂q
dq +

∂F2

∂P
dP +

∂F2

∂t

We match

p =
∂F2

∂q

Q =
∂F2

∂P

K −H =
∂F2

∂t

With these values our θ = dF2 is exact and the two Poincaré-Cartan invariants dσa,
dσb are the same and so have the same vortex lines and the same Hamiltonian flows.

Thus our new Hamiltonian (and one that by definition satisfies Hamilton’s equations)
is

K = H +
∂F2

∂t
.

Following the same procedure for the other classes of generating functions we find

K = H +
∂F1

∂t

and similarly for F3 and F4 for the other classes of generating functions.

2.10 The Lie derivative

The Lie derivative evaluates the change of a scalar function, vector field or one-form, along
the flow defined by another vector field. This change is coordinate invariant and so the Lie
derivative is defined on any differentiable manifold. Once the Lie derivative is defined on
a function and vector field, the derivative can be extended so is can be evaluated on any
tensor field.
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We express the action of the flow defined by vector field X in terms of coordinates
X = Xµ(x) ∂

∂xµ for a local coordinate map x→ p where p is a point on the manifold. The
Lie derivative of a function f is the same as the directional derivative

LXf(p) = ∇Xf(p(x)) = Xµ∂f(p(x))

∂xµ

How do we compute the Lie derivative of a vector? It may be helpful to compute some
Lie derivatives of functions

LX(LY f) = Xµ ∂

∂xµ

(
Y ν ∂f

∂xν

)
(22)

LY (LXf) = Y µ ∂

∂xµ

(
Xν ∂f

∂xν

)
(23)

(LXLY − LY LX)f =

(
Xµ∂Y

ν

∂xµ
∂

∂xν
− Y µ∂X

ν

∂xµ
∂

∂xν

)
f

=

(
Xµ∂Y

ν

∂xµ
− Y µ∂X

ν

∂xµ

)
∂

∂xν
f (24)

We recognize the last thing as a vector which means we can associate

LXY = (LXLY − LY LX) = [X,Y ] = XY − Y X

giving a vector. Here the vectors operate on each other, for example

XY = Xi ∂

∂xi

(
Y j ∂

∂xj

)
(25)

= Xi∂Y
j

∂xi
∂

∂xj
+XiY j ∂2

∂xi∂xj
(26)

The Lie derivative can also be defined axiomatically, asserting that it commutes with the
exterior derivative and obeys versions of the Leibniz rule.

Another definition of LXY is

LXY =
d

dt
φtXY

∣∣∣∣
t=0

where φtX is the flow caused by vector X.
The Lie derivative LXY of the Y vector field along the direction of the X vector field is

a function of two vector fields. It computes the change of one vector along the direction of
the other. The Lie derivative is not the same as a covariant derivative. Using a covariant
derivative you can compute the change of a basis vector in a particle direction. It is not
necessary to have two vector fields, however you do need to know how to transport the
basis vectors of the coordinate system between neighboring regions of the manifold.
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One we have a derivative of a vector we can take the Lie derivative of a one form
ω = ωidxi and a vector V

〈ω,V〉 = V iωi

LX〈ω,V〉 = 〈LX(ω),V〉+ 〈ω,LXV〉

Xj ∂

∂xj
(
V iωi

)
= 〈LX(ω),V〉+ 〈ω,

(
Xµ∂V

ν

∂xµ
− V µ∂X

ν

∂xµ

)
∂

∂xν
〉

= 〈LX(ω),V〉+ ων
(
Xµ∂V

ν

∂xµ
− V µ∂X

ν

∂xµ

)
〈LX(ω),V〉 = −ωνV µ∂X

ν

∂xµ
−XjV i∂ω

i

∂xj
(27)

We compute

dω =
∂ωi

∂xj
dxj ∧ dxi (28)

We can contract a vector with a two form to get a one form

iXdω = 〈X, dω〉 =

(
Xi∂ω

j

∂xi
−Xj ∂ω

i

∂xj

)
dxj (29)

Note the contraction notation iV ω = 〈V, ω〉 = V iωi. We can also compute

d(iXω) = d〈Xiωi〉 =
∂Xi

∂xj
ωidxj +

∂ωi

∂xj
Xidxj (30)

With some manipulation we can show that the Lie derivative of a one form is consistent
with Cartan’s magic formula or

LX(ω) = iXdω + d(iXω) (31)

and that

LX(ω) =

(
Xb∂ω

a

∂xb
+ ωb

∂Xb

∂xa

)
dxa

3 Examples of Canonical transformations

3.1 Orbits in the plane of a galaxy or around a massive body

The Keplerian problem of a massless particle in orbit about a massive object of mass M
can be written in polar coordinates and restricted to a plane

L(r, θ; ṙ, θ̇) =
1

2
(ṙ2 + r2θ̇2)− V (r)
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where V (r) = −GM/r. The associated momentum are

pr =
∂L
∂ṙ

= ṙ

pθ =
∂L
∂θ̇

= r2θ̇ = L

where L is the angular momentum. We find a Hamiltonian

H(r, θ; pr, L) =
p2r
2

+
L2

2r2
+ V (r) (32)

Because the Hamiltonian is independent of θ, the angular momentum is conserved.
Let us expand this Hamiltonian using y = r −R0 and expand assuming that y � R0.

H(y, θ, pr, L) =
p2r
2

+
L2

2(y +R0)2
+ V (y +R0)

=
p2r
2

+ y

[
V ′(R0)−

L2

R3
0

]
+
y2

2

[
V ′′(R0) +

3L2

R4
0

]
Near a circular orbit the term proportional to y must be zero, otherwise ṙ = ∂H

∂y = is a
constant and r will continue to increases or decrease. The angular momentum that sets
the y term to zero is L = R2

0Ω with Ω = θ̇ and angular rotation rate

Ω(R0) =

√
V ′(R0)

R0
.

We identify

κ2(R0) = V ′′(R0) +
3L2

R4
0

= V ′′(R0) + 3Ω(R0)
2

as the frequency of radial oscillations or the epicyclic frequency.
The above Hamiltonian (equation 32) is useful to study dynamics of stars in the mid-

plane of a galaxy but with a different potential V (r). A circular orbit has velocity vc(r) =√
rV ′(r). Many galaxies have nearly flat rotation curves with vc(r) ∼ vc with vc a constant,

corresponding to a logarithmic potential V (r) = v2c ln r.
Above we used a Lagrangian in cylindrical coordinates to find the Hamiltonian system.

However we could have started with a Hamiltonian in cartesian coordinates

H(x, px; y, py) =
1

2
(p2x + p2y) + V (

√
x2 + y2)

The transformation is not obviously canonical

pr =
pxx

r
+
pyy

r
L = xpy − ypx
r =

√
x2 + y2

θ = atan(y/x)
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however we can check that it is using Poisson brackets. Computing derivatives

∂pr
∂x

= (pxy − pyx)
y

r3/2

∂pr
∂y

= (pyx− pxy)
x

r3/2

We evaluate the Poisson bracket

{pr, L} =
∂pr
∂x

∂L

∂px
− ∂pr
∂px

∂L

∂x
+
∂pr
∂y

∂L

∂py
− ∂pr
∂py

∂L

∂y

= (pxy − pyx)
y

r3/2
(−y)− x

r
py + (pyx− pxy)

x

r3/2
x+

y

r
px

=
L

r
− L

r
= 0

and likewise for the other brackets.

3.2 Epicyclic motion

Orbits in a disk galaxy are nearly circular. The epicylic approximation assumes that the
orbit can be described by a radial oscillation around a circular orbit. In the Keplerian
setting the radial oscillation period is the same as the orbital period. But in the galactic
setting radial oscillations are faster that the rotation and the orbit does not close (see
Figure 5). By setting pr = 0, we can define a function E(L) giving the energy of a circular
orbit and this can be inverted L(E) to give the angular momentum of a circular orbit with
energy E. We can also define a function rc(L) that gives the radius of a circular orbit with
angular momentum L. These are related by

E(L) =
L2

2rc(L)2
+ V (rc(L)) (33)

L = r2c (L)Ω(L)

Ω(L) =

√
V ′(rc(L))

rc(L)
(34)

where Ω(L) is the angular rotation rate θ̇ for the circular orbit with angular momentum L.
Example: For a flat rotation curve what is Ω(L) and rc(L)? For the flat rotation

curve vc = rc(L)Ω(L) is constant. The angular momentum L = rc(L)vc, consequently

rc(L) =
L

vc
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Figure 5: A rosette orbit. The orbit can be described in terms of radial oscillations or
epicycles about a circular orbit.
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and

Ω(L) =
vc

rc(L)
=
v2c
L

The energy

E(L) =
L2

2rc(L)2
+ V (rc) = v2c lnL+ constant

We can consider orbits with angular momentum and energy near those of the circular
orbit. Consider the following generating function that is a function of old momenta (pr, L)
and new coordinates (θr, θnew)

F3(pr, L; θr, θnew) =
p2r

2κ(L)
cot θr − rc(L)pr − Lθnew

The canonical transformation gives

r = −∂F3

∂pr
= rc(L) +

pr
κ(L)

cot θr

Jr =
∂F3

∂θr
= − p2r

2κ(L)
sin−2 θr

θ = −∂F3

∂L
= θnew −

drc(L)

dr
pr +

κ(L)
dL p2r

2κ2(L)
cot θr

Lnew = − ∂F3

∂θnew
= L

We can rewrite this so that old coordinates are written in terms of new ones that can be
directly inserted into the Hamiltonian

r = rc(L) +

√
2Jr
κ(L)

cos θr

pr = −
√

2Jrκ(L) sin θr

L = Lnew

θ = θnew −
drc(L)

dL

√
2Jrκ(L) sin θr +

dκ(L)
dL Jr

2κ(L)
cos(2θr)

We insert these new coordinates into the Hamiltonian

H(r, θ; pr, L) =
p2r
2

+
L2

2r2
+ V (r) (35)
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We temporarily define r = rc(L) + δr with δr =
√

2Jr
κ(L) cos θr and expand to second order

in δr;

H(θr, θnew, Jr, L) = V (rc) +
L2

2rc(L)2
+

(
dV (rc)

dr
− L2

rc(L)3

)
δr

+

(
d2V (rc)

dr2
+

3L2

rc(L)4

)
δr2

2
+ Jrκ(L) sin2 θr (36)

The term dependent on δr cancels due to the definition of rc(L). The term independent of
δr

g0(L) ≡ V (rc(L)) +
L2

2rc(L)2

dg0(L)

dL
= Ω(L) (37)

consistent with equation 34 and the definition of the angular rotation rate Ω(L). Using
our definition for g0(L) and δr the Hamiltonian becomes

H(θr, θnew; Jr, L) = g0(L) + Jrκ(L) sin2 θr +
Jr
κ(L)

(
d2V (rc)

dr2
+

3L2

rc(L)4

)
cos2 θr (38)

We retroactively chose κ(L) so as to make the Hamiltonian independent of the epicyclic
angle θr

κ(L)2 =
d2V (rc)

dr2
+

3L2

rc(L)4
=
d2V (rc(L))

dr2
+ 3Ω2(L) (39)

and the Hamiltonian becomes

H(θr, θnew; Jr, L) = g0(L) + κ(L)Jr (40)

We did this expansion to second order in J
1
2
r . This is equivalent to or can be described

as the epicyclic approximation. The action variable Jr sets the amplitude of radial os-
cillations and the frequency κ(L) is the epicyclic frequency and governs the frequency of
radial oscillations. It is possible to carry out a higher order expansion in Jr (see George
Contopoulos’s paper: Contopoulos G., 1975, ApJ, 201, 566).

It may be useful to manipulate the definitions for L, rc(L),Ω(L) and κ(L) to show that

drc(L)

dL
=

2Ω(L)

κ2(L)rc(L)
(41)

dΩ(L)

dL
=

1

r2c (L)

(
1− 4Ω2(L)

κ2(L)

)
(42)
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And expansion of g0(L) about a particular L value, with L = L0 + l gives

g0(L0 + l) = g0(L0) + Ω(L0)l +

[
1

r2c

(
1− 4Ω2

κ2

)]
L0

l2

2
(43)

The coefficient can also be written

1

2r2c

(
1− 4Ω2

κ2

)∣∣∣∣
L0

=
Ω

rcκ2
dΩ

dr

∣∣∣∣
L0

(44)

so as to compare to coefficients in the appendix by Contopoulos 1975.

3.3 The Jacobi integral

Consider the Hamiltonian

H(r, θ, pr, L) =
p2r
2

+
L2

2r2
+ V (r) + εg(θ − Ωbt)

where ε is small and g(θ − Ωbt) is a perturbation to the potential that is fixed in a frame
rotating with angular rotation rate Ωb. The perturbation is what one would expect for
an oval or bar perturbation, as is found in barred galaxies, which is moving through the
galaxy with a pattern speed or angular rotation rate Ωb. Similarly a planet in a circular
orbit about the Sun can cause a periodic perturbation (with a constant angular rotation
rate) on an asteroid, also in orbit about the Sun. We take a time dependent generating
function of old coordinate θ and new momenta L′

F2(θ, L
′, t) = (θ − Ωbt)L

′

giving new coordinates

L =
∂F2

∂θ
= L′

θnew =
∂F2

∂L′
= θ − Ωbt

The transformation only involves θ, L so we neglect pr, r in the transformation. Because
the generating function is time dependent we must add

∂F2

∂t
= −ΩbL

to the new Hamiltonian. The new Hamiltonian in the new coordinates

K(r.θnew, pr, L
′) = H − ∂F2

∂t

=
p2r
2

+
L2

2r2
− LΩb + V (r) + εg(θnew)

34



We note that the new Hamiltonian is time independent and so is conserved. This conserved
energy, computed in the rotating frame is called the Jacobi integral. It is equivalent to
the Tisserand relation when written in terms of orbital elements in the context of celestial
mechanics (orbital dynamics in a frame rotating with a planet that is in a circular orbit
around the Sun). The Tisserand relation is used to classify comets and estimate the range
of orbital changes that can be caused by gravitational assists.

3.4 The Shearing Sheet

Figure 6: An illustration of a patch of a rotating disc (on left) and how the shearing box
(on right) approximates it. Arrows are shown with respect to motion in the centre of the
disc patch (on left). In this rotating frame a circular orbit would remain fixed at the black
dot. An orbit with zero epicyclic amplitude and located at the centre of the shearing box
(on right) would also remain fixed. The orientation of our coordinate system is shown on
the right. The shearing sheet is described with Hamiltonian in equation 45 and equations
of motion (equations 47). A central particle remains fixed. Particles with no epicyclic
oscillations (in circular orbits) exhibit shear in their horizontal (x) velocities as a function
of y. Often the shearing sheet is simulated with periodic boundary conditions in both x
and y.
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A two-dimensional system in the plane

H(r, θ; pr, L) =
p2r
2

+
L2

2r2
+ V (r)

For a Keplerian system the potential V (r) = −GM/r. In a disk galaxy with a flat rotation
curve V (r) = v2c ln r.

We want to consider motion near a particle that is in a circular orbit with radius R0

and has angular rotation rate Ω0 with

Ω2
0 =

(
1

r

dV

dr

)∣∣∣∣
R0

First let us rescale units so that units of time are in Ω−10 and units of distance are R0.
We want to go into a rotating frame moving with the particle at r = R0 = 1 and has
θ = Ω0t = t. In our rescaled units we can do this using a generating function using old
coordinates and new momenta

F2(θ, r; px, py; t) = (θ − t)(px + 1) + (r − 1)py

giving

x =
∂F2

∂px
= θ − t

y =
∂F2

∂py
= r − 1

L =
∂F2

∂θ
= px + 1

pr =
∂F2

∂r
= py

∂F2

∂t
= −px − 1

Our new Hamiltonian (neglecting constants)

H(x, y; px, py) =
p2y
2

+
(px + 1)2

2(1 + y)2
+ V (1 + y)− px

The Hamiltonian is independent of x so px is a conserved quantity. The Hamiltonian is
time independent so H is constant. There is a fixed point at x = 0, y = 0, px = 0, py = 0.
For small y we can expand

V (1 + y) = V (1) + V ′(1)y + V ′′(1)y2/2
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Recall that Ω2
0 = R−10 V ′(R0) so with our choice of units V ′(1) = 1. Below it will be useful

to write κ2 = V ′′(1) + 3 (usually one writes κ20 = V ′′(R0) + 3Ω2
0 but with Ω0 = R0 = 1 this

simplifies). Expanding the Hamiltonian for small y,

H(x, y; px, py) ≈
p2y
2

+
(px + 1)2

2
(1− 2y + 3y2) + y + V ′′(1)

y2

2
− px

I have have dropped V (1) as it is a constant. We can also drop terms that are higher than
second order in all coordinates and momenta, (dropping terms ∝ p2xy and ∝ pxy

2) giving
us

H(x, y; px, py) ≈
p2y
2

+
p2x
2
− 2pxy +

κ2y2

2
(45)

and I have used κ2 ≡ V ′′(1) + 3 for the epicyclic frequency.
Hamilton’s equations gives

∂H

∂px
= −2y + px = ẋ

∂H

∂py
= py = ẏ

∂H

∂x
= 0 = −ṗx

∂H

∂y
= −2px + κ2y = −ṗy

We can solve for
px = ẋ+ 2y

and because px is conserved
ẍ = −2ẏ

Inserting px = ẋ+ 2y into the expression for ṗy

ÿ = 2ẋ+ (4− κ2)y

For the Keplerian system κ2 = Ω2 = 1

ẍ = −2ẏ

ÿ = 2ẋ+ 3y (46)

With the addition of an additional local potential these are known as Hill’s equations
(and originally derived for orbits near the Moon and usually x and y are interchanged).
But in a system with a different rotation curve (like a disk galaxy)

ẍ = −2ẏ

ÿ = 2ẋ+ (4− κ2)y (47)
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If we added in a local potential W () (that is a function of distance from the origin)
that could be due to a local mass at the origin then the Hamiltonian would look like this

H(x, y; px, py) ≈
p2y
2

+
p2x
2
− 2pxy +

κ2y2

2
+W (

√
x2 + y2) (48)

Going back to the shearing sheet without any extra perturbations

H(x, y; px, py) ≈
p2y
2

+
p2x
2
− 2pxy +

κ2y2

2
(49)

The momentum px sets the mean y value about which y oscillates. The oscillation frequency
for y (radial) oscillations is the epicylic frequency κ and it’s independent of the mean value
of y. The angular rotation rate (here ẋ) is set by px and this sets the mean y value. We
can look for solutions that look like y = y0 + A cos(κt + φ0) with phase φ0. Conservation
of px implies that we can take

ẋ = ẋ0 − 2A cos(κt+ φ0) (50)

with ẋ0 a constant. By subbing into equation 47 this gives

ẋ0 =
1

2
(κ2 − 4)y0. (51)

This is the velocity shear. For κ = 1 (Keplerian rotation) we recover the expected factor
of 3/2.

It may be useful to write the equations of motion

y = y0 +A cos(κt+ φ0) (52)

x = x0 +
1

2
(κ2 − 4)y0t−

2A

κ
sin(κt+ φ0) (53)

ẋ =
1

2
(κ2 − 4)y0 − 2A cos(κt+ φ0) (54)

ẏ = −Aκ sin(κt+ φ0). (55)

We can write the above equations in terms of a guiding center xg, yg for the epicyclic motion

y = yg +A cos(κt+ φ0) (56)

x = xg −
2A

κ
sin(κt+ φ0) (57)

with

yg = y0 (58)

xg = x0 +
1

2
(κ2 − 4)y0t. (59)
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We can solve for the guiding centers in terms of current positions and velocities

yg = 4y +
2vx
κ2

(60)

xg = x− 2vy
κ2

(61)

with vx = ẋ and vy = ẏ. We can solve for the epicyclic amplitude

A cos(κt+ φ0) = (y − yg) (62)

A sin(κt+ φ0) = −1

2
κ(x− xg) (63)

As there is a fixed point at x = 0, y = 0, px = 0, py = 0 the Hamiltonian (equation 49)
can be written in the form

H =
1

2
xMx

with M the Hessian matrix and ẋ = ωMx and ẍ = (ωM)2x. As H is second order in
all coordinates, M contains no variables (is just constants), conserved quantities can be
identified from zero value eigenvalues of ωM and frequencies of oscillation from eigenvalues
of (ωM)2.

The Hamiltonian is independent of x (giving us a conserved quantity px). An associated
Lagrangian would be independent of x. That means in a simulation we can change x of a
particle and the equations of motion will not change. That means in a simulation, periodic
boundary conditions in x would not change the equation of motion (equations 47).

There is another symmetry in the equations of motion (is this because the Jacobi
integral is conserved in the rotating frame?)

ẋ → ẋ+ ε
(κ2 − 4)

2
y → y + ε

This symmetry is exploited in simulations so that the y boundary condition can be periodic
also.

If we are simulating with the Hamiltonian system then we are change momenta and
coordinates rather than velocities and coordinates. Equations of motion are

ẋ = px − 2y

ẏ = py

ṗx = 0

ṗy = 2px − κ2y

Consider changing y by δy but not affecting any accelerations. To maintain ṗy we require
that

δpx =
κ2

2
δy
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The acceleration in x is ẍ = ṗx − 2py is zero as long as we don’t change py. How does this
transformation affect ẋ?

δẋ = δpx − 2δy =
1

2
(κ2 − 4)δy

and this is equivalent to the transformation given above. In terms of momenta and coor-
dinates the transformation is

y → y + ε

px → px + ε
κ2

2

As the system has two independent conserved quantities (H, px), without any additional
perturbations the system is integrable, and this is expected as this system is equivalent to
the epicyclic approximation. The shearing sheet, because it is non-trivial, integrable and
can be simulated with periodic boundary conditions is a nice place for particle integrations
(see recent work by Hanno Rein and collaborators, and including short range interactions
between particles).

4 Symmetries and Conserved Quantities

4.1 Functions that commute with the Hamiltonian

Recall that for a function f(p, q, t)

ḟ = {f,H}+
∂f

∂t

If the Poisson bracket
{f,H} = 0 (64)

and ∂f
∂t = 0 then f is a conserved quantity.

Consider the gradient of a function on p, q or with one-form df = ∂f
∂q dq+ ∂f

∂pdq. We can
use the symplectic form to generate a flow or vectors V such that ω(V, ?) = df . In this way
f generates a direction in phase space or a tangent vector. The Hamiltonian generates a
flow. The function f also generates a flow. The function f corresponding to a conserved
quantity is also one that commutes with H and generates a flow that commutes with the
flow generated by H.

Using x = (q,p) and ∇ = (∂q, ∂p) recall that we could write the equations of motion
as

ẋ = ω∇H

where ω is the matrix made up of a positive and negative identity matrix

ω =

(
0 I
−I 0

)
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Using gradients it is possible to rewrite equation 64 as

{f,H} = ∇f tω∇H = 0

Using the equations of motion
∇f · ẋ = 0

A conserved quantity is one that has a gradient (in phase space) perpendicular to the
direction of motion. If there are many possible such directions (there are many conserved
quantities) then the orbits must be of low dimension.

The Hamiltonian formalism relates flows that commute with the Hamiltonian flow with
conserved quantities.

4.2 Noether’s theorem

Noether’s theorem relates coordinate symmetries of the Lagrangian with a conserved quan-
tity. Consider a Lagrangian L(q, q̇, t) and a transformation of the coordinates

qs = h(s, q)

with qs=0 = h(0, q) and s a continuous parameter. We require that the transformed time
derivative

q̇s =
d

dt
qs

so that h transforms both q and q̇ consistently.
The map h is a symmetry of the Lagrangian when

L(qs, q̇s, t) = L(q, q̇, t)

The Lagrangian cannot depend on s so

∂L(qs, q̇s, t)

∂s

∣∣∣∣
s=0

= 0

Using the chain rule

∂L
∂s

=
∂L
∂q

∂qs
∂s

+
∂L
∂q̇

∂q̇s
∂s

(65)

We can write
∂q̇s
∂s

=
d

dt

∂qs
∂s

(66)

and using Lagrange’s equation we can replace ∂L
∂q with d

dt
∂L
∂q̇ . These inserted into equation

65 give
∂L
∂s

=

(
d

dt

∂L
∂q̇

)
dqs
ds

+
∂L
∂q̇

(
d

dt

∂qs
∂s

)
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and
∂L
∂s

∣∣∣∣
s=0

=
d

dt

[
∂L
∂q̇

∂qs
∂s

]∣∣∣∣
s=0

= 0.

Hence we have a conserved quantity

I =
∂L
∂q̇

∂qs
∂s

∣∣∣∣
s=0

or

I =
∂L
∂q̇i

∂qi,s
∂s

∣∣∣∣
s=0

using summation notation and in more than one dimension.
Note: Rather than conserving L we should really be thinking about conserving the

action. In this case we should be considering infinitesimals in time and end points.
The Lagrangian formalism relates a symmetry of the Lagrangian to a conserved quan-

tity.
In the Hamiltonian context, we use the symplectic two form and a conserved quantity

(here a function) to generate a vector and so a flow in phase space. This flow commutes
with the Hamiltonian flow.

4.3 Integrability

A time independent Hamiltonian with N degrees of freedom is said to be integrable if N
smooth independent functions Ii can be found that

{Ii, H} = 0

that are conserved quantities and
{Ii, Ij} = 0

are in involution. The reason that the constants should be smooth and independent is that
the equations Ii(q,p) = ci , where the ci’s are constants, must define N different surfaces
of dimension 2N − 1 in the 2N-dimensional phase space. If the conserved quantities are in
involution then they can be used as canonical momenta.

For example, consider a 4 dimensional phase space with a time independent Hamilto-
nian. An orbit is a trajectory in 4 dimensional phase space. Once we specify the energy
(Hamiltonian) then there is a constraint on the orbit and the orbit must wander in a 3-
dimensional subspace. If we specify an additional conserved quantity then the orbit must
wander in a 2 dimensional subspace. At this point we say the system is integrable. The
orbit could be a lower dimensional object if there are additional conserved quantities. A
circular orbit in the plane of an axisymmetric galaxy is a one dimensional object (points
only a function of angle). Epicyclic motion near the circular orbit covers a 2-dimensional
surface (is a torus). I can describe it in terms of two angles given angular momentum and
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epicyclic action variable. This system has two conserved quantities (energy and angular
momentum) so is integrable. If the potential is proportional to 1/r (Keplerian setting)
then there is an additional conserved quantity (Runge-Lunz vector) and every orbit is one
dimensional (an ellipse) instead of a 2-dimensional (torus). Systems with extra conserved
quantities (past what is needed to make them integrable) are known as superintegrable.
The Keplerian system is maximally superintegrable as there are 5 conserved quantities for
every orbit in 6 dimensional phase space.

Liouville integrability means there exists a maximal set of Poisson commuting invariants
(i.e., functions on the phase space whose Poisson brackets with the Hamiltonian of the
system, and with each other, vanish).

Locally there could be a complete set of conserved quantities and it might be possible
to construct canonical transformations that give you a Hamiltonian purely in terms of
conserved quantities. But it might not be possible to find a complete set the covers the
entire manifold (in the Liouville sense of integrability).

Often we call a system integrable if the dimension covered by orbits is low. For example
in a 4 dimensional phase space if there are 2 (non-degenerate) conserved quantities (one
of them could be the Hamiltonian itself). Orbits are in a 4 dimensional space, and two
conserved quantities drops the dimension by 2 so orbits cover a surface. They are like tori.
If the system had only a single conserved quantity (like energy) we could make a surface
of section and find area filling orbits that corresponded to orbits filling a 3 dimensional
volume. Periodic orbits would be fixed points in a surface of section and these would be 1
dimensional.
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