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1 Mechanical constraints

1.1 Lagrangian multipliers

The problem is to maximize a function f(x, y) subject to a constraint g(x, y) = 0. Define

L(x, y, λ) = f(x, y)− λg(x, y).
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This Lagrangian is a function of coordinates only. Solve

∂L

∂x
=
∂f

∂x
− λ∂g

∂x
= 0 (1)

∂L

∂y
=
∂f

∂y
− λ∂g

∂y
= 0 (2)

∂L

∂λ
= g(x, y) = 0. (3)

The first two of these equations implies that the xy gradients ∇f = (∂f∂x ,
∂f
∂y ) is in the same

direction as ∇g (see Figure 1).
A solution to these equations can give a local maximum or minimum. The result may

not be a global maximum or minimum.

Figure 1: Maximization of f(x, y) with the constraint g(x, y) = c occurs where ∇f ∝ ∇g.

1.2 Holonomic constraints

The adjective holonomic is from Greek, meaning ‘whole’. For constraints of a mechanical
system holonomic means expressible as a function of the coordinates and time. In differ-
ential geometry holonomy has to do with how a quantity is changed after it is transported
about a loop. In physics non-holonomic is used to describe a system with path dependent
dynamics or state.
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A set of holonomic constraints for a classical system with equations of motion gener-
ated by a Lagrangian are a set of functions

fk(x, t) = 0. (4)

Here k is an index for each constraint function. The constraints only depend on coordinates,
not velocities.

An example is motion of a particle in R3 that is constrained to lie on a sphere. The
constraint is a single function,

f(x, y, z) = x2 + y2 + z2 −R2 = 0

where R is the radius of the sphere. A dynamical system with holonomic constraints is
called holonomic.

We consider a trajectory x(t), and take the time derivative of f(x) = 0 (independent
of time)

df

dt
= ∇f · v = 0. (5)

A time independent constraint automatically gives velocity perpendicular to ∇f .
The Newtonian equation of motion is

mẍ = F + C (6)

where F is an external force and C(x, t) is a force that is caused by the constraint. A
single constraint in three dimensions describes a two-dimensional surface. With a single
constraint in three dimensions, there are three unknown components of constraint force C
and this does not give enough information to determine all three of them. We can specify
that the constraint force is normal to the surface

C = λ∇f(x). (7)

With the motion restricted to f(x, t) = 0, the motion v = ẋ must be perpendicular to
∇f(x). This means that

C · v = 0.

The constraint force is always perpendicular to the direction of motion, and the constraint
does no work on the system.

With a Lagrangian, K constraints and a Newtonian system with potential U we can
modify the Lagrangian in the absence of constraints to include the constraints;

L(ẋ,x, t) =
ẋ2

2
− U(x) +

∑
k

λkf
k(x).

Lagrange’s equations are consistent with the Newtonian equation of motion (equation 6).
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This can be solved similar to the Lagrangian multiplier problem described above by
minimizing the action

S(γ) =

∫
L̃(ẋ,x, t,λ)dt (8)

with Lagrangian

L̃(ẋ,x, t,λ) = L(ẋ,x, t) +
∑
k

λkf
k(x) (9)

and treating the λ as Lagrange multipliers. The equations of motion (derived from L̃) are

d

dt

∂L(ẋ,x, t)

∂ẋ
=
∂L(ẋ,x, t)

∂x
+
∑
k

λk
∂fk

∂x
(10)

fk(x) = 0 (11)

This is true for a general, not just Newtonian, Lagrangian L with holonomic constraints.
We interpret

Fk = λk
∂fk

∂x

as the constraint forces. As we will see below, these could include non-conservative forces.

1.3 Externally applied forces

Lagrange’s equations are modified with

d

dt

∂L

∂q̇
− ∂L

∂q
= Fext (12)

where Fext is a sum of externally applied forces. A Lagrangian system can be modified to
include external forces by adding them directly to Lagrange’s equations.

1.4 Example of holonomic constraints: a disk on an inclined plane

A cylinder of radius a rolls without slipping down a plane inclined at an angle θ to the
horizontal. The distance x represents the displacement of the center of mass of the cylinder
parallel to the surface of the plane, and φ represent the angle of rotation of the cylinder
about its symmetry axis. Rolling without slipping implies that x and φ obey the constraint

f(x, φ) = x− aφ = 0.

The Lagrangian without constraints is

L(x, φ, ẋ, φ̇, t) =
1

2
mẋ2 +

1

2
Iφ̇2 +mgx sin θ (13)
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Figure 2: A disk rolling without slipping down an inclined plane.

where m, I, g are the mass of the disk, its moment of inertia and the acceleration due to
gravity. With the constraint we add

L(x, φ, ẋ, φ̇, t, λ) =
1

2
mẋ2 +

1

2
Iφ̇2 +mgx sin θ + λ(x− aφ). (14)

Lagrange’s equation with the Lagrange multiplier λ give

d

dt

∂L

∂ẋ
=
∂L

∂x
+ λ

∂f

∂x
mẍ = mg sin θ + λ

d

dt

∂L

∂φ̇
=
∂L

∂φ
+ λ

∂f

∂φ

Iφ̈ = −λa
∂L

∂λ
= x− aφ = 0.

Note that we solve without assuming that λ is constant in time. The solution satisfies

ẍ =
g sin θ

1 + I/(ma2)
= aφ̈

λ = − mg sin θ

1 + (ma2)/I
. (15)
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As ẍ, φ̈ are constants, their initial values and velocities determine the solutions at later
times. It happens that λ is time independent! The constraint forces are

Fx = λ
∂f

∂x
=

mg sin θ

1 + (ma2)/I

Fφ = λ
∂f

∂φ
= − mga sin θ

1 + (ma2)/I
. (16)

The force Fx arises from friction from the surface. The force Fφ arises from the torque on
the cylinder, again due to friction on the surface, keeping the disk rolling without slipping.

Is there a Hamiltonian view for this problem? In the Lagrangian view point, the
Lagrange multiplier λ can be considered an extra coordinate. The Lagrangian does not
depend on λ̇. Because the Lagrangian does not depend on λ̇ there cannot be a momentum
associated with pλ = ∂L

∂λ̇
. However this Hamiltonian

H(px, pφ;x, φ;λ) =
p2x
2m

+
p2φ
2I
−mgx sin θ − λ(x− aφ) (17)

gives

∂H

∂px
= ẋ =

px
m

∂H

∂pφ
= φ̇ =

pφ
I

−∂H
∂x

= ṗx = mg sin θ + λ = mẍ

−∂H
∂φ

= ṗφ = −aλ = Iφ̈. (18)

These are the same equations of motion as derived with the Lagrangian viewpoint, but in
order to find λ(t) we must include the constraint

∂H

∂λ
= x− aφ = 0. (19)

This restricts solutions to a submanifold. The constraint is a conserved quantity.

1.5 Non-holonomic constraints

Holonomic constraints can be expressed using a differential form. With a constraint
f(q, t) = 0,

df =
∑
i

∂f

∂qi
dqi +

∂f

∂t
dt.
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Consider k constraints that depend on the velocities,

hk(q, q̇) = 0.

If these are linear in the velocities then we can write the constraints as∑
i

gki (q)q̇i = gk(q) · q̇ = 0 (20)

If we can find functions fkj (q) such that

∂fki (q)

∂qi
= gki (q) (21)

then equation 20 can be written as
dfk(q) = 0 (22)

or
fk(q)− constant = 0 (23)

Constraints in the form of equation 20 that can be written like equation 23 are holonomic,
otherwise they are non-holonomic. Not all constraints that are linear in velocities are
holonomic.

1.5.1 Lagrange-d’Alembert Principle

Suppose we have a set of k non-holonomic linear and time independent constraints

akj (q)q̇j = ak(q) · q̇ = 0. (24)

The set of forces that are exerted due to the constraints are represented by ak. The above
constraint equation is equivalent to assuming that constraint forces do no work. Note
that the functions ajk(q) do not depend on velocities. The dynamic non-holonomic or the
Lagrange-d’Alembert equations of motion are

d

dt

∂L

∂q̇
− ∂L

∂q
=
∑
k

λkak. (25)

We identify Fk = λka
k with the k constraint forces.

Energy is conserved for time independent non-holonomic systems. The energy is

E(q, q̇) =
∂L(q, q̇)

∂q̇
q̇− L(q, q̇)
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If we take the time derivative of this we find that

Ė =

(
d

dt

∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈− ∂L

∂q
q̇− ∂L

∂q̇
q̈

= λka
k · q̇ (26)

and on the second line I have used equation 25. This vanishes according to our definition
for the constraints (equation 24) so Ė = 0.

The system can be described in Hamiltonian viewpoint with Hamiltonian and con-
straints in phase space

H(p,q;λ) = pq̇− L(q, q̇) + λja
k(q) · q̇ (27)

ak(q) · q̇ = 0. (28)

where q̇(p,q) follows from the Legendre transformation used to construct the Hamiltonian
from a Lagrangian.

1.5.2 Some subtleties

The Lagrange-d’Alembert Principle is consistent with Hamilton’s variational principle if
path displacements are assumed to satisfy the constraints or∑

j

akj δqj = 0

on the path. Only paths that satisfy the constraints are allowed when minimizing the path
to derive the equations of motion.

Instead one could use Lagrange multipliers with the Lagrangian, namely

L̃(q, q̇,λ) = L(q, q̇) +
∑
k

∑
j

λka
k
j q̇j .

Then the Euler-Lagrange equations are computed from this modified Lagrangian. Note
the multipliers λk are time dependent. When this is done, you get what is called varia-
tional non-holonomic equations or vakonomic equations. Vakonomic is short for variational
axiomatic kind as coined by Kozlov.

The two procedures give different equations of motion. With the dynamic Lagrange-
d’Alembert equations, constraints are imposed on the variations, whereas in the variational
problem, the constraints are imposed on the velocity vectors of the class of allowable curves.
Why should the force vectors exactly arrange themselves to annihilate virtual displacements
so that only paths that satisfy the constraints are possible?

Which viewpoint is correct? There is a consensus in the mechanics community (studying
things like interconnected mechanical bodies) that Lagrange-d’Alembert equations, derived
from considering forces, is correct. However, the variational viewpoint is appropriate to
study optimal control problems.
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1.5.3 Example of a system with non-holonomic constraints, the Rolling Disk

Figure 3: Geometry of a rolling disk. The disk rolls without slipping. This is an example
of a dynamical system with non-holonomic constraints.

An example of a dissipation-free system is a vertically oriented disk that roles without
slipping. The coordinate space is four dimensional q = (x, y, φ, θ). Here x, y is the position
on the horizontal xy plane where the disk touches the plane; see Figure 3. The angle φ
gives the orientation of the disk and determines which way the disk rolls. The angle θ gives
the rotation angle of the disk. The constraints (rolling without slipping) can be written as

ẋ−R cosφ θ̇ = 0

ẏ −R sinφ θ̇ = 0. (29)

We can write our two constraints (equations 29) as

a1 · (ẋ, ẏ, φ̇, θ̇) = 0 a1 = (1, 0, 0,−R cosφ) (30)

a2 · (ẋ, ẏ, φ̇, θ̇) = 0 a2 = (0, 1, 0,−R sinφ). (31)

The constraints are linear in velocities. The constraint equations cannot be written as a
one form so they are nonholonomic.

The Lagrangian

L(x, y, φ, θ, ẋ, ẏ, φ̇, θ̇) =
m

2
(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jφ̇2 (32)

where I is the disk’s moment of inertia about the disk’s minor axis, and J is the moment
of inertia about an axis in the plane of the disk.
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In addition to constraints we consider two controls. One control allows us to steer the
disk (change φ), the other that affects the roll angle (θ). We can treat these two controls
as external forces. The equations of motion with q = (x, y, φ, θ), these two controls and
the two constraints are

d

dt

∂L

∂q̇
= uφf

φ + uθf
θ + λ1a1 + λ2a2 (33)

fφ = (0, 0, 1, 0), f θ = (0, 0, 0, 1) (34)

∂L

∂q̇
= (mẋ,mẏ, Jφ̇, Iθ̇) (35)

where λ1, λ2 are Lagrange multipliers from each constraint and f θ, fφ are the directions of
the external forces from our controls. The functions uφ, uθ specify how strongly we apply
the two control forces. The resulting equations of motion, including the two constraints
and the two controls, are

Jφ̈ = uφ

(I +mR2)θ̈ = uθ

ẋ = R cosφ θ̇

ẏ = R sinφ θ̇. (36)

The first two equations are independent of x, y. We can solve for φ, θ, from their initial
conditions and from the controls. Then afterwards the variables x, y can be updated from
the third and fourth equations.

Without the control forces, φ̇, θ̇ are constant frequencies. With uφ = uθ = 0 the
solution is

φ = ω0t+ φ0

θ = Ω0t+ θ0 (37)

where ω0,Ω0, φ0, θ0 are set from initial conditions and the solutions for x, y follow from
equations 36,

x =
Ω0

ω0
R sin(ω0t+ φ0) + x0

y = −Ω0

ω0
R cos(ω0t+ φ0) + y0. (38)

1.6 The Knife Edge

The Lagrangian for a knife edge skating down an inclined plane is

L(x, y, φ, ẋ, ẏ, φ̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
Jφ̇2 +mgx sinα (39)
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Figure 4: Motion of a knife on an inclined plane. The plane is inclined at angle α. The
knife moves in the direction set by the orientation of its edge. This direction is set by angle
φ. The knife touches the plane at position x, y.

with holonomic constraint
ẋ sinφ− ẏ cosφ. (40)

Here g is gravity and J is the moment if inertia about a vertical axis through the contact
point (x, y). The angle α denotes the inclination of the plane and φ the orientation of the
knife edge on the plane.

The system cannot be solved explicitly in general. But it can be solved with initial
conditions x = ẋ = y = ẏ = 0 and φ̇ = ω. The initial condition is rotating but not sliding.
The non-holonomic case gives a cycloid motion but no sliding whereas the variational case
gives sliding and oscillating solution.

1.7 Hamiltonian Formalism with Constraints

Suppose we have a Hamiltonian system with 2N dimensions H(p,q). The equations of
motion in phase space are given by Hamilton’s equations. We can restrict the phase space
to a sub-manifold. What are the equations of motion? We define the sub-manifold with k
constraint functions of phase space

φk(p,q) = 0 (41)
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We can think of the problem as adding Lagrange multipliers to an action in phase space,
on a path γ that gives p(t),q(t)

S(γ) =

∫
(pq̇−H(p,q)−

∑
k

λkφk(p,q) dt.

Equations of motion minimize the action S and at the same time obey the constraints.
The constraints essentially modify the Hamiltonian

H̃(p,q) = H(p,q) +
∑
k

λkφk(p,q) (42)

giving equations of motion

q̇ =
∂H̃

∂p
=
∂H

∂p
+
∑
k

λk
∂φk
∂p

ṗ = − ∂̃̃H
∂q

= −∂H
∂q
−
∑
k

λk
∂φk
∂q

. (43)

To maintain a trajectory on the sub-manifold we require that

φ̇k =
∂φk
∂q

q̇ +
∂φk
∂p

ṗ = 0 (44)

Inserting equation 43 for ṗ and q̇ we find

φ̇k =
∂φk
∂q

∂H

∂p
− ∂φk

∂p

∂H

∂q
+
∂φk
∂q

∑
j

λj
∂φj
∂p
− ∂φk

∂p

∑
j

λj
∂φj
∂q

= 0 (45)

= {φk, H}+
∑
j

λj {φk, φj} = 0. (46)

If the matrix of Poisson brackets {φk, φj} is non singular then equation 46 can be inverted
to uniquely give λ as a function of p,q.

We take cij to be the inverse of {φk, φj} so that cij {φj , φk} = δik gives the identity
matrix. It is possible to define a new Poisson bracket in terms of the old one

{F1, F2}′ = {F1, F2}+
∑
ij

{φi, F1} cij {φj , F2} (47)

This gives a new Poisson bracket that is satisfied in the sub-manifold. We think about
the constraint as giving a dimensional reduction. Complications arise if the number of
constraints is odd as the sub-manifold must be even dimension for it to have symplectic
dynamics. The dimension of the sub-manifold depends on the number of independent
constraints.
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We can generate the equations of motion with a new Poisson bracket, so we don’t even
need the original Hamiltonian. The Poisson bracket can replace the Hamiltonian, though
the original Hamiltonian, if time independent, is conserved and it may be useful to refer
to it as conserved quantity.

Figure 5: For falling cats. The center of mass is assumed to be at the origin. The cat
is modeled with an additional three masses, one at the hind feet, the other at the front
feet and the third one at the head. The three masses are connect with massless stiff rods.
Body deformation space is described by α, β but body orientation with θ. By increasing α
then β, then decreasing α then decreasing β, the cat can return to its original body shape.
However θ will not be the same. The cat’s orientation is changed by this series of body
deformations.

1.8 A Falling Cat

Consider a two dimensional cat in the xy plane that is in the air. We neglect gravitational
acceleration as the cat falls and assume that the cat has no angular momentum. The center
of mass is at the origin; see Figure 5. The hind legs are at x1, y1. We assume that they
are a distance R from the center of mass. The head is at x2, y2 and is a distance R from
the center of mass. The right legs are at x3, y3 and are a distance R from the head. Using
the angles θ, α, β as shown in Figure 5 the positions of each mass,

(x1, y1) = (R cos θ,R sin θ)

(x2, y2) = (R cos(α+ θ), R sin(α+ θ))

(x3, y3) = (R cos(α+ θ) +R cos(α+ β + θ), R sin(α+ θ) +R sin(α+ β + θ)) (48)
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A constraint is that the z-component of angular momentum is conserved and we set it to
zero assuming that the cat is initially not rotating

L =
∑
i

mi

(
xi
dyi
dt
− yi

dxi
dt

)
= 0. (49)

Multiplying by dt we find ∑
i

(xidyi − yidxi) = 0.

It’s a non-holonomic constraint. Equations 48 when differentiated and the constraint on
angular momentum are consistent with

(4 + 2 cosβ)dθ + (3 + 2 cosβ)dα+ (1 + cosβ)dβ = 0. (50)

This equation can be inverted with

dθ = −Aα(α, β)dα−Aβ(α, β)dβ

Aα(α, β) =
3 + 2 cosβ

4 + 2 cosβ

Aβ(α, β) =
1 + cosβ

4 + 2 cosβ
(51)

Because we can get changes in θ from changes in α, β we can describe the shape space
with α, β alone. The configuration space for α, β are a torus as they are two angles. The
angle θ describes the overall orientation of the cat. While the cat is falling it can twist
its legs by changing α, β. By a series of transformations, it can change its orientation and
land on its feet even if it originally was falling with its feet upward.

We can define a one form in α, β space,

ω = Aαdα+Aβdβ = −dθ. (52)

Its derivative

dω =

(
∂Aβ
∂α
−
∂Aβ
∂β

)
dα ∧ dβ (53)

Consider moving on a loop γ in α, β space. Along this loop path, dθ is given by
equations 51. We can integrate

∆θ =

∮
γ
dθ =

∮
γ
−ω.

Here we are integrating on a path α(t), β(t). Using Stoke’s theorem this integral is equal
to

∆θ =

∫
D
−dω
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where D is the area inside the loop. As dω integrated in an area is not necessarily zero, a
loop in α, β space can give a change in the orientation angle θ.

A can be called a vector potential or a connection. The two form dω can be called a
curvature tensor.

Note: conservation of angular momentum can be considered a non-holonomic con-
straint, however it is an ideal constraint as it does no work.

In terms of infinitesimal transformations, a small change in α while fixing β is accom-
plished by this operator

Lα = Aα∂θ + ∂α

Likewise a small change in β while fixing β is accomplished by this operator

Lβ = Aβ∂θ + ∂β

Computing the commutators of these

[Lα, Lβ] = (∂αAβ − ∂βAα)∂θ

Going around a small loop in α, β space gives a change in the direction of ∂θ. And we
recognize the commutator as the curvature in equation 53.

We can construct a mechanical connection

Γ = (Aαdα+Aβdβ − dθ)∂θ (54)

which projects like this; ΓLα = 0, ΓLβ = 0, ΓLθ = ∂θ. Taking dΓ and projecting onto the
horizontal subspace, we again get the curvature in equation 53.

Figure 6: Elroy’s Beanie is a nice example illustrating geometric phase and flat mechanical
connection. Assuming angular momentum conservation, a full rotation in ψ of the inner
oval with respect to the outer one, gives a non-zero change in ∆θ1, the orientation of the
outer oval.
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1.9 Elroy’s Beanie

We consider two oval solid bodies connected with a pivot point at their center of mass,
see Figure 6. The angle of the outer oval body, with moment of inertia I1 is oriented with
respect to the inertial frame with angle θ1. The inner oval body, with moment of inertia
I2, is oriented with respect to the inertial frame with angle θ2. The angle between the two
ovals is ψ = θ2 − θ1. The total configuration space is described by two angles. The two
bodies can be described by ψ alone. So we can think of the internal freedom as described by
angle ψ. We describe the orientation of the body with respect to the outside with θ = θ1.
The total angular momentum

L = I1θ̇1 + I2θ̇2 = I1θ̇ + I2(ψ̇ + θ̇)

dL = I1dθ + I2(dψ + dθ)

If angular momentum is conserved

dθ = − I1
I1 + I2

dψ

If we move around a loop in ψ

∆θ =

∫ 2π

0
− I1
I1 + I2

dψ = − 2πI1
I1 + I1

(55)

So an internal rotation of the smaller oval gives a partial rotation of the entire mechanism.
Geometrically this can be described with a flat connection

A = dθ +
I1

I1 + I2
dψ

This can be called a mechanical connection. The fibre is S1 and with varying θ, The
projection from the entire space S1 × S1 → S1 is π(θ, ψ)→ ψ.

2 Control Systems

Two main drivers. Can the system be moved from one state to another one. Which states
are accessible?

2.1 Control of an inverted pendulum on a cart

The configuration space of a pendulum on a cart (see Figure 7) is R × S2 and described
by horizontal position of the cart s and pendulum angle φ. The velocity of m is

(ẋ, ż)m = (ṡ+ l cosφ φ̇,−l sinφ φ̇)
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Figure 7: An inverted pendulum on a cart. The cart mass is M , the pendulum has length l,
the pendulum bob mass is m. The angle φ describes the orientation of the pendulum with
respect to the cart. The cart horizontal position is described with s. Gravity acceleration
g pulls downward.
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giving a total kinetic energy

T =
1

2
Mṡ2 +

1

2
m
(

(ṡ+ l cosφ φ̇)2 + l2 sin2 φ φ̇2
)

The Lagrangian

L(s, φ, ṡ, φ̇) =
1

2
(M +m)ṡ2 +

1

2
ml2φ̇2 +ml cosφ ṡφ̇−mgl cosφ. (56)

We apply an external force u on the cart alone

d

dt

∂L

∂ṡ
= u (57)

d

dt

∂L

∂φ̇
=
∂L

∂φ
(58)

We can define momenta

ps =
∂L

∂ṡ
= (M +m)ṡ+ml cosφ φ̇ (59)

pφ =
∂L

∂φ̇
= ml2φ̇+ml cosφ ṡ (60)

We can write this in matrix form(
ps
pφ

)
=

(
(M +m) ml cosφ
ml cosφ ml2

)(
ṡ

φ̇

)
(61)
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