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1 Geodesics

Within the context of the variational Lagrangian approach to describing dynamics we can
ask if there is a geometric description.

1.1 Minimum of an action along a path and geodesics

Recall that given a Lagrangian L(q, q̇, t), and paths described as q(τ), the action or integral
on a path

S(q(τ)) =

∫
L(q, q̇, τ)dτ (1)
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is minimized on a path that satisfies the Euler-Lagrange’s equations at each position in the
path

d

dt

∂L
∂q̇

=
∂L
∂q

Let us compare this to a geodesic which is a path on a surface that has minimum
length. To measure length we need something called a metric. A metric allows us to
measure distances. Given a local coordinate system with coordinates x the square of the
distance along a path with elements dx is

ds2 = gijdx
idxj

using summation notation convention. Here gij is a symmetric invertible matrix that can
depend on the local position in a manifold. We require that

gijgjk = δik

For a nice coordinate system gij = δij . Upper and lower indices refer to wether the item is
in the cotangent or tangent space and the metric allows one to compare one and another.

It may be convenient to write

ds

dτ
=

√
gijdxidxj

dτ
=

√
gij
dxi

dτ

dxj

dτ

The length of a path is the integral of ds along the path or

l =

∫
ds =

∫ √
gijdxidxj =

∫ √
gij
dxi

dτ

dxj

dτ
dτ (2)

Minimizing the path length gives a geodesic. If the Lagrangian can be written as a path
then, then Lagrange’s equations are equivalent to the geodesic equations.

1.2 Action comprised of square of path lengths

Kinetic energy is often written as a sum of velocities and so involves a square of velocities
rather than a square root of velocities. Consider the action

S =

∫
1

2

(
ds

dτ

)2

dτ =

∫
1

2
gij
dxi

dτ

dxj

dτ
dτ (3)

We use a Lagrange multiplier λ that is a function of t on the path. Consider

S(λ) =

∫
1

2

[
gij
dxi

dτ

dxj

dτ
λ−1(τ) + λ(τ)

]
dτ (4)
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Taking the functional derivative with respect to the function λ

δS

δλ(β)
= lim

ε→0

1

2

∫ [
gij
dxi

dτ

dxj

dτ
(λ+ εδ(β − τ))−1 + λ+ εδ(β − τ)

]
dτ

=
1

2

∫ [
gij
dxi

dτ

dxj

dτ
λ−2δ(β − τ) + δ(β − τ)

]
dτ

= −λ(β)−2gij
dxi

dτ

dxj

dτ
(β) + 1

= −|ẋ(β)|2λ(β)−2 + 1

This is minimized with

λ(β) = |ẋ| =
√
gij ẋiẋj =

√
gij

xi

dτ

xj

dτ
(5)

at any time t = β. This is a constant velocity condition! Inserting this back into S(λ),
equation 4 gives

S(λ) =

∫
1

2

[
gij
dxi

dτ

dxj

dτ
(
√
gij ẋiẋj)

−1 +
√
gij ẋiẋj

]
dτ

=

∫ √
gij

xi

dτ

xj

dτ
dτ

Our action S (equation 3) involving squares of velocities is minimized w.r.t to the
function λ(t) if and only if we chose λ(t) so as to give a constant velocity. With this
condition our action then gives the path length. In this sense λ(t) can be considered a
transformation of the way the path is parametrized by time. Recall that the length of a
path is independent how we describe time∫ τ2

τ1

√
gij
dxi

dτ

dxj

dτ
dτ =

∫ t2

t1

√
gij
dxi

dt

dxj

dt
dt

for τ = f(t) with τ1 = f(t1) and τ2 = f(t2) and the function f is continuous and never has
zero or infinite slope.

Let us look again at the first part of equation 3 and change time with t = f(τ) and

dxi

dτ
=
dxi

dt

dt

dτ
=
dxi

dt
f ′(τ)
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and dτ = dt/f ′.

S(λ) =

∫ τ2

τ1

1

2

[
gij
dxi

dτ

dxj

dτ
λ−1

]
dτ

=

∫ τ2

τ1

1

2
dτgij

dxi

dt

dxj

dt
f ′(τ)2λ−1

=

∫ t2

t1

1

2
dtgij

dxi

dt

dxj

dt
f ′λ−1

If we chose f(τ) such that f ′(τ) = λ(τ) then we can remove λ with a parametrization of
time and this action does not change (except possibly by a dilating factor involving the
boundary). Since we are only constrained by the derivative of f we can choose that t1 = τ1.

What about the second half of equation 3∫ τ2

τ1

dτ
1

2
λ(τ) =

∫ τ2

τ1

1

2
dtλ[f ′(τ(t))]−1

=
t2 − t1

2

This only depends on the time interval. This can be written as a time derivative of some-
thing and we show below that if two Lagrangian’s differ by the time derivative of something
then they are minimized on the same paths. Altogether (except for some uncertainty about
the time on the boundary) putting this together we have shown that this action∫

gij
dxi

dτ

dxj

dτ
dτ (6)

is minimized on the same paths that minimize path length.
Comparing the action (equation 3) with the action for a Lagrangian (equation 1) we

can associate

L(q, q̇) =
1

2
gij(q)

dqi

dτ

dqj

dτ

If we can write a Lagrangian in the above form, then we can equivalently think about the
dynamics in terms of paths being geodesics of the metric g. Systems that have Lagrangian
equal to a kinetic energy function, such as rigid bodies and hydrodynamics, can be written
in this form!

1.3 The geodesic equation

Let us just choose a Lagrangian

L(x, ẋ) =
1

2
gij ẋ

iẋj
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and look at the Euler-Lagrange equations. First let us compute some derivatives

∂L
∂ẋi

= gij ẋ
j = pi

∂L
∂xk

=
1

2
(∂kgij)ẋ

iẋj

The Euler-Lagrange equations are

d

dτ

[
gij
dxj

dτ

]
=

1

2
(∂igjk)

dxj

dτ

dxk

dτ

These can also be written as
d2xi

dτ2
+ Γijk

dxj

dτ

dxk

dτ
= 0

with Γijk known as Christoffel symbols that depend on derivatives of the metric coefficients.
Here the equations of motion are also called geodesic equations. The above form is com-
monly used in general relativity to compute trajectories of particles in space that is curved
due to gravity.

1.4 An example with a holonomic constraint

From Arnold’s book.
Consider a particle in a three-dimensional space in cylindrical coordinate that is con-

strained to a surface defined by a function of radius R(z).
The kinetic energy per unit mass of the particle

T

m
=

1

2
ṙ2 =

1

2

(
ẋ2 + ẏ2 + ż2

)
=

1

2

(
ṙ2 + ż2 + r2θ̇2

)

Using our surface constraint function R(z)

ṙ = R′(z)ż

and

T

m
=

1

2

(
(1 +R′(z)2)ż2 +R(z)2θ̇2

)
is now a two-dimensional system. An integral

S =

∫
Ldt =

∫
Tdt
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can be written as

S =

∫
gij
dxi

dτ

dxj

dτ
dτ

with diagonal metric in the two dimensional space z, θ

gzz = (1 +R′(z)2) gθθ = R(z)2

Thus the trajectories of free particles constrained to the surface defined with R(z) are
geodesics with the above metric.

Because there is no potential energy H = L = T is conserved. Also as H does not
depend on θ the associated momentum

pθ = r2θ̇

is conserved. This conserved quantity is equivalent to the z component of the angular
momentum. The kinetic energy T/m = 1

2 |v|
2 is conserved so the magnitude of the velocity

(in 3d) |v| is conserved. If we define an angle for the velocity vector α such that

rθ̇ = |v| sinα

then conservation of pθ = r|v| sin θ and conservation of |v| implies that

r sinα = constant

This implies that the orbit can be reflected if it reaches a small enough radius that depends
upon its initial energy. Orbits are meridians, closed orbits and dense rings covering a
cylindrical region of the surface.

1.5 Maupertuis’ principle

Hamilton’s equation states that the actions S =
∫
Ldτ is minimized along a path. q(t) is

specified at the end points we must specify q1, t1 and q2, t2. Recall that

H(p, q) = pq̇ − L

with q̇(p) = ∂L
∂q̇ . If energy is conserved then∫

pq̇dτ −
∫
Ldτ = constant

Taking an extremum of the above we find that∫
pq̇dτ =

∫
pdq

is also an extremum. That S =
∫
pdq is minimized when energy is conserved is called

Maupertuis’ principle. It is convenient that the integral can be specified with only the
coordinates of the end points (and it is not necessary to specify the times).
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Figure 1: Orbits on a surface of revolution
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1.6 Geodesics in Newtonian gravity

Using a kinetic energy in the form

T =
1

2
mij

dqi

dτ

dqj

dτ

and a Lagrangian
L = T − V (q)

where V is a potential energy that includes two-body interactions. The matrix mij we
would expect is diagonal in a Cartesian coordinate system where multiple bodies each have
their own separate coordinates. The Hamiltonian

H = T + V

is conserved so

E − V =
1

2
mij

dqi

dτ

dqj

dτ

We can define a momentum

pi =
∂L
∂q̇i

= mij
dqj

dτ

so

piq̇
i = mij

dqi

dτ

dqj

dτ
= 2(E − V (q))

With energy conserved and using Maupertuis’ principle

S =

∫
piq̇

idτ =

∫
mij

dqi

dτ

dqj

dτ
dτ =

∫
2(E − V (q))dτ

is minimized along a trajectory with q(τ) that satisfies the equations of motion. It is
convenient to split the term inside the integral so we can write it as

S =

∫ √
mij

dqi

dτ

dqj

dτ

√
2(E − V (q))dτ

This action looks like a path length

S =

∫
ds

with

ds =

√
2(E − V (q))mij

dqi

dτ

dqj

dτ
dτ =

√
2(E − V (q))mijdqidqj

=
√
gijdqidqj
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with a metric
gij = 2(E − V (q))mij

To rephrase, the equations of motion are consistent with minimizing the path length
using a metric such that distance is measured with

ds2 = 2(E − V (q))mijdq
idqj

As an example consider a Keplerian system

H(pr, r, pθ, θ) =
p2
r

2
+

p2
θ

2r2
− k

r

and this gives a metric with

ds2 = 2

(
E +

k

r

)
(dr2 + r2dθ2)

The equations of motion also minimize distances measured with the above metric.

Remark This should be equivalent to the non-relativistic limit of the Schwarzschild met-
ric.

1.7 Hamiltonian formulation of geodesics

If we take

L =
1

2
gij
dqi

dτ

dqj

dτ

then the momentum

pi =
∂L
q̇i

= gij
dqj

dτ

We can invert this with the metric

gkipi = gkigij
dqj

dτ
= δkj

dqj

dτ
=
dqk

dτ

the Hamiltonian is

H = pi
dqi

dτ
− L =

1

2
pi
dqi

dτ
=

1

2
gijpipj

Hamilton’s equations give
dpi
dτ

=
1

2
(∂ig

ij)pjpk

pi = gij
dqj

dτ

9



If the metric is independent of a coordinate, its conjugate momentum is conserved.
If the metric can be transformed into a coordinate system that is independent of certain
coordinates then conserved quantities can be found. Another way to thing about this, is if
the metric space can be described as having some symmetries (like a sphere), then it can
be easier to find geodesics. This is similar to using the Hamilton-Jacobi equation to solve
for conserved variables (or canonical momenta).

2 Equivalent actions

Question How many ways are there to create actions that are minimized on the same
trajectories?

We will show that if two Lagrangians, L1,L2 give the same equations of motion then there
is a function Φ(q, t) such that

L1 − L2 =
dΦ

dt

Consider two Lagrangians that give the same equations of motion.

d

dt

∂Li
∂q̇i
− ∂Li
∂qi

= Λi(q, q̇, q̈, t)

for each Lagrangian i = 1, 2. If the equations of motion are the same then

Λ1(q, q̇, q̈, t) = Λ2(q, q̇, q̈, t)

Λ1 − Λ2 = 0

So we can define a function
Ψ(q, q̇, t) = L1 − L2

Λ1 − Λ2 =
d

dt

∂

∂q̇
(L1 − L2)− ∂

∂q
(L1 − L2) = 0

=

(
d

dt

∂

∂q̇
− ∂

∂q

)
Ψ

=
∂2Ψ

∂q̇2
q̈ +

∂2Ψ

∂q̇∂q
q̇ +

∂2Ψ

∂q̇∂t
− ∂Ψ

∂q̇
= 0

This must be true for all values of q̈, q̇, q, t. But Ψ is only a function of q̇, q, t. This implies
that the coefficient with q̈ must be zero so ∂2Ψ

∂q̇2
= 0. Consequently Ψ is linear in q̇.

Ψ = F (q, t)q̇ +G(q, t)
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Inserting this back into the previous equation gives

∂F

∂t
− ∂G

∂q
= 0 (7)

This can be called an integrability condition as we can find a function Φ(q, t) that satisfies

F =
∂Φ

∂q
G =

∂Φ

∂t

and equation 7 is automatically satisfied. It follows that

Ψ(q̇, q, t) = q̇
∂Φ

∂q
+
∂Φ

∂t
=
dΦ

dt
= L1 − L2

Question Is there a metric description for the KdV? There is a way to think about the
operators within context of Lax operators as a zero curvature equation with connection for
vector fibers over the space of x, t.

3 Some notes on Celestial mechanics

With a Lagrangian

L(q, q̇) =
1

2
q̇2 +

k

|q|
transferring into cylindrical coordinates we obtain a Hamiltonian with L = pθ

H(pr, L; r, θ) =
1

2
p2
r +

L2

2r2
− k

r

with k = GM and potential energy V (r) = −k/r, (and I have neglected motion out of
the plane but we could include it by adding p2

z/2). The radial degree of freedom gives an
equation of motion

−ṗr =
∂H

∂r
= −L

2

r3
+
k

r2
= −r̈

Because the Hamiltonian is independent of θ, angular momentum (in the z direction),
L = pθ is conserved. Using Hamilton’s equations we find that

L = r2θ̇

It is convenient to use a variable u = 1/r with

u̇ = − ṙ

r2

du

dt
=
du

dθ

dθ

dt

11



using L = r2θ̇
du

dt
=
du

dθ

L

r2

Putting this together with our previous expression for u̇

−ṙ =
du

dθ
L

Taking the time derivative of this

−r̈ =
d

dt

du

dθ
L = θ̇

d

dθ

du

dθ
L

=
d2u

dθ2
L2u2

The equations of motion are

r̈ =
L2

r3
− k

r2
= L2u3 − ku2

Putting these together

d2u

dθ2
L2u2 = −L2u3 + ku2

u′′ + u = kL−2

This has solution
u = (1 + e cos θ)p−1

with p = L2/k and free parameter e known as the eccentricity. Inverting this for radius

r =
p

1 + e cos f

and we have replaced θ with angle f called the true anomaly. For f = 0 the orbit is a
pericenter. The minimum and maximum radius are rmin = p/(1 + e) and rmax = p/(1− e)
giving a semi-major axis a

2a =
p

1 + e
+

p

1− e
=

2p

1− e2

so that
p = a(1− e2)

With some manipulation it is possible to show that

E = − k

2a

L =
√
ka(1− e2)

These are appropriate for elliptical orbits. With some generalization a similar description
covers parabolic and hyperbolic orbits (e.g., hyperbolic orbits have e greater than 1, a < 0).
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3.1 Eccentric anomaly

In a coordinate system defined from the ellipse focal point, a point on the orbit

x = r cos f

y = r sin f

Here f is the true anomaly and r the radius. This coordinate system uses as origin an
ellipse focal point which is also the location of the Sun for the orbit of a planet in motion
around the Sun.

In a coordinate system with origin at the center of the ellipse, the orbit clearly defines
an ellipse obeying ( x̄

a

)2

+
( ȳ
b

)2

= 1

with semi-major axis a and semi-minor axis b = a
√

1− e2. The coordinates for a point on
the orbit can be written in terms of an angle called the eccentric anomaly E

x̄ = a cosE

ȳ = b sinE = a
√

1− e2 sinE = y

And
x = a(cosE − e)

These relations can be read off Figure 2 showing the orbit.
Also useful are relations

r = a(1− e cosE)

a relation between true and eccentric anomaly

tan(f/2) = tan(E/2)

√
1 + e

1− e

ṙ = ae sinEĖ

(rḟ)2 =
L2

r2

v2 = (rḟ)2 + (ṙ)2
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Figure 2: a) One focal point of an elliptic orbit is the location of the Sun. Also drawn is
the auxiliary circle with radius a, the angle known as the true anomaly f , and the eccentric
anomaly E. The true anomaly f is defined with respect to origin at the Sun and the focal
point of the ellipse. The Eccentric anomaly is defined with origin at the center of the ellipse
and the auxiliary circle. b) Coordinate relations. x, y are positions with origin at the Sun.
x̄, ȳ are coordinates with origin at the center of the ellipse.
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3.2 The mean anomaly and Kepler’s equation

Using above relations for ṙ in terms of the mean anomaly it can be shown than

Ė =
n

1− e cosE

where the frequency n is called the mean motion

n =

√
k

a3

. We assume that there is an angle M , known as the mean anomaly, that advances with
angular rotation rate given by n.

M = M0 + nt

so that Ṁ = n. The mean anomaly is not a physical angle on the sky. Now insert this into
our equation for Ė

Ė =
Ṁ

1− e cosE

we can integrate this equation finding

M = E − e sinE

This is known as Kepler’s equation.
Kepler’s equation cannot be solved analytically. In other words, given M , it is not

possible to solve analytically for E. However extremely rapid numerical techniques that
converge to third order are known (Laguerre’s method). To converge to a solution to a
precision of order 10−16 (double precision floating point) it takes less than 6 or 7 iterations
of the method.

To advance an orbit it time, M is advanced, then E computed. From E, the position
in the orbit can be computed. Then the orbit is rotated according to its longitude of
perihelion ω, inclination, i, and longitude of the ascending node Ω. The reverse procedure
is done to convert a cartesian positions and velocities to orbital elements. The orbital
elements are a, e, i and angles M,ω,Ω. The ordering is important as canonical momenta
depending primarily on a, e, i are conjugate to canonical angles either equal to or related
to the angles M,ω,Ω, respectively.

3.3 Geometric view in velocity space

The equations of motion give
dv

dt
= −kr

r3

and this implies that
|dv|
dt

=
k

r2
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Let us define a regularized distance

ds =
dt

r

Multiplying this on with the relation for d|v|

d|v|
ds

=
k

r

Using E = v2

2 −
k
r

d|v|
ds

=
v2

2
− E

ds =
2dv

v2 − 2E

ds2 = (v2 − 2E)−24dv2

In the space of velocity trajectories the path distance in ds is minimized. Also we can think
of the above relation for ds2 as giving a metric. In cartesian coordinates (for velocity)

guv = 4(v2 − 2E)−2δij

Using this metric, trajectories in velocity space are minimized. It is nice to write this in
terms of w = v/v2 with |dw|2 = |dv|2v−2. With this variable change

ds2 = 4|dw|2(1− 2Ew2)−2 = 4|dw|2(1 +Kw2)−2

In the positive curvature case we can compare this to the standard metric on a 3-sphere
with radius 1/

√
K. The coefficient K = −2E can be considered the curvature.

xxxx show how this is like curvature.

Remark The integral
∫
ds =

∫
dt/r is called the Levi-Civita integral. The geometric

interpretation is due to Osipov and Belbruno, but see a nice paper by Milnor on the geom-
etry of Keplerian orbits. In this paper there is also a nice description of how trajectories in
velocity space are circles. John Milnor, The geometry of the Kepler problem, AMS Notices
90 (June-July 1983), 353-365.

Also take a look at http://math.ucr.edu/home/baez/gravitational.html

3.4 Notes

Following Rajeev’s lecture notes on geometry, and Ashok Das’s book on integrable models.
An example of a holonomic constraint taken from Arnold’s book on Math methods of
Classical mechanics. Also see John Milnor, The geometry of the Kepler problem, AMS
Notices 90 (June-July 1983), 353-365.

Also see notes by John Baez http://math.ucr.edu/home/baez/gravitational.html
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