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Abstract

The three-body problem is a configuration where the trajectories of three celestial
objects moving under their mutual gravity are to be determined. The hierarchical
restricted three-body problem is a simplification of the more general three-body
problem. The term restricted means that one of the three bodies is a massless
particle, whereas hierarchical refers to the fact that the particle is much closer to
one body than the other. The latter body then acts as a perturbation to the motion
of the particle around the former. Since the massive bodies are not affected by the
particle, their motion is given by the well-known two-body problem. The aim of the
hierarchical restricted three-body problem is therefore to constrain the trajectory of
the massless particle. Provided additional assumptions, this problem is integrable
and has an analytical solution.
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1 Framework
Let m0 be the mass of the perturbing body and m1 the mass of the body being orbited
by the massless particle. The setting of the hierarchical restricted three-body problem is
adapted, for example, to these cases

• The Moon orbiting the Earth and perturbed but the Sun.

• A spacecraft orbiting a satellite and perturbed by the planet.

• Mercury orbiting the Sun and perturbed by Jupiter.

• A planet orbiting a star and perturbed by a binary companion star.

We make no assumption on m0 and m1. In cases 1 and 2, m0 is much larger than m1. In
case 3, m1 is much larger than m0. In case 4, they could be of similar values. I denote
vectors with a bold font and their norms with the same unbolded letter. The derivation
with respect to time is denoted by an upper dot. The gravitational constant is written G.

1.1 Hamiltonian of the hierarchical restricted 3-body problem
I start by obtaining the Hamiltonian of the hierarchical restricted 3-body problem. Let u,
u0 and u1 be the positions of the particle, the perturbing body and the orbited body in
an inertial reference frame, respectively. The equations of motion are given by

ü = − Gm0

|u − u0|3
(u − u0) − Gm1

|u − u1|3
(u − u1) ,

ü0 = − Gm1

|u0 − u1|3
(u0 − u1) ,

ü1 = − Gm0

|u1 − u0|3
(u1 − u0) .

(1)

We are interested in knowing the position of the particle and of the perturbing body with
respect to the orbited body. Hence I define r = u − u1, r0 = u0 − u1 and r1 = u1. The
equation of the motion of the particle in these new variables reads

r̈ = −Gm1

r3 r − Gm0

(
r0

r3
0

+ r − r0

|r − r0|3

)
. (2)

Let r̃ = ṙ. The Hamiltonian H of the hierarchical restricted 3-body problem, where (r̃, r)
is a pair of conjugated variables, must verify the Hamilton equations

˙̃r = −∂H
∂r

= r̈ and ṙ = ∂H
∂r̃

= r̃. (3)

This yields
H = HK + HP , (4)



1.2 Quadrupolar expansion in the Legendre polynomials 3

where the Keplerian part HK governs the orbit of the particle around m1 and the
perturbative part HP ≪ HK is due to m0. They read

HK = 1
2 r̃2 − Gm1

r
, (5)

and
HP = −Gm0

(
1

|r − r0|
− r · r0

r3
0

)
, (6)

where r0(t) is a known function of time, given by the two-body problem.

1.2 Quadrupolar expansion in the Legendre polynomials
The hardest term to deal with in the perturbative part HP is clearly the inverse distance
between the particle and the perturbing body. We can greatly simplify its expression
by using the assumption of hierarchy. In other words, I expand to second order the
Hamiltonian of the hierarchical restricted 3-body problem in power series of the small
quantity r/r0. The expansion is given by

1
|r − r0|

= 1
r0

+∞∑
n=0

(
r

r0

)n

Pn(cos θ), (7)

where θ is the angle between r and r0 and Pn is the nth Legendre polynomial. Even if
the Legendre polynomials are not known, the expansion is straightforward to compute. I
simply write

1
|r − r0|

= [(r − r0) · (r − r0)]−1/2 = 1
r0

[
1 + r2

r2
0

− 2r · r0

r2
0

]−1/2

, (8)

and I use (1 + x)−1/2 = 1 − x/2 + 3x2/8 + O(x3) to end up with

1
|r − r0|

= 1
r0

[
1 + r · r0

r2
0

− 1
2

r2

r2
0

+ 3
2

(r · r0)2

r4
0

]
+ O

(
r3

r4
0

)
. (9)

The term of order 1 cancels itself1 with the second term of HP (Eq. (6)). As for the
term of order 0, it only contributes to add to the Hamiltonian a quantity independent on
both r and r̃. Therefore, it can be removed from the expansion without modifying the
equations of motion. Only terms of second order remain and the quadrupolar expansion
of the Hamiltonian of the hierarchical restricted 3-body problem reads

H = HK + Gm0

2r3
0

[
r2 − 3(r · r0)2

r2
0

]
. (10)

1Which is why a second order expansion is needed
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1.3 Reminders about the two-body problem
If the particle was affected only by m1, its trajectory would be planar and along an ellipse
of semi-major axis a. I present here the main results of the two-body problem, that will
be useful for the rest of this course. The reader interested in a complete overview can
read Sect. 2.1 of Antoine Petit’s PhD manuscript.

Let a be the semi-major axis of the particle’s orbit, e its eccentricity and i its inclination
with respect to the orbital plane of the perturbing body (taken as reference). Let ν, E
and M be the true anomaly, the eccentric anomaly and the mean anomaly of the particle,
respectively. These quantities are shown in the schema, where P is the particle and P ′ is
the vertical projection of P on the dashed circle.

î

ĵ

a ae

a
√

1 − e2

νE î

k̂

r

P

P ′

Î

K̂

Ω i

r

P

r0
ω

ν

i

The longitude of the ascending node and the argument of the periapsis of the particle’s
orbit are respectively denoted Ω and ω, and are also shown on the schema. Let

(
î, ĵ, k̂

)
be an orthonormal reference frame such that the particle’s orbits lies in the plane

(
î, ĵ

)
,

with î towards the periapsis of the orbit. I define
(
Î, Ĵ , K̂

)
similarly for the perturbing

body and I write r = X î + Y ĵ and r0 = X0Î + Y0Ĵ . The mean anomaly is not shown in
the schema. It is defined as

M = 2π

T
t := nt, (11)

where T is the particle’s orbital period, the time t is 0 when the particle passes at periapsis
and n is the particle’s mean motion. Since the area swept by r is proportional to time,
M is proportional both to time and to the area swept by r since the particle last reached
its periapsis.

The vectors r and ṙ are uniquely determined by the six variables (a, e, i, M, ω, Ω),
called the elliptic elements of the orbit. In the two-body problem, all the elliptic elements
are constant except M , which evolves linearly with time. In the hierarchical restricted
3-body problem, the variables (a, e, i, ω, Ω) are a priori not constant, but they evolve

https://www.imcce.fr/content/medias/publications/publications-recherche/theses-habilitations/docs/Petit_These.pdf
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secularly2 with time. Looking at the schema, it is easy to verify that we have

X = r cos ν = a (cos E − e) ,

Y = r sin ν = a
√

1 − e2 sin E,

r = a (1 − e2)
1 + e cos ν

= a (1 − e cos E) .

(12)

These relations allow the Keplerian part of the Hamiltonian to be rewritten

HK = −Gm1

2a
:= − µ

2a
. (13)

Finally, the solution of the two-body problem shows that the true, eccentric and mean
anomalies are related by

dM = r

a
dE = r2

a2
√

1 − e2
dν, (14)

a relation that will prove very useful in Sect. 1.4

1.4 Average over the mean anomaly of the particle
The quadrupolar expansion, although it simplified the Hamiltonian, did not remove any
degree of freedom. The Hamiltonian (10) still has three degrees of freedom and is not
adapted to an analytical work. For the problem to be integrable, I need to end up with
only one degree of freedom. Using the conservation of the particle’s angular momentum,
one of them can be lost.

The Hamiltonian contains short-term variations due to the small orbital period of the
particle around m1. These short-term variations are not relevant since I am only interested
in the secular2 evolution of the particle’s orbit. Therefore, the idea is to smooth the
trajectory by removing the short-term variations. More precisely, one additional degree of
freedom can be lost by averaging the Hamiltonian along the orbit of the particle.

I define the new averaged Hamiltonian as

H̄ = 1
T

∫ T

0
H dt. (15)

This operation on the Hamiltonian is mathematically justified in the sense that it is just a
first-order Lie serie expansion. The reader interested in perturbation theory and Lie series
expansion can find an overview in Sect. 2.2.2 of my PhD manuscript3. What is interesting
is that the results of the two-body problem allow for H̄ to be computed analytically using
Eqs. (12) and (14). Since the mean longitude M is proportional to the time, averaging
with respect to the time is equivalent to averaging with respect to M . The computation
of H̄ requires to compute the average of r2 and (r · r0)2 with respect to M . We have

r2 = 1
T

∫ T

0
r2 dt = 1

2π

∫ 2π

0
r2 dM = 1

2π

∫ 2π

0
a2 (1 − e cos E)3 dE = a2

(
1 + 3

2e2
)

. (16)

2Secular comes from the French siècle, meaning century. It means much slower than the orbital period.
3https://jeremycouturier.com/img/PhD_manuscript.pdf

https://jeremycouturier.com/img/PhD_manuscript.pdf
https://jeremycouturier.com/img/PhD_manuscript.pdf
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The case of (r · r0)2 is trickier. The idea is to write4 (r · r0)2 = tr0 (r tr) r0 and to
compute the average of the matrix r tr with respect to M . We have

r tr = 1
2a2

[(
1 − e2

) (
I − k̂ tk̂

)
+ 5e2î tî

]
, (17)

and therefore

(r · r0)2 = tr0 r tr r0 = 1
2a2

[(
1 − e2

) (
r2

0 −
(
k̂ · r0

)2
)

+ 5e2
(
î · r0

)2
]

. (18)

From now on, I drop the upper bar from the Hamiltonian. Finally, the common Hamilto-
nian to study both the Lidov-Kozai mechanism and the evection resonance is

H = − µ

2a
− Gm0a

2

4r3
0

1 − 6e2 − 3
(
1 − e2

) (k̂ · r0
)2

r2
0

+ 15e2

(
î · r0

)2

r2
0

 . (19)

2 Lidov-Kozai mechanism
This mechanism triggers when the orbital plane of the particle if very inclined with respect
to the orbital plane of the perturbing body. It leads to very large eccentricities for the
particle’s orbit.

2.1 Average over the mean anomaly of the perturbing body
In order to simplify even further the Hamiltonian of the problem, I average it over the
mean motion M0 of the perturbing body. This is done in the same manner as the average
over M . Using

1
2π

∫ 2π

0

1
r3

0
dM0 = 1

a3
0 (1 − e2

0)
3/2 , and

1
2π

∫ 2π

0

r0
tr0

r5
0

dM0 = 1
2a3

0 (1 − e2
0)

3/2

(
I − K̂ tK̂

)
,

(20)

I find

H = − µ

2a
+ Gm0a

2

8a3
0 (1 − e2

0)
3/2

[
1 − 6e2 − 3

(
1 − e2

) (
k̂ · K̂

)2
+ 15e2

(
î · K̂

)2
]

, (21)

where a0 and e0 are the semi-major axis and eccentricity of the perturbing body’s orbit.
The right panel of the schema in Sect. 1.3 gives k̂ · K̂ = cos i and î · K̂ = sin i sin ω.
Therefore, I write the Hamiltonian of the Lidov-Kozai mechanism as

H = − µ

2a
+ Gm0a

2

8a3
0 (1 − e2

0)
3/2

[
1 − 6e2 − 3

(
1 − e2

)
cos2 i + 15

2 e2 sin2 i (1 − cos 2ω)
]

. (22)

Note that averaging over M0 did not remove any degree of freedom, it merely simplified
the Hamiltonian.

4where t· denotes the transpose operator.
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2.2 Transformation to adapted canonical variables
In the Hamiltonian (22), the canonical variables r and r̃ do not appear explicitly. Instead,
this Hamiltonian is written in term of the elliptic elements (a, e, i, M, ω, Ω). The problem
is that the transformation from (r̃; r) to the elliptic elements is not canonical. Therefore.
the Hamiltonian (22) is currently not written in a set of canonical variables. To get around
this issue, I use the variables of Delaunay, defined as

Λ = √
µa M,

G = Λ
√

(1 − e2) ω,

H = G cos i Ω.

(23)

The transformation (r̃; r) → (Λ, G, H; M, ω, Ω), where the semicolon separates the actions
from their respective conjugated variables, is canonical (e.g. Laskar, 2017).

Due to the averaging process, the Hamiltonian no longer depends on M . Therefore, its
conjugated action Λ, and hence a, is constant and the degree of freedom (Λ; M) has been
lost by the average. The semi-major axis a is a first-integral of the averaged hierarchical
restricted 3-body problem. Terms of the Hamiltonian (22) depending only on a can be
removed without changing the equations of motions.

Similarly, the Hamiltonian does not depend on the longitude of the ascending node
Ω. Its conjugated action H = Gk̂ · K̂, which is the projection on K̂ of the particle’s
angular momentum, is conserved. The degree of freedom (H; Ω) does not exist and the
Hamiltonian is reduced to the unique degree of freedom (G; ω). I obtain the integrable
Hamiltonian

H = 3Gm0a
2

16a3
0 (1 − e2

0)
3/2

[
e2 − 2 cos2 i

(
1 + 3

2e2
)

− 5e2
(
1 − cos2 i

)
cos 2ω

]
, (24)

where e2 = 1 − G2/Λ2 and cos2 i = H2/G2. The problem with Delaunay’s coordinates is
that they are singular at small eccentricity and not dimensionless. I will rather use the
rectangular canonical coordinates

x =
√

2 (Λ − G) cos ω and y =
√

2 (Λ − G) sin ω. (25)

While the transformation (G; ω) → (x; y) is canonical, the variables (x; y) are still not
dimensionless. I finally perform the transformation

X = x√
Λ

=
√

2 (Λ − G)
Λ cos ω and Y = y√

Λ
=
√

2 (Λ − G)
Λ sin ω. (26)

The transformation (x; y) → (X; Y ) is not canonical. However, the equations of motion
stay in Hamiltonian form as long as the Hamiltonian is divided by Λ. The dimensionless
variables (X; Y ) can thus be considered canonical.

2.3 Consequences of the Lidov-Kozai mechanism
The expression of the Hamiltonian (24) in the coordinates (X; Y ) is quite gruesome and
does not allow for much analytical insight on the dynamics of the Lidov-Kozai mechanism.
Instead, I expand it to second order in (X; Y ). Since

X = e cos ω + O(e3) and Y = e sin ω + O(e3), (27)
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the variables X and Y carry a lot of physical meaning at small eccentricity. After removing
constant terms and dividing by Λ, the Hamiltonian of the Lidov-Kozai mechanism at
second order in eccentricity takes the form

H = − 3σ

8 (1 − e2
0)

3/2

[
2X2 −

(
3 − 5c2

)
Y 2
]

, (28)

where σ = η2/n is homogeneous to a frequency, n =
√

Gm1/a3 = Ṁ is the mean motion
of the particle and η =

√
Gm0/a3

0. I also defined the quantity c = H/Λ. Since both H
and Λ are constant, c is just a parameter of the Hamiltonian. Its value is

c =
√

1 − e2
in cos iin, (29)

where ein and iin are the initial eccentricity and inclination of the particle, respectively. The
Hamiltonian (28) defines a conic and has an equilibrium at zero eccentricity (X = Y = 0).

• If the equilibrium is elliptic (or stable), that is, if the conic is an ellipse, then a
quasi-circular orbit for the particle is stable.

• On the contrary, if the equilibrium is hyperbolic (or unstable), that is, if the conic
is a hyperbola, then a quasi-circular orbit for the particle is unstable.

The conic is a hyperbola if, and only if, the terms in front of X2 and Y 2 have different
signs. Therefore, quasi-circular orbits for the particle are unstable if c <

√
3/5. With

ein = 0, the condition for instability is

iin > icrit := arccos
√

3
5 ≈ 39.23◦, (30)

where icrit is sometimes called Kozai inclination. The untruncated Hamiltonian (24) has
more that one equilibrium, but the expansion to second-order removed some equilibria.
In order to better understand the dynamics of the Lidov-Kozai mechanism, I expand the
Hamiltonian to fourth order in eccentricity instead. I obtain

H = −3σ

8 (1−e2
0)

3/2

[
2X2−

(
3−5c2

)
Y 2− 1

2X4+ 1
4
(
3+15c2

)
Y 4+ 1

4
(
1+15c2

)
X2Y 2

]
. (31)

When c ≤
√

3/5, this Hamiltonian has two more equilibria besides the equilibrium at zero
eccentricity, located at X = 0 and

Y = ±

√
6 (3 − 5c2) (1 + 5c2)

3 + 15c2 . (32)

I plot the phase space of the Hamiltonian (31) in Fig. 1. As long as c ≥
√

3/5 ≈ 0.7746,
all trajectories evolve around (X, Y ) = 0 and quasi-circular orbits for the particle are
possible. However, when c <

√
3/5, the equilibrium (X, Y ) = 0 becomes hyperbolic and

two equilibria at higher eccentricity appear. When c is sufficiently small, or equivalently,
when iin is sufficiently large, all trajectories have a large eccentricity.

As a consequence, putting a spacecraft on a polar circular low-Moon-orbit orbit would
very likely result in the spacecraft crashing on the Moon due to perturbations from the
Earth. Indeed, the growing eccentricity of the orbit, coupled with a constant semi-major
axis, would lead to the altitude a (1 − e) of the periapsis to become smaller than the
Moon’s radius.
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Fig. 1 — Phase space of the Hamiltonian (31) for different values of the parameter c. The
corresponding value of iin is given assuming ein = 0.

3 Evection resonance
The evection resonance corresponds to a commensurability between the precession fre-
quency of the particle’s periapsis and the mean motion of the perturbing body. In other
words, it occurs when the ellipse of the particle’s orbit precesses roughly at the same rate
as m0 and m1 orbit each other. Like the Lidov-Kozai mechanism, it can lead to large
eccentricities for the particle’s orbit.

3.1 Hamiltonian of the evection resonance
Of course, averaging the Hamiltonian over the mean motion M0 of the perturbing body is
not possible, as this would remove dependency on an important variable of the evection
resonance. Instead, I start from the Hamiltonian of the hierarchical restricted 3-body
problem averaged over M , given by Eq. (19). Since a is constant in the averaged problem
(Sect. 2.2), I remove from the Hamiltonian terms depending only on a, as this leaves the
equations of motions unaffected. The Hamiltonian thus reads

H = 3Gm0a
2

2r3
0

e2 + 1
2
(
1 − e2

) (k̂ · r0
)2

r2
0

− 5
2e2

(
î · r0

)2

r2
0

 . (33)

Since I cannot average over M0, the Hamiltonian is still quite difficult to deal with. I
simplify it by making the assumption that m0 and m1 orbit each other on a circular



3.2 Simple model of second order resonance 10

trajectory, and we have r0 = a0. Unlike the Lidov-Kozai mechanism, the evection resonance
exists even when the particle and the perturbing body are coplanar. Therefore, I simplify
even further by assuming coplanarity, or equivalently, that k̂ = K̂ (schema in Sect. 1.3).

The coplanarity induces i = 0, and Delaunay’s variables, introduced in Sect. 2.2, are
singular in that case. I use instead the canonical5 Poincaré’s variables defined as

Λ = √
µa =

√
Gm1a λ = M + ϖ,

D = Λ − G = Λ
(
1 −

√
1 − e2

)
−ϖ = −ω − Ω,

0 = G − H = G (1 − cos i) −Ω.

(34)

where λ is the mean longitude, ϖ is the longitude of the periapsis and D is called the
angular momentum deficit. Using the coplanar and circular hypothesis, the vector r0
takes a simple expression

r0 = a0
(
cos λ0Î + sin λ0Ĵ

)
. (35)

According to the two-body problem, the mean longitude of the perturbing body around
m1 reads λ0(t) = n0t and is proportional to the time, where the mean motion of the
perturbing body is n0 =

√
G (m0 + m1) /a3

0. Both the argument of the periapsis ω and the
longitude of the ascending node Ω evolve secularly2 due to the perturbing body. Therefore,
the particle’s ellipse precesses at a rate ϖ̇ = ω̇ + Ω̇. The commensurability that leads to
the evection resonance can formally be written

ϖ̇ ∼ n0. (36)

Due to this precession, the frame
(
î, ĵ

)
of the particle’s orbit slowly rotates at frequency

ϖ̇, whereas the frame
(
Î, Ĵ

)
of the perturbing body’s orbit does not. Both frames are

thus related by (
Î

Ĵ

)
=
(

cos ϖ − sin ϖ
sin ϖ cos ϖ

)(
î

ĵ

)
, (37)

which yields
r0 = a0

[
cos (λ0 − ϖ) î + sin (λ0 − ϖ) ĵ

]
, (38)

from which I obtain k̂ · r0 = 0 and î · r0 = a0 cos (λ0 − ϖ). The Hamiltonian for the
planar and circular evection resonance hence takes the simple form

H = −3Gm0a
2e2

8a3
0

[1 + 5 cos (2λ0 − 2ϖ)] . (39)

3.2 Simple model of second order resonance
The Hamiltonian (39) depends on (D; −ϖ, t) (through e and λ0) and has more than one
degree of freedom6. I remove the time-dependency by going into the extended phase space.
That is, I introduce the action Λ0, conjugated to λ0. Since λ0 = n0t, the time-dependency
can be removed from the Hamiltonian by rewriting it as

H = n0Λ0 − 3Gm0a
2e2

8a3
0

[1 + 5 cos (2λ0 − 2ϖ)] . (40)

5The canonicity of the transformation from Delaunay’s to Poincaré’s variables is easy to prove by
verifying that the Jacobian is a symplectic matrix.

6It has 3/2 degrees of freedom.
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This Hamiltonian has the two degrees of freedom (D, Λ0; −ϖ, λ0). One degree of freedom
can nevertheless be lost by performing the linear canonical transformation (D, Λ0; −ϖ, λ0) →
(Σ′, Σ′

2; σ, σ2) where σ = λ0 − ϖ, σ2 = λ0, Σ′ = D and Σ′
2 = Λ2 − D. Using n2 = Gm1/a3,

I end up with the one-degree-of-freedom Hamiltonian

H = n0Σ′ − 3η2e2Λ
8n

(1 + 5 cos 2σ) , (41)

where η2 = Gm0/a3
0 = n2

0/(1 + m1/m0) and where terms depending only on Σ′
2 have been

removed since they are constant. The only remaining degree of freedom is (Σ′; σ) and this
Hamiltonian is integrable. Note that a dependency on Σ′ is hidden in e2 = (2 − Σ′/Λ) Σ′/Λ.
In order to work with dimensionless variables, I use the variable

Σ = Σ′

Λ . (42)

The transformation (Σ′; σ) → (Σ; σ) is not canonical, but the equations of motion stay in
Hamiltonian form if the Hamiltonian is divided by Λ. Therefore, I consider the variables
(Σ; σ) to be canonical. The general form for the Hamiltonian of a resonance of order k in
polar coordinates reads (e.g. Delisle et al., 2014)

H = aΣ + bΣ2 + cΣk/2 cos kσ, (43)

where a, b and c are parameters. I can retrieve from the Hamiltonian (41) the general form
of a second-order resonance by expanding it to second-order in Σ for the non-resonant
terms and to first-order for the resonant terms. After dividing the Hamiltonian by Λ and
expanding it, I find (Touma and Wisdom, 1998)

H =
(

n0 − 3η2

4n

)
Σ + 3η2

8n
Σ2 − 15η2

4n
Σ cos 2σ, (44)

which is exactly the Hamiltonian of a second order resonance7. Like in Sect. 2.3, I use
the canonical rectangular coordinates

X =
√

2Σ cos σ = e cos σ + O(e3) and Y =
√

2Σ sin σ = e sin σ + O(e3). (45)

In the coordinates (X; Y ), the Hamiltonian reads

H =
(

n0 − 3η2

4n

)
X2 + Y 2

2 + 3η2

32n

(
X2 + Y 2

)2
− 15η2

8n

(
X2 − Y 2

)
. (46)

3.3 The unstable circular orbit of the Moon
The Moon is inclined on the ecliptic by only 5.1◦ and the eccentricity of Earth’s orbit
around the Sun is only e0 ≈ 0.0167. Therefore, the circular and coplanar assumption is
valid for the Sun−Earth−Moon system and the Hamiltonian (40) is adapted to study the
influence of the Sun (the perturbing body) on the trajectory of the Moon (the massless
particle) around the Earth (the orbited body).

7Note that the Lidov-Kozai Hamiltonian (24) can also be written as a second-order resonance.
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Because of the perturbations from the Sun, the currently quasi-circular orbit of
the Moon could become unstable if the Moon orbits too far away from Earth. I now
consider the conic part of Hamiltonian (46) by truncating it to second-order in eccentricity.
Furthermore, since the mass of the Earth is negligible with respect to that of the Sun, I
consider that n0 = η. I obtain

H = 1
2η
[(

1 − 9η

2n

)
X2 +

(
1 + 3η

n

)
Y 2
]

. (47)

Using the same arguments as in Sect. 2.3, I know that a quasi-circular orbit for the Moon
is only possible if the term in front of X2 has the same sign as the term in front of Y 2.
The instability will occur if

9η

2n
> 1 ⇔ a >

( 4m1

81m0

)1/3
a0. (48)

In the case of the Sun−Earth−Moon system, this gives

acrit ≈ 794 000 km. (49)

Currently, the Moon is orbiting the Earth at a distance a = 386 000 km and is safe from
destabilization. However, tidal forces are responsible for the Moon to recess away from
Earth at a rate of 3.8 centimeters per year, and eventually, the quasi-circular orbit of the
Moon will become unstable and the Moon will get captured by the Sun. Note that this
destabilization will occur much before the Moon reaches the edge of Earth’s sphere of
influence8, located 1.5 million kilometers away from Earth.

A Problem
The framework of the evection resonance generally involves an additional term to the
Hamiltonian due to the orbited body being non spherical. For example, the Earth is
flattened at the poles and bulges at the equator due to its own rotation. When a body of
mass m1 is not spherical or point-mass, its gravitational potential is not −Gm1/r anymore.

The aim of this problem is to study the evection resonance when the orbited body has
an equatorial bulge. At the quadrupolar order, the equatorial bulge of the orbited body
can be taken into account by adding to the Hamiltonian the term (e.g. Couturier et al.,
2023, Appendix B)

Vbulge = −Gm1R
2
1

2r5 J2
[
r2 − 3 (p̂ · r)2

]
, (50)

where R1 is the mean radius of the orbited body, p̂ is a unit vector towards its North pole,
and J2 is a small dimensionless parameter measuring the equatorial bulge.

1 - Assume that the massless particle orbits in the equatorial plane of the orbited
body9 and rewrite Vbulge in a simpler way.

2 - Show that
1

2π

∫ 2π

0
Vbulge dM = − nΛJ2R

2
1

2a2 (1 − e2)3/2 , (51)

8Also called Hill sphere.
9That is, assume p̂ = k̂.
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where M is the mean anomaly of the particle and n =
√

Gm1/a3 is its mean motion.
According to Eq. (39), the Hamiltonian of the evection resonance with an equatorial bulge
in the coplanar and circular case, averaged over M , can be written

H = −3Gm0a
2e2

8a3
0

[1 + 5 cos (2λ0 − 2ϖ)] − nΛJ2R
2
1

2a2 (1 − e2)3/2 . (52)

3 - Reproduce the steps of Sect. 3.2 and write the Hamiltonian under the form of Eq.
(43) with k = 2. To this aim, expand the Hamiltonian to second order in Σ, and get rid
of terms proportional to Σ2 cos 2σ. Give the expression of a, b and c.

4 - Show that the equilibria of the Hamiltonian, when they exist, verify

(X, Y ) ∈

(0, 0) ;
±

√
c − a

b
, 0
 ;

0, ±
√

−a + c

b

 , (53)

where X and Y are defined in Eq. (45).
5 - Draw the phase space of the Hamiltonian, in the case where it has one, three and

five equilibria. You can either linearize the equations of motion in the vicinity of each
equilibria in order to deduce which are elliptic and which are hyperbolic (by computing
the eigenvalues), or you can ask this python script to draw the phase space for you.

The Moon was likely formed ∼ 4.5 Gy ago by the accretion of material from a debris
disk caused by a giant impact between the Earth and a Mars-sized object. My simulations
conclude that two sub-Moons generally form from the debris disk, one with semi-major
axis typically ≲ 4R⊕ and another one with semi-major axis typically ≳ 6R⊕, where R⊕ is
the radius of the Earth. From there, these sub-Moons generally fail to quickly collide to
give a complete Moon, but rather see their semi-major axis start to slowly increase due to
tidal forces with the Earth.

6 - Using J2 = 0.043 and results from question 5, explain how the evection resonance
could have helped make the sub-Moons collide and complete the formation of the Moon.
In particular, explain why it is important that the increase in semi-major axis of the
sub-Moons be very slow, for the completion of the Moon to be successful.
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https://jeremycouturier.com/img/evection.py
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