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1 Monte Carlo methods

Monte Carlo numerical methods are a broad class of numerical methods that involves
using numerically generated distributions of random events. They are particularly useful in
optimization problems, and simulating systems that depend on a probability distribution.
For example, Monte Carlo methods can be used interpretation of measurements. One can
estimate the likelihood of experimental results. Similarly noise in experimental studies can
be modeled with Monte Carlo methods. Statistical physics postulates that ensembles are
well described with statistical ensembles. Processes that involve diffusion, such as diffusion
limited aggregation can be modeled with Monte Carlo methods. Radiative transfer both
in optically thin and optically thick limits can be modeled with Monte Carlo methods.
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2 Importance sampling

To integrate a function f(x) over a volume V

I =

∫
V
f(x)dV

with a Monte Carlo method we can randomly sample x over the domain. Suppose x1,x2,x3...
are a randomly and uniformly generated set of N samples. We can estimate the volume
by computing

I ≈ V

N

N∑
i=1

f(xi)

where N is the number of samples. The larger the number of samples, the closer our
estimate is to the actual value. This kind of estimate could be done in any dimension. An
example would be to integrate the volume of a unit sphere by uniform sampling of x, y, z
in the domain x, y, z ∈ [−1, 1] that looks like a cube.

Consider an integral

I =

∫ b

a
f(x)dx. (1)

We can generate random variables uniformly xi ∈ [a, b] and estimate the integral as

I ≈ (b− a)

N

N∑
i=1

f(xi) (2)

where N is the number of samples each with position xi. The sum 1
N

∑N
i=1 f(xi) is an

estimate for the average value of f() in the interval and the length of the interval is (b−a).
The function f(x) could be large in some regions of x. This would give large variations

in the computed values for I (see Figure 1). If you happen to chose an xi where f(xi) is
really large you would get an inaccurate estimate for I. If the function f() has peaks then
you would need a very large number of samples N to get get an accurate measurement for
the integral I.

We are generating xi uniformly in [a, b] which means xi is described by the probability
distribution

hu(x) =
1

b− a
.

Equation 2 can be written as

I ≈ 1

N

∑
i

f(xi)

hu(xi)
. (3)
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Figure 1: When estimating the integral of f(x) from randomly chosen x values, the value
you estimate for the integral depends on whether you happen to chose x values that lie
near the peak.

Importance sampling is when the function is weighted so that we can achieve a
better estimate with fewer randomly generated points. Let

x = g(y)

relating x to a variable y. The derivative

dx

dy
= g′(y).

Our integral I can be written in terms of y

I =

∫ b

a
f(x)dx =

∫ g−1(b)

g−1(a)
f(g(y))

dx

dy
dy =

∫ g−1(b)

g−1(a)
f(g(y))g′(y)dy (4)

We can now chose y ∈ [g−1(a), g−1(b)] with a uniformly distribution and compute the
integral I with (in analogy to equation 2)

I ≈ g−1(b)− g−1(a)

N

N∑
i=1

f(g(yi))g
′(yi). (5)

Alternatively, rather than use a uniform probability distribution, we could chose x with
any probability distribution p(x). We use the probability distribution to weight the sum

I =

∫ b

a
f(x)dx ≈ 1

N

N∑
i=1

f(xi)

p(xi)
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(compare this to equation 3). Here because p(x) is a probability distribution
∫
p(x)dx = 1.

We can also use a function w(x) that is not normalized. We call w(x) a weighting
function. We normalize a weighting function via defining

p(x) =
w(x)∫
w(x)dx

and this gives an estimate for I

I ≈ 1

N

N∑
i=1

f(xi)

w(xi)

∫
w(x)dx. (6)

Any weighting function w(x) can be used weight generate randomly generated x values
when computing and estimate for the integral I.

We can directly relate the probability function p() with the weighting function g() via
comparing the two approaches (compare equation 4 to equation 6) giving

1

p(x)
=
dx

dy
= g′(g−1(x)).

2.1 The uncertainty or variance of the estimate

What is the uncertainty of our estimate for I? We want to compute the variance of our
estimate for I.

Consider a series of values x1, x2, .... with probabilities p(xi) = pi. The distribution is
normalized;

∑
i p(xi) = 1. The expectation value of x

Ep[x] =
∑
i

xip(xi).

This is also the mean value of x. I am subscripting with p because the probability distri-
bution function is p(). Likewise the expectation value of a function of x

Ep[f(x)] =
∑
i

f(xi)p(xi).

If the probability distribution is continuous

Ep[x] =

∫
xp(x) dx

and this is the mean value of x. Similarly

Ep[f(x)] =

∫
f(x)p(x) dx
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If we call µ = Ep[x] then the variance σ2 is

Ep[(x− µ)2] =

∫
(x− µ)2p(x) dx.

Now let’s go back to the integral that we want to estimate

I =

∫ b

a
dxf(x) =

∫ b

a
dx
f(x)

p(x)
p(x) (7)

where p(x) is a probability distribution. We can write this as

I = Ep

[
f(x)

p(x)

]
This lets us estimate a variance for I as

Ep

[(
f(x)

p(x)
− Ep

[
f(x)

p(x)

])2
]

= Ep

[(
f(x)

p(x)

)2
]
−
(
Ep

[
f(x)

p(x)

])2

How do we make a numerical estimate for I? Following equation 7 we generate xi with
probability distribution p() and compute

I ≈ 1

N

∑
i

f(xi)

p(xi)
. (8)

The variance in this estimate will depend on the expectation value (using probability
distribution p) of (f(x)/p(x))2.

We can minimize the variance by choosing p(x) to have thicker tails than f(x). One
would chose the probability function p(x) to depress f ′s peaks and be larger than f when
f is small.

2.2 Importance sampling in statistical physics

In statistical physics one often wants to calculate an expectation value of a quantity for
a system that is in thermal equilibrium at temperature T . States are weighted by a
probability that depends on

e−βEi

(also known as the Boltzmann factor) with the state energy Ei and inverse temperature

β ≡ 1

kT
.

A normalized probability function for each energy state

PB(Ei) =
e−βEi

Z
(9)
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where
Z ≡

∑
i

e−βEi

is known as the partition function. The expectation value of a physical quantity X that
depends on the state is

〈X〉 =
∑
i

PB(Ei)Xi

A difficulty with computing this with a direct random sampling of energy states (using a
uniform distribution in energy) is that there may be many states that are not very likely,
or have exponentially small probability. We don’t want to spend a lot of time computing
the contribution of extremely unlikely energy states.

We could weight by PB(Ei), however this involves knowing the partition function. A
work around is to generate a series of energy values with distribution consistent with
a Boltzmann distribution without knowing or computing the partition function. This
motivates our next topic, Markov chains.

3 Markov chains

A Markov chain is a sequence of randomly generated numbers x0 → x1 → x2 → ... The
numbers belong to a subset of possible states. Each number is generated from the previous
one using a probability that only depends on the value you have at the previous step. We
can define the Markov chain in terms of transition probabilities between possible states.

pij = P (xn+1 = j|xn = i)

Here xn+1 is the n+1-th randomly generated variable and xn is the n-th generated variable.
The indices are the possible values. The probability pij is the probability that you would
get j if you had i previously.

3.1 Markov chain model for a random walk

For example consider a random walk on a one-dimensional grid where a walker either goes
to the right a step or to the left a step and each possibility has probability 1/2. The possible
states are the grid points and so are described by integers. The transition probabilities
from position 2 are p23 = 1/2 (to the right) , p21 = 1/2 (to the left), and p22 = 0 (not
moving). The transition probabilities form a 2 dimensional square matrix

P =



.. .. .. .. .. .. .. ..

.. 1
2 0 1

2 0 0 0 ..
.. 0 1

2 0 1
2 0 0 ..

.. 0 0 1
2 0 1

2 0 ..
.. 0 0 0 1

2 0 1
2 ..

.. .. .. .. .. .. .. ..


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The probabilities in each row must sum to 1. If we have two endpoints where the walkers
stay if they reach them, then

P =



1 0 0 0 ... 0 0 0 0
1
2 0 1

2 0 ... 0 0 0 0
0 1

2 0 1
2 ... 0 0 0 0

.. .. .. .. ... .. .. .. ..
0 0 0 0 ... 1

2 0 1
2 0

0 0 0 0 ... 0 1
2 0 1

2
0 0 0 0 ... 0 0 0 1


Suppose we start with a walker at a single position. This means the walker has a

probability 1 of being at a particular location. Its initial distribution

π0 =
(
0 0 0 1 0 ...

)
if the particle is located at the 4th position initial. This vector is a list of the initial
probabilities that the walkers are at each location. The sum of the values array should be
1, so

∑
i πi = 1.

After one step of the random walk, the new distribution of probabilities (to be in each
location) becomes a new vector of probabilities π1 with

π1 = π0P.

We multiply the horizontal vector π0 and the matrix P.

(
. . .

). . .
. . .
. . .


The probabilities at each position

π1,j =
∑
i

π0,iPij .

The sum over i arises because you need to taken into account all possible previous values
i for the random variable and the probability that the new state would transition from i
to j.

It’s sometimes nice to write the new distribution in terms of the transpose of the
transition matrix Pt,

π1 = Ptπ0

π1,j =
∑
i

P tjiπ0,i =
∑
i

π0,iPij

Now we can think of π1 as a square transition probability matrix times a vertical probability

distribution vector

. . .
. . .
. . .

..
.

.
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3.2 Detailed balance for MCMC models and stationary distributions

A Markov chain Monte Carlo or MCMC model is one where you simulate by gener-
ating a sequence of randomly generated variables. At each step you generate new variables
based on the previous ones. Often your goal is to measure the distribution of the variables
generated. In principle these could be calculated from the transition matrix and the initial
probability distribution.

A distribution π of a Markov chain is stationary if

πP = π.

That means the probability distribution is unchanged after you chose the next set of vari-
ables.

A distribution π satisfies detailed balance for a Markov chain if

πiPij = Pjiπj . (10)

A distribution that satisfies detailed balance is a stationary distribution. Suppose we start
with π0 and π1 = π0P. We compute the i-th element of π1

π1,j =
∑
i

π0,iPij

With equation 10

π1,j =
∑
i

Pjiπ0,j = π0,j
∑
i

Pji

However
∑

i Pji = 1 because each row must sum to 1. Consequently π1,j = π0,j and
π1 = π0. We have shown that a distribution that satisfies detailed balance (equation
10) is a stationary distribution.

A stationary distribution of a Markov chain is not necessarily an attracting or stable
distribution.

The distribution of generated variables can become independent of the initial conditions
and approach a stable or limiting stationary distribution πl. In this case

Pn →


πl
πl
..
πl


where each row of the matrix is the limiting distribution πl. In this case limn→∞ P

n
ij = πl,j

and is independent of i.
Consider an initial condition xi = i. If the probability is non-zero that at some later

iteration step that the random variable could be xj = j we say that i and j states com-
municate. There is some possible path between the states. If all states communicate with
all other states the Markov chains is irreducible.
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A state i is recurrent if the probability is 1 that at some later iteration step the state
will again be i. Otherwise state i is transient.

An chain is ergodic if it is recurrent and aperiodic. (There is also a condition on the
recurrence times).

An irreducible, ergodic Markov chain model has a unique limiting, attracting and sta-
tionary probability distribution. (This is a theorem!)

4 The Markov Chain methods for statistical physics

Start with a system in a particular energy state Ei. Each step involves a random choice to
move the system into another energy state or not. We use a transition probability Tij to
move the system from state Ei to Ej . With indices reversed, Tji moves the system from
Ej back to Ei. As Tij is a probability we require that

∑
j Tij = 1.

We choose transition probabilities that satisfy

Tij
Tji

=
PB(Ej)

PB(Ei)
=
e−βEj/Z

e−βEi/Z
= e−β(Ej−Ei) (11)

where PB is defined in equation 9 via the Boltzmann factor. Notice the similarity between
this condition and equation 10. We are choosing transition probabilities for a Markov chain
model that will give us a stationary distribution consistent with Boltzmann probabilities.

We start with Ei. What is the distribution of new energy states Ej after we make
transitions using the transition probability Tij? The distribution of Ej is given by Tij .

If Ei has a distribution p(Ei) what is the probability distribution of Ej after using the
transition probabilities? It is

p(Ej) =
∑
i

Tijp(Ei).

What if the probability that the state is in Ei is equal to the Boltzmann distribution
p(Ei) = PB(Ei)? Then using equation 11

p(Ej) =
∑
i

Tijp(Ei)

=
∑
i

TijPB(Ei)

=
∑
i

TjiPB(Ej)

= PB(Ej)
∑
i

Tji

= PB(Ej).
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If the probability of being in state i satisfies the Boltzmann distribution then so will
the probability of being in state j. We have just shown that the Boltzmann distribution
is a stationary distribution of the iterative MCMC method as long as the transition
probabilities satisfy equation 11.

Now we need a way to generate a transition probabilities Tij for the Markov chain in
such a way as to satisfy equation 11.

We would like that choice, when iterated, would give us a system that not only has
the Boltzmann distribution as a limiting distribution but also converges onto set of states
consistent with a Boltzmann distribution (and so in thermal equilibrium) even if our initial
state is highly unlikely at our assumed temperature.

4.1 Metropolis-Hastings method

The Metropolis algorithm applies to a system that has a variety of energy states. The
goal is to find states that are likely if the system is in thermal equilibrium. To apply the
algorithm you need a way to compute differences in energy of the system as it changes
state. You need to know the temperature T .

Start the system in some energy state.

• Randomly choose some part of the system to vary and some way to vary it. This
would give a new state with a new energy. Compute the difference between this
energy and the energy of the original state, ∆E.

• Accept the new state with a probability of acceptance Pa.

Repeat numerous times.
After running the algorithm for a while the distribution of states reached should be

given by the Boltzmann distribution.
Let’s describe the acceptance probability. Starting in state Ei the Metropolis method

accepts or rejects a change of state to Ej based on an acceptance probability

Pa =

{
1

e−β(Ej−Ei)
if

Ej ≤ Ei
Ej > Ei

(12)

Accept the change if the new state lowers the energy, otherwise only accept it based on the
Boltzmann distribution of the energy change.

We will now show that this acceptance probability is consistent with the requirement
for the transition probabilities in equation 11.

Consider transition probability Tij . If Ej ≤ Ei we use the first case in equation 11. If
the number of states with Ej ≤ Ei is M then

Tij =
1

M
.
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The transition in the opposite direction Tji involves going from higher to lower energy so
we use the second case in equation 12,

Tji =
1

M
e−β(Ei−Ej).

(We flip i, j in the exponential because we are going in the opposite direction). The ratio
is

Tij
Tij

= e−β(Ej−Ei), (13)

and this is consistent with our choice in equation 11.
Our recipe for the acceptance probability Pa (in equation 12) satisfies equation 11. And

that means that the recipe has as stationary distribution of states that is consistent with a
Boltzmann distribution. It does not mean necessarily that if you start out of equilibrium
that you would necessarily converge onto statistical equilibrium. However, all states are
reachable in principle so the Markov chain is irreducible. If it is also ergodic then the
stationary distribution is also attracting and stable.

The Metropolis algorithm has been used to explore phase transitions in a variety of
systems.

The Metropolis-Hastings algorithm works by generating a sequence of sample values, so
that as more and more sample values are produced, the distribution of values more closely
approximates the desired distribution which in the case described here is a Boltzmann
distribution. These sample values are produced iteratively, with the probability distribution
of the next sample being dependent only on the current sample value. The procedure for
generating the sequence of samples is a Markov chain Monte Carlo or MCMC model.
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