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1 Numerical Approximations to Partial Differential Equa-
tions

1.1 Elliptic, hyperbolic and parabolic partial differential equations

An example of an elliptic differential equation is the Poisson equation for the gravitational
potential Φ(x, y, z)

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 4πGρ(x) (1)

Elliptic equations are often associated with boundary value problems in which at every
point inside a domain of interest the solution depends on the data provided at the boundary
of the domain.

Hyperbolic partial differential equations are often associated with specifying initial
conditions and finding solutions at later times. A simple example is the wave equation

∂2ρ

∂t2
− c2 ∂

2ρ

∂x2
= 0 (2)

or the linear advection equation
∂u

∂t
+ c

∂u

∂x
= 0 (3)

Parabolic partial different equations require more than just an initial condition to be
specified for a solution. For example the conditions on the boundary could be specified
at all times as well as the initial conditions. An example is the one-dimensional diffusion
equation

∂ρ

∂t
=

∂

∂x

(
K
∂ρ

∂x

)
(4)

with diffusion coefficient K > 0.
Fluid equations can be a mixture of hyperbolic and elliptical presenting an additional

difficulty for solving them robustly.
For example the advection diffusion equation

∂u

∂t
+ c

∂u

∂x
= K

∂2u

∂x2
(5)
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is considered parabolic even though the left hand side is advective.

1.2 Boundary conditions

Hyperbolic equations such as the wave equation have have two derivatives in time and two
in space. An initial condition (both function and its derivative) is required and boundary
conditions on both side of the domain. Contrast this with Laplace’s equation for the
gravitational potential (∇ ·Φ = 0) which is an elliptic partial differential equation. In this
case conditions on the entire boundary are needed and specify the solution everywhere.
Either the function or its derivative must be specified on each of the boundaries and
changing the conditions at one point will change the solution everywhere. What accounts
for the difference in these two? Consider the elliptic operator

∂2

∂x2
+

∂2

∂y2
(6)

A solution that oscillates in x like e±ikx will typically behave exponential in y as e±ky. A
solution specified at one boundary (along x) may grow exponentially in the y direction.
Solutions are ill specified unless they are constrained on all boundaries. The hyperbolic
operator in comparison

∂2

∂t2
− c2 ∂

2

∂x2
(7)

has oscillatory solutions in both x and t and so solutions remain bounded.

1.3 General classification for linear systems

Consider two general linear equations

a1
∂u

∂x
+ b1

∂u

∂y
+ c1

∂v

∂x
+ d1

∂v

∂y
= f1 (8)

a2
∂u

∂x
+ b2

∂u

∂y
+ c2

∂v

∂x
+ d2

∂v

∂y
= f2 (9)

with real coefficients and real functions f1, f2. We can write this as(
a1 c1

a2 c2

)
∂W

∂x
+

(
b1 d1

b2 d2

)
∂W

∂y
= A

∂W

∂x
+ B

∂W

∂y
= f (10)

with

W =

(
u
v

)
, f =

(
f1

f2

)
(11)

and A,B are the matrices

A =

(
a1 c1

a2 c2

)
B =

(
b1 d1

b2 d2

)
(12)
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If we can invert A, we can write

∂W

∂x
+ A−1B

∂W

∂y
= A−1f (13)

If the matrix A−1B has two real eigenvalues then the equations are hyperbolic. If one
eigenvalue is zero then equations are parabolic and if the eigenvalues are complex the
equations are elliptic. We can think of elliptic equations as having no characteristics, those
of hyperbolic equations as having two characteristics, and those that are parabolic with
one real eigenvalue as having one characteristic.

The wave equation, Laplace’s equation, and the advection equation are easily put into
the above form. The heat equation requires addition of a term dependent on u. If the
matrix A is not invertible one can switch the roles of x and t and can invert the matrix B
instead.

For a second order equation put in the form

autt + buxt + cuxx + dux + eut + f = 0 (14)

The equation is hyperbolic if ac− b2 < 0, parabolic if ac− b2 = 0 and elliptic if ac− b2 > 0.

1.3.1 Examples

The wave equation can be written as(
u
v

)
,t

+

(
0 −c
−c 0

)(
u
v

)
,x

= 0 (15)

The eigenvalues are ±c.
Laplaces’s equation can be written as(

u
v

)
,t

+

(
0 1
−1 0

)(
u
v

)
,x

= 0 (16)

There are no real eigenvalues.
The diffusion equation (ut = Kuxx) can be written as

ut −Kvx = 0

ux = v (17)

or as (
1 0
0 0

)(
u
v

)
,t

+

(
0 −K
1 0

)(
u
v

)
,x

=

(
0
v

)
(18)

The matrix on the left is not invertible. There are not two non-zero eigenvalues. One
eigenvalue is real. The system is considered parabolic.
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A note on the Shroedinger equation. The time independent Shroedinger equation con-
tains a Laplacian operator. Finding eigenfunctions for time independent problems is an
elliptic problem. The time dependent Shroedinger equation has ih∂t in it. This is complex
and gives wavelike solutions. Above we have discussed real coefficients. With complex co-
efficients it is possible to compute how wave functions evolve with time using a hyperbolic
scheme.

1.4 Hyperbolic equations in conservational law form

Often our fluid equations can be put in conservation law form. Consider the conservation
law

∂tU + ∂xF(U) = 0 (19)

where ∂t is short for ∂
∂t . Here F is a vector of fluxes for conserved quantities. For example,

the isothermal gas in 1d

U = (ρ, j) F = (j, c2ρ+ j2/ρ) (20)

with j = ρu and c the sound speed so our differential equation looks like

∂t

(
ρ
j

)
+ ∂x

(
j

c2ρ+ j2/ρ

)
= 0 (21)

For hydrodynamics in one dimension j = ρu is the momentum flux. The pressure is a
force per unit are or a change in momentum per unit area, so we can think of pressure as a
momentum flux. And in more than 1 dimension it contributes to the diagonal terms in the
stress tensor. For the isothermal gas ρc2 = p and the momentum flux is ρc2+j2/ρ = p+ρu2.
Here ρu2 we can recognize as ram pressure and is also a momentum flux.

Using the Jacobian J(U) = ∂F(U)
∂U , we can write the differential equation in quasilinear

(but not conservation law) form

∂tU + J(U)∂xU = 0 (22)

If the Jacobian has real eigenvalues and a complete set of linearly independent eigenvectors.
Then the system is hyperbolic.

For example our isothermal 1d gas has

J(U) =

(
0 1

c2 − u2 2u

)
(23)

This Jacobian has two eigenvalues u± c and the Riemann invariants are eigenvectors.
Consider small perturbations with

ρ(x, t) = ρ0 + ρ1(x, t)

j(x, t) = j1(x, t)
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where ρ1 � ρ0 and j1 are small. Our state vectors

U0 = (ρ0, 0)

U1 = (ρ1, j1)

To first order in the small quantities our partial differential equation (equation 21) looks
like

∂tU1 + J(U0)∂xU1 = 0 (24)

Inserting U0 into our Jacobian matrix we find

J(U0) =

(
0 1
c2 0

)
(25)

Because our Jacobian matrix is now full of constants, the problem is linear.

ρ1t + j1x = 0

j1t + c2ρ1x = 0

Taking the time derivative of the first equation and x derivative of the second equation

ρ1tt + j1xt = 0

j1xt + c2ρ1xx = 0

We find
ρ1tt − c2ρ1xx = 0

which is the wave equation. So small perturbations travel at the speed of sound. Here
we used an isothermal gas but we would have arrived at the same result using an isobaric
equation of state p(ρ) with c2 = dp/dρ.

We can write J = RΛL where Λ is a diagonal matrix containing the eigenvalues.
The transformations R and L are composed of left and right eigenvectors. We can define
characteristic variables as v = R−1U or v = LU so that v is in terms of the eigenvectors.

1.5 Lagrangian vs Eulerian integration approaches

Lagrangians methods are particle based. An example is integrating N bodies interaction
with gravitational forces. Another example is modeling traffic flow by updating positions
and velocities of cars. This is in the viewpoint of individual car drivers. Eulerian techniques
instead work in a fixed background coordinate system. Traffic flow can be modeled by
computing the mean number density and mean car velocity as a function of position on
the road, from the viewpoint of an outside viewer rather car drivers.

The two approaches give different types of codes, for example SPH vs Grid based
simulations for hydrodynamics. In the limit of large numbers of particles and ultra-fine
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grids the two should give consistent results. The two approaches tend to be used in different
settings. SPH is often used when phenomena over a large dynamic range is simulated and
high accuracy is not as important. Grid based methods are more popular when the result
must be accurate and when shocks must be resolved.

1.6 Finite differences

There are a variety of approximations we could use for a derivative ∂f
∂x . We could use

f(x+ h)− f(x− h)

2h
or

f(x+ h)− f(x)

h
or

f(x)− f(x− h)

h
(26)

where h represents our grid spacing. Each of these is accurate to at least first order in h (the
one on the left is accurate to second order). Let us consider higher order approximation
using a Taylor series.

f(x+ jh) = f(x) + f ′(x)(jh) + f ′′(x)
(jh)2

2!
+ · · ·+ fn(x)

(jh)n

n!
+O(hn+1) (27)

Using the Taylor expansion

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +O(h4)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) +O(h4) (28)

We see that
f(x+ h)− f(x)

h
∼ f ′(x) +O(h) (29)

is a first order approximation. Whereas,

f(x+ h)− f(x− h)

2h
∼ f ′(x) +O(h2) (30)

is second order. Adding the expressions for f(x + h) and f(x − h) and manipulating we
find a second order expression for the second derivative

f ′′(x) = h−2 [f(x+ h) + f(x− h)− 2f(x)] +O(h4) (31)

We can now use the above to construct an example of a second order in space and first
order in time scheme for advancing the diffusion equation

∂u

∂t
= K

∂2u

∂x2
(32)

We denote unj as the value of u(x, t) at x = j∆x or at the j-th grid point and the n-th
timestep or time t = n∆t.
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Consider the following scheme approximating the diffusion equation

un+1
j = unj +K

∆t

(∆x)2
(unj+1 + unj−1 − 2unj ) (33)

accurate to first order in ∆t and second order in ∆x. This is an explicit scheme as the
term on the left hand side that is the next timestep only depends on terms (on the right
hand side) that are at the current time step.

1.7 Truncation Error, Accuracy and Consistency

Given a scheme and a differential equation how do we define its accuracy? We can estimate
a truncation error between that given by the scheme and that by the equation and use
Taylor series to measure this difference. Remember our differential equation

∂u

∂t
= K

∂2u

∂x2
(34)

Let us write the above scheme (equation 33) as

un+1
j − unj

∆t
−K

(unj+1 + unj−1 − 2unj )

(∆x)2
= 0 (35)

The Taylor expansion of each term is

un+1
j = unj + ∆t

∂u

∂t
+

(∆t)2

2

∂2u

∂t2
+O((∆t)3) (36)

unj+1 = unj + ∆x
∂u

∂x
+

(∆x)2

2

∂2u

∂x2
+

(∆x)3

6

∂3u

∂x3
+

(∆x)4

4!

∂4u

∂x4
+O((∆x)5) (37)

unj−1 = unj −∆x
∂u

∂x
+

(∆x)2

2

∂2u

∂x2
− (∆x)3

6

∂3u

∂x3
+

(∆x)4

4!

∂4u

∂x4
+O((∆x)5) (38)

We insert these into the above finite difference equation finding

εnj =
∂u

∂t
−K∂2u

∂x2
+

∆t

2

∂2u

∂t2
−K (∆x)2

12

∂4u

∂x4
+O((∆t)2, (∆x)4) (39)

Using our differential equation we estimate the truncation error as

εnj = O(∆t,∆x2) (40)

The scheme is first order accurate in time and second-order accurate in space.
A scheme is said to be consistent if the truncation error goes to zero as ∆t → 0 and

∆x→ 0 independently. If the truncation error is of the form εni = O((∆t)p, (∆x)q) we say
the scheme is order p in t and order q in x. What is meant by independently? Both ∆t
and ∆x must go to zero for the error to go to zero. However it doesn’t matter what order
we take the limit or if ∆x depends on ∆t.
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1.8 Big Oh notation

For two functions f(h) and g(h) we say that

f(h) is O(g(h)) as h→ 0 (41)

If there is a constant C such that∣∣∣∣f(h)

g(h)

∣∣∣∣ < C for all h sufficiently small (42)

1.9 Finding coefficients for a scheme – an example

Supposing you want a second order approximation to ∂u
∂x that involves uj , uj−1 and uj−2.

This situation you might find at a boundary. We expand uj , uj−1, uj−2 using a Taylor
series expanded about the position of the j grid point. We add the sums together, but
each term is weighted by an unknown coefficient. We group the terms by the derivatives
evaluated at the j grid point. We set the sum equal to the desired derivative, ∂u

∂x . This
gives us 3 equations in 3 coefficients, one for each derivative. We solve for the coefficients.

We describe our scheme as
auj + buj−1 + cuj−2 (43)

Here a, b, c are the unknown coefficients. Using a Taylor series we expand out the difference
between our scheme and our desired derivative

ε = (auj + buj−1 + cuj−2)− ∂u

∂x

= (a+ b+ c)uj − (b+ 2c)h
∂u

∂x
+ (b+ 4c)

h2

2

∂2u

∂x2
+O(h3)− ∂u

∂x
(44)

where h = ∆x. We want ε to be small so that our scheme is accurate. To make ε small we
set each group of terms to zero. This reduces to the following equations for our coefficients

a+ b+ c = 0

(b+ 2c)h+ 1 = 0

b+ 4c = 0 (45)

We solve this set of equations. The solution is a = 3
2h , b = − 2

h , c = 1
2h and so our scheme is

∂u

∂x
≈ 1

h

(
3

2
uj − 2uj−1 +

1

2
uj−2

)
. (46)

The neglected terms in the expansion are proportional to h3 ∂3u
∂x3

. Because these terms are
proportional to the coefficients a, b, c and these are proportional to h−1 the remaining terms
would be proportional to h2. The scheme is therefor a second order in x approximation to
∂u
∂x . We expect 2 grid points are needed for a first order approximation to the derivative,
whereas three are needed for a second derivative. Three grid points are needed for a second
order approximation to the first derivative.
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Figure 1: Some examples of unstable hydrodynamics integrations. Here I increased the
timestep to just above that given by the CFL condition.

1.10 Stability (von Neumann analysis)

Above we considered the following scheme approximating the diffusion equation

un+1
j = unj +K

∆t

(∆x)2
(unj+1 + unj−1 − 2unj ) (47)

Suppose we try and improve the above scheme so that it is second order in time with
the following

un+1
j = un−1

j + 2K
∆t

(∆x)2
(unj+1 + unj−1 − 2unj ) (48)

What we are going to find is that even though the the scheme in equation 48 looks
better (is higher order in time) it is actually unconditionally unstable (for any choice of
time step) and so completely unusable. In contrast the scheme in equation 47, even though
it is lower order in time, is stable, as long as we choose the time step appropriately.

Let’s assume our function is restricted to a domain of size X with the number of grid
points an integer, L,

L =
X

∆x
(49)

and has periodic boundary conditions. Our scheme is an L dimensional map, un → un+1.
Using a discrete Fourier transform for our vector u we can make a vector of Fourier co-
efficients û. Our scheme also gives a map in Fourier space ûn → ûn+1. We can look at
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the map for each wave vector k. If the map is unstable for one of the Fourier coefficients,
then that Fourier coefficient will grow and we will see a wave-like structure grow during
the integration (see Figure 1).

Represent u with a Fourier series in space

uj =
1

L

L∑
k=1

ûke
−2πikj/L (50)

and inverse transform

ûk =
L∑
j=1

uje
2πikj/L (51)

Fourier amplitudes, ûk, evolve with time. At time t = n∆t and x = xj = j∆x

unj =
1

L

L∑
k=1

ûnke
−2πikj∆x/X =

1

L

L∑
k=1

ûnke
−ijφk (52)

with phase angle

φk ≡
2πk∆x

X
(53)

At the same time but at position j + 1 or x = xj+1 = (j + 1)∆x

unj+1 =
1

L

L∑
k=1

ûnke
−i(j+1)φk =

1

L

L∑
k=1

ûnke
−ijφk × e−iφk , (54)

likewise,

unj−1 =
1

L

L∑
k=1

ûnke
−ijφk × eiφk . (55)

Now insert our Fourier expansion into the scheme of equation (48)

1

L

L∑
k=1

ûn+1
k e−ijφk =

1

L

L∑
k=1

ûn−1
k e−ijφk

+
2K∆t

(∆x)2L

L∑
k=1

ûnk

[
e−ijφk × e−iφk + e−ijφk × eiφk − 2e−ijφk

]
(56)

Dropping the sums and the factor e−ijφk ,

ûn+1
k = ûn−1

k + d
(
ûnke

−iφk + ûnke
−iφke−iφk − 2ûnk

)
= ûn−1

k + dûnk

(
e−iφk + e−iφk − 2

)
= ûn−1

k + 2dûnk(cosφk − 1) (57)

11



with

d ≡ 2K
∆t

(∆x)2
(58)

We can write equation 57 as a matrix[
ûn+1

ûn

]
= G

[
ûn

ûn−1

]
(59)

with amplification matrix G,

G =

[
2d(cosφk − 1) 1

1 0

]
(60)

Each timestep we reapply the matrix G. If the solution grows exponentially for some value
of φ then we say the scheme is unstable.

Our phase angle φk depended on a wavevector k. If there is a value of φk that leads
to exponential growth then any perturbation that has wavevector k (or wavelength 2π/k
will grow exponentially. We would rather not have numerically solutions that falsely grew
small initial perturbations from something small to something large very quickly. Note if
you by mistake adopt an unstable numerical scheme you will see a particular wavelength
swamp your numerically generated solution in a few dozen timesteps.

A stability requirement is that the eigenvalues of the amplification matrix should not
lead to growth which means that their magnitudes should be less than 1 (note they could
be complex). The eigenvalues of G (equation 60) are

λ± = da±
√
d2a2 + 1 (61)

where a = (cosφk − 1). However if φk = π/2 then

|λ−| = | − d−
√
d2 + 1| = |d+

√
d2 + 1| > 1.

Repeated applications of G will lead to amplification so the scheme is unstable. Since the
scheme is unstable no matter what size timestep is used we say the scheme (equation 48)
is unconditionally unstable.

A small change in the scheme can make it stable. Our previous scheme that I write
again here

un+1
j = unj +K

∆t

(∆x)2
(unj+1 + unj−1 − 2unj ) (62)

has amplification matrix

G = 1− 2
K∆t

(∆x)2
(1− cosφk) (63)
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We make sure that |G| < 1 for all possible φk. When 2 K∆t
(∆x)2

(1−cosφk) < −2 then |G| > 1.

We find stability only when

∆t <
(∆x)2

2K
. (64)

We say that the scheme (equation 62) is conditionally stable as stability depends on the
timestep. The above condition sets the choice of timestep with explicit schemes for the
diffusion equation. The above Fourier analysis of stability is known as von Neumann
stability analysis.

The conditionally stable scheme (equation 62) is vastly superior (as it can be used) to
the unstable scheme (equation 48), even though the unstable scheme is second order in ∆t
and so a higher order approximation to the diffusion equation than the stable one.

1.10.1 Physical meaning of stability

Consider again the differential equation that we are approximating

∂u

∂t
= K

∂2u

∂x2
(65)

where the diffusion coefficient K has units of cm2/s. Information propagates over a distance
∆x in a timescale tdiffusion = (∆x)2/K. The above condition for stability (equation 64) is
equivalent to demanding that the timestep be shorter than the timescale for information
to propagate between grid points.

1.11 Upwind differencing

Consider the advection equation
∂u

∂t
+ a

∂u

∂x
= 0 (66)

and asymmetric first order scheme

un+1
j − unj

∆t
+O(∆t) + a

unj − unj−1

∆x
+O(∆x) = 0 (67)

which can be written explicitly as

un+1
j = unj + σ(unj−1 − unj ) (68)

with

σ ≡ a∆t

∆x
. (69)

We can write this as
un+1 = Lun = [I + σ(S−1 − I)]un (70)
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where S is a shift operator and I an identity operator. In Fourier space this becomes
ûn+1
k = Gûnk and our operator G is the function

λ = 1 + σ(eiφk − 1) (71)

where we have directly replaced G with λ so that it is clear we are thinking about it as an
eigenvalue with amplitude that determines the stability of the map in Fourier space. For
stability we require that |λ| < 1 for all possible φk with eigenvalue λ. Take the complex
conjugate of λ

λ̄ = 1 + σ(e−iφk − 1) (72)

|λ|2 = λλ̄ = 1− 4σ(1− σ) sin2 φk
2

(73)

and we have stability only if σ < 1 (assuming that our velocity a > 0). This corresponds
to the condition

a∆t

∆x
< 1 (74)

which is known as the CFL or Courant-Friedrichs-Lewy condition. Physically information
is propagated along a grid cell of size ∆x in a time t ∼ ∆x/a. Our CFL condition

∆t <
∆x

a
(75)

is consistent with this timescale.

1.12 Upwind vs Downwind

Supposing we had not used an upwind scheme but instead had used a downwind one or

un+1
j = unj + σ(unj − unj+1) (76)

This gives

λ = 1 + σ(1− eiφk)

λ̄ = 1 + σ(1− e−iφk) (77)

But in this case

|λ|2 = 1 + 4σ(1 + σ) sin2 φk
2

(78)

and |λ| is always greater than one (for a > 0). Note that for a > 0 the upwind scheme is
stable as long as the CFL condition is satisfied but the downwind scheme is unconditionally
unstable.

Consider flipping the sign of a in the advection equation so that the upwind direction
becomes our previously downwind direction. It makes sense that the above equation for
|λ|2 (equation 78) is the same as equation 73 but with the sign of σ and a flipped.

14



1.13 Upwind method for linear systems with positive and negative char-
acteristics

We consider the system
Ut + AUx = 0 (79)

where A = RΛR−1 and Λ a diagonal matrix with nonzero and real (but not necessarily all
positive) eigenvalues, λi.

How does one modify the upwind method for a linear system with characteristic veloc-
ities λi with some positive and some negative?

Let

λ+
p = max(λp, 0)

λ−p = min(λp, 0) (80)

and matrices where we replace negative or positive eigenvalues with zeros

Λ+ = diag(λ+
1 , λ

+
2 , ...., λ

+
m)

Λ− = diag(λ−1 , λ
−
2 , ...., λ

−
m) (81)

Note Λ = Λ+ + Λ−. We can define

A+ = RΛ+R−1 A− = RΛ−R−1 (82)

In the basis of our eigenvectors the upwind scheme can written as

Vn+1
j = Vn

j −
∆t

∆x
Λ+(Vn

j −Vn
j−1)− ∆t

∆x
Λ−(Vn

j+1 −Vn
j ) (83)

Back in our original basis

Un+1
j = Un

j −
∆t

∆x
A+(Un

j −Un
j−1)− ∆t

∆x
A−(Un

j+1 −Un
j ) (84)

giving us a compact notation for an upwind scheme when we have both positive and
negative characteristic velocities.

1.14 The Modified equation – Numerically generated diffusion and dis-
persion

Let’s look at the form of our error for our upwind scheme for the linear advection equation
u,t + au,x = 0. We recall the scheme is

un+1
j = unj + σ(unj−1 − unj ) (85)
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with σ = a∆t/∆x. The Taylor expansion of each term is

un+1
j = unj + ∆t

∂u

∂t
+

(∆t)2

2

∂2u

∂t2
+O((∆t)3) (86)

unj+1 = unj + ∆x
∂u

∂x
+

(∆x)2

2

∂2u

∂x2
+

(∆x)3

6

∂3u

∂x3
+

(∆x)4

4!

∂4u

∂x4
+O((∆x)5) (87)

unj−1 = unj −∆x
∂u

∂x
+

(∆x)2

2

∂2u

∂x2
− (∆x)3

6

∂3u

∂x3
+

(∆x)4

4!

∂4u

∂x4
+O((∆x)5) (88)

Now substitute these back into our difference equation we find

∆t
∂u

∂t
= σ

[
−∆x

∂u

∂x
+

(∆x)2

2

∂2u

∂x2
− (∆x)3

6

∂3u

∂x3

]
+O(∆t2,∆x3) (89)

becoming
∂u

∂t
+ a

∂u

∂x
=
a∆x

2

∂2u

∂x2
+O(∆t,∆x2) (90)

While our finite difference technique is O(∆x) approximating the linear advection equation,
it is O((∆x)2) approximating the above differential equation.

Our finite difference technique is integrating to a higher precision an equation that is
not the same as one desired and has additional terms. In particular the term proportional
to ∂2u

∂x2
is diffusive so we have an advection diffusion equation. The amount of diffusion

depends on a∆x. Our original equation had solutions in the form f(x − at). Because of
the diffusive term a function with sharp edge will smooth as it propagates. The amplitude
of a traveling wave will decrease with time. Consider inserting a wave u ∝ ei(ωt−kx) into
the above equation. We find a dispersion relation

ω = ak + ik2a∆x/2 (91)

Leading to amplitude of the wave decaying with e−k
2a∆x/2.

Another example is the second order Lax-Wendroff method which is a second order
accurate finite difference method for the linear advection equation. The Lax-Wendroff
scheme approximates the linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0 (92)

with

un+1
j = uj −

a∆t

2∆x
(unj+1 − unj−1) +

a2(∆t)2

2(∆x)2
(unj+1 + unj−1 − 2unj ). (93)

The scheme is based on the Taylor expansion to second order

un+1
j = unj + ∆t

∂unj
∂t

+
(∆t)2

2

∂2unj
∂t2

. (94)
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The Lax-Wendroff method is equivalent to a modified equation to order O((∆x)3) that
is in the form

∂u

∂t
+ a

∂u

∂x
= µ

∂3u

∂x3
(95)

The above is a dispersive equation. If we insert u ∝ ei(ωt−kx) we find a dispersion relation

ω = ak + µk3 (96)

Each frequency propagates at a slightly different velocity. For the Lax-Wendroff method
µ = (∆x)2a(ν2−1)/6 where ν = a∆t/∆x is the Courant number. For stability ν < 1 so we
expect µ < 0 and all wave numbers travel more slowly than they should be. The smaller
wavenumbers have larger k values and travel the fastest. A discontinuity will not remain
sharp. High frequency waves will arrive first giving oscillations in front of a traveling
discontinuity.

1.15 General Issues for Finite Differencing Schemes

Numerical integration by finite differencing introduces errors. Numerical instability is in-
tolerable and so only schemes that are stable can be used. Implicit schemes can achieve
stability and accuracy but are more difficult to solve than explicit schemes. Errors in-
troduced can take different forms such as numerical or artificial viscosity, diffusion and
dispersion. Typically first order schemes are more diffusive than second order schemes and
so don’t well resolve discontinuities or shocks and energy is lost during propagation of waves
or discontinuities. Higher order schemes can be dispersive and cause unphysical oscillations
near discontinuities. Shocks may not propagate at the desired sound speed. More complex
methods such as those involving Riemann solvers may solve some of these problems but
at the expense of additional computational complexity and associated inflexibility in the
code making it more difficult to add additional physical processes into the code.

For most hyperbolic problems one expects a stability condition based on the CFL
condition setting the timestep ∆t . ∆x/a where a is the speed of characteristics. For
diffusive systems a condition on the timestep ∆t . (∆x)2/K for diffusion coefficient K.
For mixed advection and parabolic systems we would expect that both conditions must be
satisfied.

1.16 Some Simple Finite Differencing Schemes

If you expect a positive velocity at all positions in your grid then you can use a one-sided
first order scheme. Remember that it must be upwind to be stable. For the linear advection
equation ut + aux = 0, and a > 0 choose

un+1
j = unj − a

∆t

∆x
(unj − unj−1) (97)
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If a < 0 choose

un+1
j = unj − a

∆t

∆x
(unj+1 − unj ) (98)

When I modify these schemes to cover a non-linear setting I have found that a fixed
boundary can present a problem causing instability. We have had trouble on the boundary
when trying to model a 1-dimensional wind or accretion flow.

A first order scheme that is stable for both positive and negative velocities is the Lax-
Friedrichs scheme or

un+1
j =

unj+1 + unj−1

2
− a∆t

∆x

(unj+1 − unj−1)

2
(99)

For a nonlinear system in conservation law form

∂u

∂t
+

∂

∂x
[f(u)] = 0 (100)

and using a modified flux the Lax-Friedrichs method becomes

un+1
j =

unj+1 + unj−1

2
−
(

∆t

2∆x

)[
f(unj+1)− f(unj−1)

]
(101)

This stably covers a non-linear setting like Euler’s equation and conservation of mass in
1dimension and can be stable near a fixed boundary.

The Lax-Wendroff scheme is a second order scheme with

un+1
j = unj − a

(
∆t

∆x

)
(unj+1 − unj−1)

2
+ a2

(
∆t

∆x

)2 (unj+1 + unj−1 − 2unj )

2
(102)

This scheme can be modified to cover an advection-diffusion equation.
These are examples of schemes than can be quickly employed to explore solutions

a simple set of hyperbolic differential equations. However, more sophisticated schemes
would improve upon numerical viscosity, diffusion and dispersion, and ability to accurately
portray discontinuities.

1.17 Grids in different coordinate systems

Some examples to be added here!
Consider a grid with spacing that is set with a function, for example, by x = log y and

a differential equation that depends on y, t. It is straightforward to determine dx for the
grid spacing dx = dy/y and so modify a 1d finite differencing scheme.

Changes in 1d coordinate system are straightforward but varying the 2 or 3 coordinate
system is less so because differential operators become more complex (for example going
from cartesian coordinates to cylindrical coordinates).

The timestep for the entire grid is usually based on the minimal value of the CFL (or
related) condition.
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Figure 2: Stencils and finite difference equations for some common methods for the linear
problem ut +Aux = 0. Here ∆t = k and ∆x = h.

1.18 Boundary Conditions

The easiest boundary condition to use is a periodic periodic boundary. Excepting in the
case of periodic boundaries, a finite difference scheme must be modified specifically for
each boundary. When the integrated quantities are more than 1 dimensional (density
and velocity) then you must choose which variable is fixed on a fixed boundary and this
determines the sign that pulses get when they reflect off of the boundary. I have found that
a perfectly stable scheme can be unstable at a boundary, (presumably that means that the
boundary condition has been badly chosen).

When waves are generated, it is challenging to keep them from bouncing off the bound-
aries and interfering with the region of interest. Rotating systems present a particular
challenge.

I should give some examples of boundary conditions (first order ones) here! xxxx
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2 Conservative methods and Riemann Solvers

2.1 Conservation Laws and shock speeds

Conservation laws can be used to estimate shock speeds. Consider equation

∂tU + ∂xF(U) = 0 (103)

We can consider the conditions at a shock front that is moving with the speed s. The
Rankine-Hugoniot conditions become

s(U2 − U1) = F (U2)− F (U1) (104)

If the system is linear then F(U) = AU for matrix A.

s∆U = A∆U (105)

The above implies that a single discontinuity propagating at speed s can only do so if s is
an eigenvalue of A. Thus the eigenvalues of A give the characteristic velocities and these
are the same thing as shock velocities or velocities of discontinuity in the problem. When
the system is not linear we can still estimate shock speeds with equation (104). This gives
us a feeling why it is useful to consider our fluid equations in conservation law form. A
finite difference technique based on conservation law form will more truthfully match shock
speeds.

For example, we can write Burger’s equation in the quasi-linear form

∂tu+ u∂xu = 0 (106)

instead of in conservation law form ∂tu+ ∂x

(
u2

2

)
= 0.

Consider the following upwind method based on the non-conservation law form of
Burger’s equation

un+1
j = unj −

∆t

∆x
unj (unj − unj−1) (107)

Let’s look at a boundary with

u0
j =

{
1
0

for
j < 0
j ≥ 0

(108)

Unfortunately it is easy to verify that our finite difference technique gives u1
j = u0

j (no
change) for all j. This is obviously wrong as the discontinuity should propagate with the
velocity 1. This is an example of a case where the velocity of the discontinuity or shock is
very badly estimated by the finite difference scheme.
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2.2 Conservative schemes

Consider again the scalar conservation law

u,t + f(u),x = 0 (109)

One way around the problem posed above caused by a non-conservative scheme is to adopt
a finite difference scheme in the form

un+1
j = unj −

∆t

∆x
[G(un; j)−G(un; j − 1)] (110)

where the flux function G(u) could depend on a number of spatial positions (j values).
Here G(un; j − 1) is the same as G(un; j) but with all spatial positions shifted by 1.

If we choose our flux functions G correctly then the discontinuity will propagate at
the appropriate speed. When characteristics near a discontinuity converge we know the
discontinuity will propagate at a speed s given by the Rankine-Hugoniot condition

s(u2 − u1) = f(u2)− f(u1) (111)

If we choose G to be consistent with the flux f(u) then the discontinuity should propagate
at the right speed.

A conservative method or scheme for a conservation law is a numerical method in
the form

un+1
j = unj +

∆t

∆x

[
fj− 1

2
− fj+ 1

2

]
(112)

where the numerical flux
fj+ 1

2
= G(uj−lL , ...., uj+lR) (113)

is an approximation to the physical flux f(u). Here lL, lR are two non-negative numbers.
The indexes involve 1/2 arise from considering volumes over regions of space. For example
if we consider two boxes, each centered at the position given by j, j + 1 then we want the
flux through the interface between them or at j + 1/2. The simplest example would be if
G only involved two positions or

un+1
j = unn −

∆t

∆x

[
G(unj , u

n
j+1)−G(unj−1, u

n
j )
]

(114)

We need to specify a function G(ul, ur) that is a function of left and right positions.
Let’s explore a different scheme to Burger’s equation that is in conservation law form.

Using

G(ul, ur) = f(ul) =
1

2
u2
l (115)

we find

un+1
j = unj −

∆t

2∆x

[
(unj )2 − (unj−1)2

]
(116)
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This is an “upwind” method, and the choice of whether to use the right or left position for
G would depend on the sign of the characteristic velocities, specifying the upwind direction.

Or we could chose for our flux function an average,

G(ul, ur) =
1

2
[f(ul) + f(ur)] (117)

and giving

un+1
j = unn −

∆t

2∆x

[
f(unj+1)− f(unj−1)

]
(118)

This unfortunately is unconditional unstable.
The modified flux

G(ul, ur) =
1

2
[f(ul) + f(ur)]−

∆t

2∆x
(ur − ul) (119)

gives

un+1
j =

1

2

[
unj−1 + unj+1

]
− ∆t

2∆x

[
f(unj+1)− f(unj−1)

]
(120)

which is known as the Lax-Friedrichs method (and using fluxes here), and this is condi-
tionally stable. The extra term in the flux is based on an approximation to (∆t)2ux/(2∆x)
and so adds a diffusive flux term to G. The modification amounts to adding some artificial
viscosity to the centered flux function G.

As we have seen above a non-conservative method can lead to solution with the shock
propagating at the wrong speed. This motivates using conservation law forms of the
differential equations and considering characteristic velocities. An important development
in numerical approximations to hydrodynamics was Godunov’s method. Godunov proposed
a way to make use of the characteristics information within the framework of a conservative
method. Godunov suggested solving local Riemann problems forward in time at each
grid interface. Solutions to the Riemann problem give substantial information about the
characteristic structure and are exact solutions to conservation laws.

Before we go on to talk about Godunov’s method and Riemann solvers we first will
explore what is known as the Riemann problem.

2.3 The Riemann Problem

Consider a linear hyperbolic system

Ut + AUx = 0 (121)

with a discontinuous initial condition

U(x, t = 0) =

{
UL

UR
for

x < 0
x > 0

(122)
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Previously we discussed how to estimate a shock velocity or the velocity of a discontinuity
from a conservation law but we did it in only 1 dimension. The Riemann problem is
similar except we can have more than 1 characteristic velocity. What this means is that
a discontinuity may break up into a series of discontinuities each traveling with its own
speed.

For this to be hyperbolic, the matrix A must have m distinct and real eigenvalues
λ1 < λ2 < ... < λm where m is the dimension of the vector U. We write expand the initial
UL,UR in terms of eigenvectors of A which we call Ki.

UL =

m∑
i=1

αiKi UR =

m∑
i=1

βiKi (123)

Each eigenvector Ki has its own characteristic velocity λi. We can figure out the dis-
continuity propagation speed for each eigenvector. In eigenvector space we have m scalar
problems

∂wi
∂t

+ λi
∂wi
∂x

= 0 (124)

and m initial conditions

wi(x, t = 0) =

{
αi
βi

for
x < 0
x > 0

(125)

The solutions to each of these m initial value problems is

wi(x, t) = wi(x, 0)(x− λit) =

{
αi
βi

for
x− λit < 0
x− λit > 0

(126)

Our solution for the full problem can be described as

U(x, t) =
m∑

i=I+1

αiKi +
I∑
i=1

βiKi (127)

where I is the maximum value of i for which x − λit > 0 (remember we put all our
eigenvalues in increasing order).

2.3.1 2d Riemann problem

A 2 dimensional problem is a good one to start with as it is not trivial but illustrates what
happens when there are two characteristic velocities.

We expect two discontinuities one propagating at the characteristic of the first eigen-
value, the second one propagating at the second eigenvalue. For x − λ1t < 0 the solution
is equal to the left state UL. For x − λ2t > 0 the solution is equal to the right sate UR.
It is only for x− λ1t > 0 and x− λ2t < 0 or λ1t < x < λ2t that the solution is interesting.
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In this region, often called the star region, the new solution involves a sum of the initial
condition in the left and right states.

We look at the left and right eigenvalue decomposition for m = 2

UL = α1K1 + α2K2

UR = β1K1 + β2K2 (128)

In the star region we get the coefficient from the slower characteristic from the right and
the coefficient from the faster coefficient from the left,

U∗ = β1K1 + α2K2 (129)

The full solution is

U(x, t) =


UL

U∗
UR

for
x < λ1t
λ1t < x < λ2t
x > λ2t

(130)

2.4 Riemann Problem, the example of linearized gas dynamics

In one dimension recall that our continuity equation and Euler’s equation can be written

ρt + ρux + uρx = 0

ut + uux + c2
sρx/ρ = 0 (131)

where cs is the sound speed, and we have neglected gravity. Consider perturbations around
a steady state

ρ(x, t) = ρ0 + ρ1(x, t)

u(x, t) = 0 + u1(x, t) (132)

and u1 is small compared to cs and ρ1 is small compared to ρ0.
Taking only first order terms our differential equations become

ρ1,t + ρ0u1,x = 0

u1,t +
c2
s

ρ0
ρ1,x = 0 (133)

The above equations are know as the linearized equations of gas dynamics. The equa-
tions can be written in matrix form as(

ρ1

u1

)
t

+

(
0 ρ0

c2
s/ρ0 0

)(
ρ1

u1

)
x

= 0 (134)
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The eigenvalues are
λ1 = −cs λ2 = cs (135)

These eigenvalues correspond to right eigenvectors

K1 =

[
ρ0

−cs

]
K2 =

[
ρ0

cs

]
(136)

Now we consider our initial conditions

U(x, t = 0) =

{
UL

UR
for

x < 0
x > 0

(137)

First let us decompose the left state

UL =

[
ρL
uL

]
= α1

[
ρ0

−cs

]
+ α2

[
ρ0

cs

]
(138)

We solve for the coefficients finding

α1 =
csρL − ρ0uL

2csρ0
, α2 =

csρL + ρ0uL
2csρ0

(139)

Likewise we can solve for the coefficients of the eigenvectors for the right hand data

UR =

[
ρR
uR

]
= β1

[
ρ0

−cs

]
+ β2

[
ρ0

cs

]
(140)

finding for the coefficients

β1 =
csρR − ρ0uR

2csρ0
, β2 =

csρR + ρ0uR
2csρ0

(141)

Recall the solution in the star region (see previous subsection) is

U∗ = β1K1 + α2K2 (142)

Using our eigenvectors

U∗ =

[
ρ∗
u∗

]
= β1

[
ρ0

−cs

]
+ α2

[
ρ0

cs

]
(143)

Inserting our relations for β1 and α2 and simplifying we find that

ρ∗ =
1

2
(ρL + ρR)− 1

2
(uR − uL)ρ0/cs

u∗ =
1

2
(uL + uR)− 1

2
(ρR − ρL)cs/ρ0 (144)

The full solution is

(ρ, u)(x, t) =


(ρL, uL)
(ρ∗, u∗)
(ρR, uR)

for
x < −cst
−cst < x < cst
x > cst

(145)
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2.5 Riemann Problem and the Hugoniot locus

For a two dimensional linear system, there are two characteristic velocities (eigenvalues,
λ1, λ2), and two corresponding eigenvectors. A single discontinuity propagating with speed,
s, must satisfied the Rankine-Hugoniot condition. This implies that UL − UR must be
proportional to one of the eigenvectors.

For arbitrary left and right values, UL, UR, the difference between the two vectors
likely is not aligned with one of the eigenvectors. In this case two discontinuities arise,
one propagating at λ1 and the other at λ2. The state in between the two discontinuities
we called U∗. Each discontinuity must satisfy the Rankine-Hugoniot condition. For each
discontinuity we can consider the Rankine-Hugoniot locus (two lines, for the linear system).
We connect UL and UL by two Rankine-Hugoniot loci (one for each discontinuity) that
intersect at the value U∗.

See Figures 6 and 7.

2.6 Shocks and Rarefraction Waves in Burger’s equation

For the linear systems with constant coefficients the values of the characteristics don’t
depend on the initial conditions. Let’s consider a one dimensional non-linear example
before we generalize the Riemann problem to the non-linear case. Recall Burger’s equation

u,t + uu,x = 0 u,t +

(
u2

2

)
,x

= 0 (146)

The form on the left shows that characteristic velocities are given by u itself. The conser-
vation law form on the right shows a flux of u2/2.

Consider the following two initial conditions

u(x, t = 0)A =

{
1
1
2

for
x < 0
x ≥ 0

(147)

u(x, t = 0)B =

{
1
2
1

for
x < 0
x ≥ 0

(148)

For uA the characteristic velocity on the left side (x < 0) is 1 and the characteristic velocity
on the right side (x > 0) is 1/2. The characteristic velocity is larger on the left than the right
so the characteristics are converging. We will get a shock. Using the Ranking Hugoniot
relation we can find the shock velocity from the conservation law form of the equation.
Recall the jump condition for a conservation law U,t + F (U),x = 0.

s(U2 − U1) = F (U2)− F (U1) (149)

for shock velocity s. For our problem with the first set of initial conditions u2 = 1/2 and
u1 = 1, the fluxes are f2 = u2

2/2 = 1/8, and f1 = u2
1/2 = 1/2

s =
1/8− 1/2

1/2− 1
=

3/8

1/2
= 3/4 (150)
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What does the solution for uA look like?

u(x, t) =

{
1
1
2

for
x < st
x ≥ st (151)

Now let us consider the second initial condition

u(x, t = 0)B =

{
1
2
1

for
x < 0
x ≥ 0

(152)

In this case the characteristic velocity is lower on the left than on the right and the charac-
teristics are diverging. We will get a rarefraction wave. If we assume a fan of characteristics
coming from the discontinuity at t = 0 the solution is

u(x, t) =


1/2
x/t
1

for
x < t/2

t/2 < x ≤ t
x ≥ t

(153)

For a multidimensional non-linear system there are three cases to consider

• Shock wave. Characteristics converge. The Rankine-Hugoniot condition can be ap-
plied to the discontinuity to estimate its speed of propagation.

• Rarefaction wave. Characteristics diverge. There is a smooth transition. The initial
discontinuity becomes a smooth transition region.

• Contact Wave. Two characteristics are the same velocity. The Rankine-Hugoniot
condition applies to the discontinuity.

When we have three hydrodynamic conservation law equations, one for mass, one for
momentum and one for energy, we find three eigenvalues for the Jacobian matrix instead
of two eigenvalues. The three eigenvalues are u ± cs, u where u is the velocity and cs the
sound speed. The third eigenvalue can give you contact discontinuities.

When we have a linear system, then characteristics don’t converge or diverge. When
the system is non-linear, the Rankine-Hugoniot loci are curves rather than lines as shown
on Figure 6 and 7. Solutions that are discontinuous are not necessarily unique, however
not all of them are physically relevant, for example some of them may be unstable. We can
consider our linear equation as the vanishing viscosity limit of a second order differential
equation and try to chose discontinuous solutions that are vanishing viscosity limits of a
second order differential equation. This choice is often referred to as an entropy condition.
The rarefaction fan, with solution that is proportional to x/t, is such a limit and so is
considered a physically relevant solution.
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2.7 Riemann Problem and Hugoniot locus for a Non-Linear System

Supposing one one side of a jump we have U1 and flux F(U1). We can ask what values
of U2 and velocity s are allowed. The Rankine-Hugoniot jump condition relates s and U2

for a specific U1. The jump condition gives curves for U2, where each value corresponds
to a particular velocity, s. The set of points on these curves is often called the Hugoniot
locus. There may be more than one curve. If U2 lies along the p-th Hugoniot curve then
we say that U2 and U1 are connected by a p-shock. We can parametrize each curve with
a variable ξ where sp(ξ). At ξ = 0, we assert that U2,p(ξ = 0) = U1, and sp(ξ = 0) = 0,
corresponding to a shock with zero velocity and no jump.

The jump condition gives for each curve

F(U2,p(ξ))− F(U1) = sp(ξ)(U2,p(ξ)−U1). (154)

Differentiating this expression with respect to ξ and setting ξ = 0 gives

F′(U′2,p(0))U′2,p(0) = s′p(0)(U2,p(0)−U1) + sp(0)U′2,p(0), (155)

and using the condition for ξ = 0,

F′(U1)U′2,p(0) = sp(0)U′2,p(0). (156)

The above relation implies that U′2,p(0) is a right eigenvector of F′(U1) and that sp(0) is
an eigenvalue of this matrix.

For example consider the one dimensional gas dynamic equations for an isothermal
fluid.

ρt + jx = 0 (157)

jt +

(
j2

ρ
+ a2ρ

)
x

= 0 (158)

where j is the mass flux. This can be written

ut + f(u)x = 0 (159)

where

u =

(
ρ
j

)
(160)

and

f(u) =

(
j
j2

ρ + a2ρ

)
(161)

The Jacobian of the matrix is

f ′(u) =

[
0 1

a2 − j2

ρ2
2j/ρ

]
(162)
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and eigenvalues are

λ± =
j

ρ
± a (163)

and eigenvectors

r± =

(
1

j/ρ± a

)
. (164)

The Rankine-Hugoniot condition becomes

j2 − j1 = s(ρ2 − ρ1) (165)(
j2
2

ρ2
+ a2ρ2

)
−
(
j2
1

ρ1
+ a2ρ1

)
= s(j2 − j1). (166)

Solving for j2 and s in terms of ρ2

j2 =
ρ2j1
ρ1
± a
√
ρ2

ρ1
(ρ2 − ρ1) (167)

s =
j1
ρ1
± a
√
ρ2

ρ1
. (168)

We can parametrize the curves with ξ using

ρ2,p = ρ1(1 + ξ) (169)

Rewriting our solutions

u2,− = u1 + ξ

(
ρ1

j1 − aρ1
√

1 + ξ

)
, s− =

j1
ρ1
− a
√

1 + ξ (170)

u2,+ = u1 + ξ

(
ρ1

j1 + aρ1
√

1 + ξ

)
, s+ =

j1
ρ1

+ a
√

1 + ξ. (171)

Note that equation 156 related the eigenvalues and eigenvectors of the Jacobian matrix
at u1 to the Hugoniot locus. We can verify that the derivative limξ→0

∂u2,+
∂ξ (ξ) is pro-

portional to the positive right eigenvector and that limξ→0
∂u2,−
∂ξ (ξ) is proportional to the

left eigenvector. Likewise the velocities approach the eigenvalues, limξ→0 s±(ξ) = λ±, as
expected.

Note that not all solutions of the Rankine-Hugoniot condition may be physically rel-
evant (this problem is related to entropy conditions and limits of equations with finite
viscosity). Also there may not be a solution to the Riemann problem (loci may not inter-
sect).

As is true for the linear case conditions on either side of a discontinuity may not lie
along a locus. For the non-linear case, the locus is not a line but a curve. We must
consider a series of discontinuities that connect conditions on either side ul, ur. For a two
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dimensional system, two discontinuities are required. Instead of connecting ul, ur with
intersecting parallel lines (where lines are parallel to eigenvectors) we connect them with
two intersecting curves. The slopes of these curves at ul, ur are eigenvectors of the Jacobian.
As was true for the linear case, the path must first move along the locus with the slowest
eigenvalue and then on the locus with the faster eigenvalue.

2.8 Godunov’s Method

To update a cell value unj to a new value unj+1 Godunov proposed solving two local Riemann
problems, that for unj−1, u

n
j and that for unj , u

n
j+1. He proposed taking an average of the

combined solutions of these two Riemann problems and constructing un+1
j from it.

What is meant by a local Riemann problem? We first consider a scalar conservation
law

u,t + f(u),x = 0 (172)

The local Riemann problem for unj and unj+1 is solving the equation for future times with
an initial condition

u(x, t = 0) =

{
unj
unj+1

for
x > 0
x ≥ 0

(173)

The local Riemann problem is a Riemann problem at the intercell boundary.
In conservation law form

Un+1
j = Un

j +
∆t

∆x

[
Fj− 1

2
− Fj+ 1

2

]
(174)

where Fj+ 1
2

= F(Uj+ 1
2
) and Uj+ 1

2
is the solution to the Riemann problem the intercell

boundary between j and j + 1, or RP (Un
j ,U

n
j+1).

Two situations u∗ < 0, (negative speed in star region), u∗ > 0 (positive speed in star
region). For each of these two, there are 4 cases to consider. Left solution, right solution,
star/shock solution, and fan/rarefraction wave solution.

2.9 Roe’s approximate Riemann solver

One popular method is to approximate the non-linear system with a linear one. In this case
the Riemann problems solved are those for the linear system. For the non-linear system

ut + f(u)x = 0 (175)

at a particular grid location with neighboring values ul, ur, we solve the Reimann problem
for the linear system

ut +Aux = 0 (176)

where the matrix A is an approximation based on f(u) and depends on ul, ur.
The matrix A is called the Roe matrix. Requirements for the matrix, A,
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1. Hyperbolicity. The matrix A has complete set of real eigenvalues and eigenvectors.

2. Consistency.
lim

ul→u,ur→u
A(ul, ur) = f ′(u) (177)

3. Conservation. Obeys the conservation law so that discontinuities will propagate at
the appropriate velocity.

A(ur − ul) = f(ul)− f(ur). (178)

A good choice of A would be one that is the Jacobian, f ′(ū), but evaluated at a weighted
average of ul, ur. For gas dynamics the third condition seems to be satisfied when ū depends
on the average of ul, ur where both are weighted by the square root of the density. Because
a weighted average is used, the second condition is satisfied. Both Toro and LeVeque in
their books show that the third condition is satisfied with this choice of A, but it not
obvious how one chooses A for a general system. I think there is an extended theory by
Roe and collaborators exploring how to choose A.

An additional problem is posed by rarefraction waves as linear systems don’t exhibit
them and this approximate solver is using a linear system. One approach to this issue is
to modify the scheme to obtain entropy satisfying solutions.

More here! xxx

2.9.1 Notes

For a non-linear problem all possible combinations of rarefraction and shock waves for
each of the two local Riemann problems must be considered in constructing the Godunov
fluxes, and averaging over them for the new timestep. In approximate solvers the local
Riemann problems are approximated by linear systems and the procedure for constructing
the Godunov fluxes is simpler.

Godunov’s method matches shock speeds. Godunov originally used a first order upwind
scheme which since it is only first order has quite a bit of numerical dissipation. This is
why in many numerical textbooks the displayed Godunov solution appears very smooth
and does not show a sharp jump across a discontinuity. There is a large body of literature
developing higher order versions but with the same idea of relating the numerical scheme
to local Riemann problems and using conservative methods.
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Figure 11.1. Numerical and exact solution to (11.1) with h - 0.01 and the following
methods: (a) Lar-Friedrichs, (b) Upwind, (") Lar-Wendroff, (d) Beam-Warming.

Figure 3: From Randall LeVeque’s book Numerical Methods for Conservation Laws
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Figure 4: Structure of the solution of the Riemann problem for a general m dimensional
linear hyperbolic system with constant coefficients. λi are the characteristic velocities of
the system in order of increasing size. This figure shows characteristics so the horizontal
axis is x and the vertical axis is t. At a particular time draw a horizontal line across the
plot. The solution should have a jump crossing each characteristic. The x positions of each
jump is read off from the horizontal line.

Figure 5: Structure of the solution of the Riemann problem for a 2 dimensional linear
hyperbolic system with constant coefficients.
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Figure 6: The Hugoniot locus for the state UL consists of all states that differ from UL
by a scalar multiple of one of the eigenvectors, r1 or r2, shown on the lower left. This
plot is for a two-dimensional linear system, Ut + AUx = 0. Axes would be ρ and j for the
two dimensional linearized isothermal gas dynamics case. This Figure has been take from
Leveque’s book (his figure 6.3).

Figure 7: When UL and UR do not lie along a single eigenvector, two discontinuities prop-
agate, one at each characteristic velocity (or eigenvalue). The intermediate state, U∗ lies
at the intersection of the Hugoniot loci (each parallel to an eigenvector direction). To get
from UL to UR we must first travel along the r1 direction, where r1 corresponds to the
eigenvector with the slower characteristic velocity, and then along the r2 direction, corre-
sponding to the faster characteristic velocity. This Figure has been take from Leveque’s
book (his figure 6.4).
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