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1 Reaction-Diffusion equations

Alan Turing found mathematical models that would produce spatial patterns from arbitrary
initial states. These models were based on coupled chemical reactions but have since been
applied in numerous fields.
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1.0.1 The diffusion or heat equation

Let u be a concentration of something, e.g., numbers of molecules per unit volume.
The gradient of the concentration of u is ∇u. The rate of flow F or flux of u should de-

pend on the gradient F = −D∇u. The rate of change of u then depends on the divergence
of the flux or

∂u

∂t
= −∇ · F.

We expect there to be change in the local quantity of u only if there is variation in the
gradient of the flux. If the coefficient D is independent of position then we find

∂u

∂t
= D∇2u

which is known as the diffusion equation or if we replace u with temperature T , it is called
the heat equation.

1.0.2 Reaction Diffusion equations

Consider u and v to be concentrations of two chemicals. This means u ≥ 0 and v ≥ 0. The
chemicals can diffuse through space and they can react with one another and with other
reagents.

∂u

∂t
= Du∇2u+ fu(u, v) (1)

∂v

∂t
= Dv∇2v + fv(u, v). (2)

Here Du, Dv are the diffusion coefficients for u and v respectively. The functions fu(u, v)
and fv(u, v) are the local reaction rates. In two dimensions u(x, y, t) and v(x, y, t) and the

Laplacian operator ∆ = ∇2 = ∂2

∂x2
+ ∂2

∂y2
.

1.1 The Brusselator model

The Brusselator model (developed by a group in Brussels) has reactions

α→ u

β + u→ v

2u+ v → 3u

u→ E

where the concentrations of the reagents α, β,E ≥ 0 are kept constant. The reactions
together give

fu(u, v) = α− (β + 1)u+ u2v (3)

fv(u, v) = βu− u2v. (4)
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Figure 1: Patterns formed with the Brusselator model. u is on the left and v on the right.
The grid has a sinusoidal variation in α (horizontally on the grid) and β (vertically on the
grid). The mean values are αm = 5 and βm = 9 with amplitudes of variation 1 and 1.
Diffusion coefficients are Du = 2, Dv = 22, the grid is n = 400 grid points and square and
∆x = 1,∆t = 0.0025. The axes are x, y. Boundary conditions are periodic. The patterns
grow and then become fixed.

Here α is a feeding rate for u. The parameter β is a kill rate for u that converts u to v.
The uv2 term is a reaction term, producing u at the expense of v.

Allowing u, v to also diffuse

∂u

∂t
= Du∇2u+ α− (β + 1)u+ u2v (5)

∂v

∂t
= Dv∇2v + βu− u2v. (6)

This set of coupled equations displays a variety of phenomena, including growth of patterns
(see Figure 1) and long lived oscillating behavior (see Figure 3).

1.1.1 The steady state of the Brusselator model

We consider the reaction alone. What is the steady state solution? The steady state
solution satisfies

fu(u, v) = α− (β + 1)u+ u2v = 0

fv(u, v) = βu− u2v = 0
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The second equation gives β = uv and this in the first equation gives α = u and conse-
quently v = β/α. The steady state solution is

u0 = α

v0 =
β

α
. (7)

We can consider trajectories on the u, v plane. The steady state solution is a fixed
point.

1.2 Wavelengths of the patterns that grow

To try to understand which types of patterns grow we look at the stability of perturbations
near the steady state solution. Using linearized equations we estimate the growth rate as
a function of wavevector or wavelength.

1.2.1 Linear analysis near the steady state solution for the Brusselator model

We assume a solution that is near the steady state solution.

u(x, y, t) = u0 + u1(x, y, t)

v(x, y, t) = v0 + v1(x, y, t), (8)

where the steady state solution satisfies

fu(u0, v0) = 0

fv(u0, v0) = 0.

We expand the equations of motion to first order in u1, v1, assuming that they are
small.

We write down the equation of motion again (equation 6)

∂u

∂t
= Du∇2u+ α− (β + 1)u+ u2v (9)

∂v

∂t
= Dv∇2v + βu− u2v. (10)

Here is how to compute the non-linear terms

u2v = (u0 + u1)
2(v0 + v1)

= (u20 + 2u0u1 + u21)(v0 + v1)

= u20v0 + 2u0u1v0 + u21v0 + u20v1 + 2u0u1v1 + u21v1

= u20v0 + 2u0v0v1 + u20v1 + ....
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Figure 2: The real part γ+(k) giving the growth rate of perturbations for the Brusselator
model. The left axis shows the wavelength λ = 2π/k. The diffusion coefficients and α
are fixed and equation 14 used to compute the growth rate as a function of wave-vector k
and parameter β. The parameter α and diffusion coefficients are printed on the top of the
figures. Negative portions of the images are not shown. The white lines show zero growth
rate. If the diffusion coefficients are reduced, smaller wavelengths can become unstable.

The first order terms are 2u0v0v1 + u20v1.
We plug equations 8 into the equations of motion and only keep zeroth and first order

terms

u0,t + u1,t = Du(u0,xx + u1,xx + u0,yy + u1,yy) + α− (β + 1)(u0 + u1) + u20v0 + 2u0v0v1 + u20v1

v0,t + v1,t = Dv(v0,xx + v1,xx + v0,yy + v1,yy) + β(u0 + u1)− u20v0 − 2u0v0v1 + u20v1.

The steady state solution has u0,xx = 0, u0,yy = 0, u0,t = 0 and v0,xx = 0, v0,yy = 0,
v0,xx = 0. Deleting those terms we get

u1,t = Du(u1,xx + u1,yy)− (β + 1)u1 + 2u0v0v1 + u20v1 + α− (β + 1)u0 + u20v0

v1,t = Dv(v1,xx + v1,yy) + βu1 − u20v0 − 2u0v0v1 + u20v1 + βu0 − u20v0.

The terms that are zeroth order now drop out precisely because they involve the steady
state solution. We delete the zero-th order terms. To first order in u1, v1 and in two
dimensions the equations of motion for the Brusselator model are

u1,t = Du(u1,xx + u1,yy)− (β + 1)u1 + u20v1 + 2u0v0u1

v1,t = Dv(v1,xx + v1,yy) + βu1 − u20v1 − 2u0v0u1.

Using the steady state solution this becomes

u1,t = Du(u1,xx + u1,yy) + (β − 1)u1 + α2v1

v1,t = Dv(v1,xx + v1,yy)− βu1 − α2v1.
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We adopt a trial solution in the form

u1 = ũ1e
γt+ikxx+ikyy

v1 = ṽ1e
γt+ikxx+ikyy

giving [
γ +Du(k2x + k2y)− (β − 1)

]
ũ1 = α2ṽ1[

γ +Dv(k
2
x + k2y) + α2

]
ṽ1 = −βũ1.

We combine these together to find[
γ +Du(k2x + k2y)− (β − 1)

] [
γ +Dv(k

2
x + k2y) + α2

]
+ α2β = 0

This can be called the ‘characteristic equation’.
The characteristic equation is a quadratic equation for γ that is a function of k2 = k2x+k2y

and parameters α, β. This characteristic equation can be written in the form

γ2 +B(k)γ + C(k) = 0 (11)

with coefficients

B(k) = (Du +Dv)k
2 + α2 − β + 1 (12)

C(k) = DuDvk
4 +Duk

2α2 +Dvk
2(1− β) + α2. (13)

The quadratic formula

γ(k) = −B(k)

2
± 1

2

√
B2(k)− 4C(k). (14)

If there are values of wave vector k giving solutions for γ that have a positive real part,
these would correspond to perturbations that can grow exponentially quickly.

What wavevectors give a zero growth rate? These can be considered transition regions
and they would satisfy C(k) = 0.

Because B(k), C(k) are real functions, the larger of the two possible values for Reγ

Reγ+(k) =

{
−B(k)

2 + 1
2

√
B2(k)− 4C(k)

−B(k)
2

if
B2(k)− 4C(k) ≥ 0
B2(k)− 4C(k) < 0

(15)

The Brusselator model is specified by four parameters Du, Dv, α, β, but growth rate γ+
also depends on k. If you fix three of the parameters, say Du, Dv, α, you can show on a
two-d plot (the other two degrees of freedom β, k axes) the value of Reγ+. Where this is
positive, you expect growth of structure with wavelength 2π/k and with growth rate given
by Reγ+. See Figure 2 for some plots of Reγ+.
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Figure 3: The Brusselator model in 1-dimension integrated with Du = 0.3, Dv = Du/8,
α = 2, β = 5.4, ∆x = 1, ∆t = 0.005. The horizontal axis is time, and the vertical axis is
x. The boundary condition is periodic. This shows both development of spatial patterns
and time dependent structures.

1.2.2 Linear analysis with a Jacobian

Using reaction functions to first order about the steady state solution

fu(u0 + u1, v0 + v1) = fu(u0, v0) +
∂fu
∂u

∣∣∣∣
u0,v0

u1 +
∂fu
∂v

∣∣∣∣
u0,v0

v1

fv(u0 + u1, v0 + v1) = fv(u0, v0) +
∂fv
∂u

∣∣∣∣
u0,v0

u1 +
∂fv
∂v

∣∣∣∣
u0,v0

v1.

Let u = (u, v) and f(u) = (fu(u), fv(u)). The steady state solution u0 satisfies f(u0) = 0.
Expanding about the steady state solution

fu(u0 + u1) = fu(u0) + Df
∣∣∣
u0

u1 + ...

where Df is the Jacobian matrix. For the Brusselator model, the Jacobian matrix

Df =

(∂fu
∂u

∂fu
∂v

∂fv
∂u

∂fv
∂v

)
=

(
−(β + 1) + 2uv u2

β − 2uv −u2
)
.
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Evaluated at the steady state solution or fixed point (equation 7) the Jacobian matrix

Df
∣∣∣
u0

=

(
β − 1 α2

−β −α2

)
. (16)

The equation of motion in vector form

∂u

∂t
=

(
Du 0
0 Dv

)
∆u + f(u)

where the Laplacian operator ∆ = ∂2

∂x2
+ ∂2

∂y2
. To first order in u1 and expanded about the

steady state solution, the equation of motion is

∂u1

∂t
=

(
Du 0
0 Dv

)
∆u1 + Df

∣∣∣
u0

u1.

With trial solution u1 = ũ1e
γt+ik·x with k = (kx, ky) and x = (x, y) the first order equation

gives

γũ1 =

[
−
(
Du 0
0 Dv

)
k2 + Df

∣∣∣
u0

]
ũ1.

This can be rewritten with an identity matrix I[
−
(
Du 0
0 Dv

)
k2 + Df

∣∣∣
u0

− γI

]
ũ1 = 0

The thing inside the brackets is a matrix. We find the characteristic equation by taking
the determinant of the matrix and setting it to zero;

det

[(
γ +Duk

2 0
0 γ +Dvk

2

)
−Df

∣∣∣
u0

]
= 0.

For the Brusselator model and using equation 16 for the Jacobian matrix

det

[(
γ +Duk

2 0
0 γ +Dvk

2

)
−
(
β − 1 α2

−β −α2

)]
= 0(

γ +Duk
2 − β + 1

) (
γ +Dvk

2 + α2
)
− α2β = 0.

We find the same characteristic equation as we derived in the last section but using
different notation. As discussed in the last section, solutions to the characteristic equation
tell you whether small perturbations can grown. if the real part of γ(k) is positive then
perturbations with wavelength 2π/k are likely to grow. The linear analysis does not tell
you what types of patterns (like dots or ridges or spirals) are likely to form.
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Figure 4: Trajectories in u, v space for the Brusselator model taking into account only
evolution in u, v (without diffusion). The parameters α = 1, β = 2.5. The fixed point is
shown with a red dot and is unstable. Orbits are shown with colored lines. Arrows on the
left show vectors (dudt ,

dv
dt ). Arrows on the right show the same vectors but normalized so

that they all have the same length. Orbits are attracted to a limit cycle giving periodic
behavior.

Figure 5: Time evolution of u, v in the Brusselator model for α = 1, β = 2.5 showing a
limit cycle.
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1.3 Temporal behavior of the Brusselator model

We consider the Brusselator model at a single point and neglecting diffusion. The steady
state solution may not be stable. Let us look at the Jacobian matrix computed at the
steady state solution (equation 16) repeated here

J = Df
∣∣∣
u0

=

(
β − 1 α2

−β −α2

)
. (17)

We compute its trace and determinant

trJ = β − 1− α2

detJ = α2. (18)

We can compute the eigenvalues of this matrix. The eigenvalues of a 2x2 matrix in
terms of its trace and determinant

λ± =
1

2

(
trA+

√
trA− 4 detA

)
=

1

2

(
β − 1− α2 ±

√
(β − 1− α2)2 − 4α2

)
. (19)

The trace is the sum of the two eigenvalues and the determinant is the product of the two
eigenvalues. If both trace and determinant are positive the fixed point is a repeller and is
not stable.

Equations 18 and 19 show that the fixed point is unstable with positive real parts for
both eigenvalues if trJ > 0. This condition is

β − 1− α2 > 0 (20)

or equivalently
β > 1 + α2. (21)

If the two eigenvalues are complex then the unstable fixed point has circulation and
can give birth to a limit cycle (see Figures 4 and 5) . The eigenvalues have a complex part
if the quantity inside the square root (in equation 19) is negative or

2α > β − 1− α2,

where I assumed the sign for (β−1−α2) giving instability from equation 20. Equivalently
for the eigenvalues to have complex parts we require

β < (1 + α)2. (22)

Combining equations 21 and 22, the fixed point is both unstable and has complex
eigenvalues, (giving birth to a limit cycle and with what is known as a Hopf bifurcation) if

1 + α2 > β > (1 + α)2. (23)
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We will get interesting temporal behavior in the Brusselator model if this condition is
satisfied.

We should have discussed the global morphology of the system. For a limit cycle to
appear, the dynamical system must be sufficiently non-linear that distant from the fixed
point, trajectories move or contract toward the fixed point. We could make a quiver plot
of the vector u̇, v̇ on the u, v plane to show that trajectories tend to circulate and move
inwards at large values of u, v. Then orbits move away from the fixed point near the fixed
point and move toward it at large distances from it. The attracting stable trajectory is
a limit cycle which looks like a loop on the u, v plane, as shown in Figure 4 and gives
periodic behavior for u and v, as shown in Figure 5.

1.4 Numerical implementation

We model the system discretely in both space and time.
In two dimensions we make an evenly spaced grid for the u, v values. The 2-dimensional

spatial grid is specified by indices i, j where i = 0, 1, ...., N − 1 and j = 0, 1, ...., N − 1 for
an N ×N grid. The value of u at the i, j grid point is uij and the value of v is vij . The
distance between consecutive grid points in either x or y directions is ∆x.

We also discretize the system in time. We specify u, v values at evenly spaced times or
separated in time by a time-step ∆t. The value of uij at the n-th time-step is unij .

On a 1 dimensional spatial grid we can approximate the second derivative

∂2uj
∂x2

≈ uj+1 + uj−1 − 2uj
(∆x)2

The two dimensional Laplacian

∂2uij
∂x2

+
∂2uij
∂y2

≈ ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4uij
(∆x)2

We can use an Eulerian scheme to update the grid at the next time step using the u, v
values at the current time step. We approximate the time derivative

∂unij
∂t
≈
un+1
ij − unij

∆t

This gives

un+1
ij = unij + ∆t

∂unij
∂t

.

The time derivative on the right is specified by the right hand side for our equations of
motion. The full scheme is then

un+1
ij = unij + ∆t

(
Du

uni,j+1 + uni,j−1 + uni+1,j + uni−1,j − 4unij
(∆x)2

+ fu(unij , v
n
ij)

)
vn+1
ij = vnij + ∆t

(
Dv

uni,j+1 + uni,j−1 + uni+1,j + uni−1,j − 4unij
(∆x)2

+ fv(u
n
ij , v

n
ij)

)
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where fu, fv are the reaction rate functions. Starting with some initial conditions for u, v 2-
dimensional arrays, we can using this equation to compute new arrays for u, v consecutively
for each time-step.

1.4.1 Initial conditions

Reaction-diffusion equations can be quite sensitive to initial conditions. For the Brusselator
model, I find I tend to get nice patterns with u, v small but randomly chosen. For example,
u, v values on the grid chosen from uniform distributions in [0, 0.05).

1.4.2 Boundary conditions

Boundary conditions can affect the behavior of the model. The easiest type of boundary
condition to implement numerically is the periodic boundary condition where we take i
and j modulo N (the grid length) when computing the Laplacian.

1.4.3 Numerical Stability

The scheme will not be be stable unless we keep

∆t .
(∆x)2

max(Du, Dv)

This can be shown using von-Neumann analysis, but physically this condition can
be understood by considering the time it takes information to travel between grid cells.
Diffusion coefficients have units of Length2/Time and information on the grid travels with
scaling similar to that of a random walk. For a random walk, the variance of a number
of walkers (a distance squared) is proportional to time. The time required for the bulk of
them to travel a particular distance depends on the square of this distance. If the diffusion
coefficient is larger or/and the grid spacing is smaller, then the time step must be reduced
for the scheme to be numerically stable. If the scheme is unstable you will probably notice
because you will get zigzags in u and v and numerical values will then increase rapidly to
∞.

The condition is similar to the CFL condition for a hydrodynamic system where ∆t
should be lower than the time it takes for sound waves to travel between grid points.

1.5 The Gray-Scott model

The Gray-Scott model has

fu(u, v) = −uv2 + α(1− u) (24)

fv(u, v) = uv2 − (α+ β)v (25)
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Figure 6: Patterns formed with the Gray-Scott model. u is on the left and v on the right.
The grid has a sinusoidal variation in α (horizontally on the grid) and β (vertically on the
grid). The mean values are αm = 0.037 and βm = 0.06 with amplitudes of variation αm/2
and βm/8. Diffusion coefficients are Du = 0.2, Dv = Du/2, the grid is n = 400 grid points
and square and ∆x = ∆t = 1. Boundary conditions are periodic. The patterns grow but
some regions of the plot (lower right) vary in time. In most regions, the patterns become
fixed.

and

∂u

∂t
= Du∇2u− uv2 + α(1− u) (26)

∂v

∂t
= Dv∇2v + uv2 − (α+ β)v (27)

α feeding rate for u and a drain rate for u, v. β gives a kill or drain rate for v. The uv2

term is a reaction term, producing v at the expense of u. The Gray-Scott model, looks
remarkably similar to the Brusselator model.

Nice initial conditions (giving patterns) for the Gray-Scott model are u = 1, v = 0 and
some locations in the v array set to 1.
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Figure 7: Different types of non-degenerate fixed points in 2-dimensional dynamical systems
that are in the form ẋ = f(x). The eigenvalues of the Jacobian matrix evaluated at the
fixed point has imaginary components for the three systems in the top row. In the bottom
row, both eigenvalues are different and real. Nodes are stable if the real part of both the
eigenvalues are positive and unstable if they are both negative. If one eigenvalue is real
and negative and the other is positive, the fixed point is a saddle node.
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2 Stability of fixed points in a 2-dimensional dynamical sys-
tem

A dynamical system on the (x, y) can be described with a trajectory (x(t), y(t)). Consider
the system

dx

dt
= f(x, y)

dt

dt
= g(x, y)

specified by two functions f(x, y) and g(x, y).
A fixed point (x∗, y∗) satisfies

f(x∗, y∗) = 0

g(x∗, y∗) = 0. (28)

We can look at the vicinity of the fixed point. Let’s change variables to

x = x∗ + u

y = y∗ + v

Because x∗, y∗ are constants, dx
dt = du

dt and dy
dt = dv

dt The equation of motion becomes

du

dt
= f(x∗ + u, y∗ + v) ≈ f(x∗, y∗) + u

∂f(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂f(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

dv

dt
= g(x∗ + u, y∗ + v) ≈ g(x∗, y∗) + u

∂g(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂g(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

Because (x∗, y∗) is a fixed point (equation 28) the equations of motion become

du

dt
= u

∂f(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂f(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

dv

dt
= u

∂g(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂g(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

to first order in u, v. In vector notation

u =

(
u
v

)
.
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The Jacobian matrix

J(x, y) =

(
∂f(x,y)
∂x

∂f(x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

)
.

In matrix form the equation of motion near the fixed point is the linear dynamical system

du

dt
= J∗u

where the matrix J∗ = J(x∗, y∗) is evaluated at the fixed point.
This is a linear system and its behavior depends on the eigenvalues of the matrix J∗.

We assume a solution in the form u = eλtw with w a constant vector. We insert this into
the equation of motion to find

λw = J∗w. (29)

This implies that λ is an eigenvalue of J∗ and w = (uw, vw) is its accompanying eigenvector.
As the matrix is a 2x2 matrix, there are two eigenvalues λ1, λ2. If λ1 is real and positive

then trajectories exponentially diverge from the fixed point along the direction specified
by its eigenvector. If both λ1, λ2 are real and positive then the fixed point is a repeller and
is called an unstable node. If both λ1, λ2 are real and negative then the fixed point is an
attractor and is called a stable node. If one of the eigenvalues is positive and the other is
negative then the fixed point is a saddle node and nearby trajectories resemble hyperbolas.

Equation 29 can be rewritten using the identity matrix as

(J∗ − λI) w =

(
∂f
∂x − λ

∂f
∂y

∂g
∂x

∂g
∂y − λ

)(
uw
vw

)
= 0 (30)

where the derivatives are evaluated at the fixed point. This has a solution if and only if
the determinant of the matrix J∗ − λI is zero;∣∣∣∣∣∂f∂x − λ ∂f

∂y
∂g
∂x

∂g
∂y − λ

∣∣∣∣∣ = 0. (31)

This gives the following equation which is called the characteristic equation

λ2 −
(
∂f

∂x
+
∂g

∂y

)
λ+

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= 0.

The characteristic equation can be written in terms of the trace of the Jacobian tr(J∗) and
the determinant of the Jacobian det(J∗),

λ2 − tr(J∗)λ+ det(J∗) = 0.

The quadratic formula gives the eigenvalues

λ1, λ2 =
1

2
tr(J∗)±

1

2

√
(tr(J∗))2 − 4detJ∗.
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Figure 8: Classification of fixed points in 2-dimensional dynamical systems. J is the
Jacobian matrix evaluated at the fixed point.

The general solution near the fixed point is

u = c1e
λ1tw1 + c2e

λ2tw2

where w1 and w2 are the eigenvectors and constants c1, c2 are set by the initial condition.
Note that there is a degenerate case; two eigenvectors might not exist.

If the eigenvalues have imaginary parts then these parts are equal and opposite in sign
and there is rotation in the trajectories near the fixed point. If the real parts are positive
and the eigenvectors have imaginary components then the fixed point is an unstable spiral
or a spiral repeller. If the real parts are negative and the eigenvectors have imaginary com-
ponents then the fixed point is a stable spiral node or a spiral attractor. If the eigenvalues
are both imaginary (and the real parts are zero) then trajectories circle the fixed point and
the motion resembles that of a harmonic oscillator. See Figure 7 for some illustrations of
non-degenerate cases.

There are some other annoying details: If both eigenvalues are zero, then a whole
region is full of fixed points. If one eigenvalue is zero, there is a line of fixed points. There
are degenerate nodes that are at the boundary between spiral and not spiral. These can
have only a single eigenvector direction. If both eigenvalues are the same and are non-zero
and there are two eigenvectors then the trajectories look like a star. The entire range of
possibilities is shown in Figure 8.

3 Hopf bifurcation and the birth of limit cycles

A Hopf Bifurcation is a kind of bifurcation that only occurs in a two dimensional dynamical
system. A limit cycle is born from a fixed point that becomes unstable.
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A Hopf bifurcation is a system that is sensitive to a parameter that we can vary. As
the parameter is varied, the stability of the fixed point changes its nature and a periodic
solution is born. The fixed point loses its stability.

The eigenvalues of the Jacobian must be complex when the fixed point is unstable. The
fixed point becomes a spiral repeller. If the map distant from the fixed point contracts, a
stable and attracting periodic orbit known as a limit cycle is born.

3.0.1 The van der Pol oscillator

An example of a dynamical system that exhibits a limit cycle is the van der Pol oscillator

dx

dt
= µ(1− y2)x− y

dx

dt
= x. (32)

The Jacobian matrix is

J(x, y) =

(
µ(1− y2) −2µxy − 1

1 0

)
. (33)

The fixed point is at (x, y) = (0, 0). At the fixed point

J(0, 0) =

(
µ −1
1 0

)
. (34)

Taking the determinant of J(0, 0) we find the characteristic polynomial

λ2 − µλ+ 1 = 0,

which has solutions

λ1, λ2 =
µ

2
± 1

2

√
µ2 − 4. (35)

See Figure 9 for the behavior of real and complex parts of the eigenvalues.
As long as |µ| < 2 there is an imaginary part. If 0 < µ < 2 the real parts of the

eigenvalues are positive, there are imaginary parts and the fixed point is an unstable spiral
node. If −2 < µ < 0 the real part of the eigenvalues are negative, there are imaginary
parts and the fixed point is a stable spiral node.

The fixed point makes a transition from a stable to an unstable one at µ = 0. We
say the Hopf bifurcation occurs at µ = 0. We can consider the trajectories of the two
eigenvalues on the complex plane as µ is increased. The eigenvalues cross the imaginary
axis when µ = 0 (see Figure 9 right plot). The limit cycle only exists for 0 < µ < 2.

Take a look at Figures 4 and 5 showing limit cycles in the Brusselator model.
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Figure 9: Eigenvalues of the Jacobian of the fixed point (computed using equation 35) of
the van der Pol oscillator (with equation of motion in equation 32). Both eigenvalues are
plotted on both plots. The Hopf bifurcation occurs at µ = 0. For 0 < µ < 2 the fixed
point is an unstable spiral, and the system exhibits a limit cycle.
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