
PHY256 Lecture notes: Introducing Quantum Computing

A. C. Quillen

April 25, 2021

Contents

1 Universal gate sets on a classical computer 1

2 Logical operations on a Quantum computer 3
2.1 Classical logical operations on a two bit quantum computer 3
2.2 3-bit gates: the Toffoli gate . 4
2.3 Quantum versions of some classical bit operations 5

3 Realizing Unitary Transformations and Universality on a Quantum Com-
puter 6
3.1 What is meant by universality on a quantum computer? 6
3.2 Single qubit unitary transformations . 7
3.3 How to approximate any unitary transformation of a single qubit using a

small set of gates . 9
3.4 Universal gate sets . 10

3.4.1 Non-universal gate sets . 11
3.4.2 Examples of universal gate sets . 12

3.5 Solovay-Kitaev Theorem . 12

4 Circuits that reclaim unused qubits 12

5 Quantum Random Walks 14

1 Universal gate sets on a classical computer

We start with a Boolean function

f(x)→ 1 or 0 (1)

where x is a string of n bits;
x = i0, i1, i2, i3....in−1

1

Figure 1: Various logical operations. Here x, y ∈ {0, 1}.

and the digits ib ∈ {0, 1}.
Any Boolean function in the form of equation 1 can be written as a set of conditions

involving the Boolean operations AND, OR and NOT. We make a list of all strings that
satisfy the function f(x) = 1. Suppose that xa is a specific string that satisfies the function
so f(xa) = 1. Suppose our xa = 010.... We can construct a Boolean function like this

ī0 ∧ i1 ∧ īi...

that is only satisfied if the first bit is 0 and the second bit is 1 and the third bit is 0, etc.
Here ∧ is the AND function and ī we use for NOT i for digit i. I can adjust the position of
the NOTs so that the function is only 1 for the specific string xa. This gives me a function
fa(x) that is only 1 if x = xa.

A Boolean version of f(x) can be written as

f0(x) ∨ f1(x) ∨ v2(x) ∨ f3(x)...

where ∨ is the OR gate. where each of the functions fa() is for a specific string xa that
satisfies the function f(xa) = 1.

We have used three gates (AND, OR, NOT). With these we could construct any Boolean
function in the form of equation 1 In this sense the set (AND, OR, NOT) is a universal
gate set for classical computing.

AND and OR alone are not a universal gate set. The set (AND, OR) is not universal
as it is linear or monotone or affine mod 2. One way to see this is to look at Figure 1. You
can’t combine them to make a XOR.

Any Boolean logical operation involving n bits can be constructed of NAND opera-
tions involving 2 bits. Thus NAND is a universal gate set for Boolean logic circuits
and so for classical computing. The NAND gate is universal as all other logic computa-
tions can be constructed from NANDs. For example, NOT is constructed by connecting
both inputs together, the output is NAND(x,x) = NOT x. An AND is constructed by
with NOT(NAND(x,y)). The other gates follow from combinations of NANDs, ANDs and
NOTS. Some examples are shown in Figure 1.

2

Figure 2: Constructing OR and XOR from NANDs. Here x, y ∈ {0, 1}.

2 Logical operations on a Quantum computer

Can a quantum computer do the same calculations as a classical computer? We start with
Boolean operations and devise ways to carry them out on a quantum computer.

2.1 Classical logical operations on a two bit quantum computer

The NOT function can be done on a single qubit with the Pauli-X operator as σx |0〉 = |1〉
and σx |1〉 = |0〉.

The CNOT (controlled NOT) gate takes two bits x, y and computes x, x + y (with
circuit shown in Figure 3. Here x, y ∈ {0, 1}.

CNOT : |xy〉 → |x, x+ y〉

It flips the second bit only if the first one is 1. Here x + y is computed mod 2 so it is
1 for bits xy = 01 or 10 and is 0 for bits xy = 00 or 11. The CNOT logic operation on
the second bit output is equivalent to the XOR (exclusive OR) of x, y. The XOR logical
operation is sometimes written as x⊕ y.

x y x XOR y

0 0 0
0 1 1
1 0 1
1 1 0

The CNOT is invertible as CNOT2 = I gives back the identity.

Figure 3: The CNOT (controlled NOT) performs a XOR operation and puts the result in
the top qubit. Here x, y ∈ {0, 1}.

3

Figure 4: The circuit notation for the 3 bit Toffoli gate. The bottom bit is flipped if both
the other two bits are |1〉. Here x, y, z ∈ {0, 1}.

Unitary transformations are reversible as each unitary transformation has an inverse.
However, some logical functions on two bits are not reversible.

How many possible functions take two classical bits and give two bits? We take bits
x, y → x′, y′. There are 4 possible inputs 00, 01, 1011, and 4 possible outputs 00, 01, 10, 11
for each input. The number of possible functions is 44 = 256. So the number of possible
functions is 256.

How many of these possible operations can be done to two qubits and with unitary
transformations so that they are reversible? It turns out that there are only 24 possible
reversible two bit gates that act like Boolean functions of two bits. The reversible ones are
all affine, so AND, which is not affine, is missing. With only two qubits we cannot simulate
all classical Boolean logic operations.

This is not all that clear.

2.2 3-bit gates: the Toffoli gate

The Toffoli gate is a controlled-controlled NOT or a ccNOT. It is a 3-qubit gate that flips
the third bit if and only if the first two bits are both 1 (see Figure 4). Another way to
write the Toffoli gate is

|x, y, z〉 → |x, y, xy + z〉

where the arithmetic is mod 2 and x, y, z ∈ {0, 1}. The Toffoli gate is special in that it has
a product in the output and so it is non-linear! This differs from controlled two bit gates
which are affine.

The 3 qubit Toffoli gate can be used to construct a NAND. The third bit is the output
of a NAND given the inputs of the other two and setting the z bit to 1. In other words

To |x, y, 1〉 = |x, y, xy + 1〉 = |x, y, xy〉 .

With three qubits on a quantum computer we can construct a NAND gate. Because of
the classical universality of the NAND gate, our quantum computer has a universal gate
set for classical logical operations. A quantum computer that can perform a NAND can
execute all operations that are possible on a classical computer.

4

Question: Is the Toffoli gate reversible?
To answer this question we compute the following for To(0, 1, 2) where control bits are

0,1 and the target bit is 2.

To |000〉 = |000〉
To |001〉 = |001〉
To |010〉 = |010〉
To |011〉 = |011〉
To |100〉 = |100〉
To |101〉 = |100〉
To |110〉 = |111〉
To |111〉 = |110〉 .

The Toffoli gate resembles the identity except |110〉 ↔ |111〉. The matrix representation
for this Toffoli gate using the order given above for the basis vectors is

To =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

As the Toffoli gate is unitary, the operation is reversible, so the answer to the above
question of whether it is invertible is Yes.

The logical operation alone (the AND) need not be invertible. Three bits are used as
the extra information is stored in the other two bits.

Question: Is it possible to construct a 3-bit ccNOT (or Toffoli gate) using 2-qubit
gates? You can apply the 2-qubit gates to different pairs of bits.

Answer: Yes. But it requires at least 5 2-qubit gates. Apparently, the Toffoli gate
can be constructed from single qubit gates and six CNOTs. All you need to achieve all
logical operations on a quantum computer is a set of single qubit gates and a set of pairs
of controlled gates.

2.3 Quantum versions of some classical bit operations

Using the Toffoli gate
To |x, y, z〉 = |x, y, z + xy〉

we construct NOT, XOR, AND and NAND operations.

5

Figure 5: The quantum circuit notation for a 1-bit adder. Here x, y are added. The output
bit is s. Input is also a carry bit c and a new carry bit is output as c′. The circuit is built
from Toffoli gates and CNOTs. A series of these could be used to make a multi-bit adder.
Here x, y, z, c, c′, s ∈ {0, 1}.

Logical operations with a 3-bit Toffoli gate

NOT x To |x, x, 1〉 = |x, x, x+ 1〉 |x, x, x̄〉
XOR x⊕ y To |1, x, y〉 = |1, x, x+ y〉 |1, x, x⊕ y〉
AND x ∧ y To |x, y, 0〉 = |x, y, xy〉 |x, y, x ∧ y〉
NAND x ∧ y To |x, y, 1〉 = |x, y, xy + 1〉 |x, y, x ∧ y〉

Here x, y ∈ {0, 1}, and we are using arithmetic mod 2, so x+ y is x XOR y, and is not
x OR y.

Other logical operations can be constructed from these. For example

x OR y = x ∨ y = x+ y + xy = (x XOR y) XOR (x ∧ y).

Another example
x OR y = NOT(NOTx ∧NOTy)

3 Realizing Unitary Transformations and Universality on a
Quantum Computer

3.1 What is meant by universality on a quantum computer?

Question: Will we able to solve any problem on a quantum computer that can’t be solved
on a classical computer, regardless of resources?

Answer: No. However, the number of states in an N qubit machine is 2N . This number
gets large quickly as N increases. So a few qubit system could be a powerful computer.

Consider all unitary transformations of an N−qubit system. These form a continuous
manifold that has dimension 2N × 2N . We differentiate between unitary transformations
of an N -qubit system and measurements which are not unitary. Computations are usually

6

assumed to first put qubits in a particular set of states, then carry out a unitary transfor-
mation, and then measure all the qubits. Measurement in the middle of a computation is
not necessary though some algorithms use this capability.
Question: It is possible to implement any unitary transformation, using many simple
operators or gates that only involve 1, 2 or 3 qubits.

Answer: Yes. More on this below!
A minimal set of gates that achieves complete control of a quantum system is called

a universal gate set.
Question: What is meant by complete control of a quantum system?

Answer: By complete control we mean that any unitary transformation can be approx-
imated to a desired accuracy with a finite sequence of gates in a universal gate set. A
notion of distance between unitary operations is required to know exactly how many gates
are required to achieve this.

3.2 Single qubit unitary transformations

To build up a universal gate set we first must be able to perform any unitary possible
transformation on a single qubit, or at least we should be able to perform a unitary trans-
formation that is sufficient near a desired one.

Any unitary transformation on a single qubit can be decomposed as a sequence of
three types of operations with each type depending on an angle. The three types of
transformations are:

Unitary Transformations on a single qubit

K(δ) eiδI A global phase shift by δ

R(β)

(
cosβ sinβ
− sinβ cosβ

)
A rotation by β

Rotates about y-axis
on Bloch sphere

T (α)

(
eiα 0
0 e−iα

)
A phase rotation by α

Rotates about z-axis
on Bloch sphere

Any unitary transformation Q can be decomposed into a sequence involving 4 angles

Q = K(δ)T (α)R(β)T (γ). (2)

Let’s multiply this out

Q = eiδ
(

cosβ ei(α+γ) sinβ ei(α−γ)

− sinβ e−i(α−γ) cosβ e−i(α+γ)

)
. (3)

We have said that any unitary transformation can be written in this way. Consider

Q =

(
u00 u01
u10 u11

)
.

7

For Q to be unitary,

QQ† = I

=

(
u00 u01
u10 u11

)(
u∗00 u∗10
u∗01 u∗11

)
=

(
u00u

∗
00 + u01u

∗
01 u00u

∗
10 + u01u

∗
11

u∗00u10 + u∗01u11 u10u
∗
10 + u11u

∗
11

)
and

u00u
∗
00 + u01u

∗
01 = 1 (4)

u00u
∗
10 + u01u

∗
11 = 0 (5)

u10u
∗
10 + u11u

∗
11 = 1. (6)

These imply that

u00u
∗
00 = u11u

∗
11 (7)

u01u
∗
01 = u10u

∗
10. (8)

We now show that any unitary transformation of a qubit can be written in the form of
equation 3. Let’s write component u00 in terms of an amplitude and phase and similarly
for the other matrix components. Equation 4 implies that we can set the amplitudes of
u00 and u01 to depend on an angle β giving

u00 = cosβeiθ00

u01 = sinβeiθ01

where θ00, θ01 are the phases of u00 and u01. Similarly equation 6 implies that we can chose
an angle β′

u01 = sinβ′eiθ01

u11 = cosβ′eiθ11

where θ01, θ11 are the phases of u10 and u11. Equation 7 implies that cos2 β = cos2 β′ and
equation 8 implies that sin2 β = sin2 β′. We can set β = −β′ and let the phases absorb
the sign ambiguity. We are left with 4 phases that can be chosen and we have a remaining
constraint from equation 5. The constraint from equation 5 gives

θ00 − θ10 = θ01 − θ11

8

and lets us restrict the choice of possible phases to three phases, α, γ, δ by solving

δ + α+ γ = θ00

δ + α− γ = θ01

δ − α+ γ = θ10

δ − α− γ = θ11.

The result can be written as in equation 3.

3.3 How to approximate any unitary transformation of a single qubit
using a small set of gates

We show how the following set the Hadamard, H, Pπ
2

and Pπ
4

are enough to approximate
any unitary transformation of a single qubit.

The three gates are

H =
1√
2

(
1 1
1 −1

)
Pπ

2
=

(
1 0
0 i

)
Pπ

4
=

(
1 0

0 e
iπ
4

)
.

The phase gate Pπ
2

involves π/2 because e
iπ
2 = i. The two phase gates can be written in

terms of the phase rotation gate T ()

Pπ
2

= e
iπ
4 T
(
−π

4

)
Pπ

4
= e

iπ
8 T
(
−π

8

)
.

The gate Pπ
2

is also called the phase gate and sometimes it is given the symbol S.
Suppose we consider transformations of an angle θ on a circle. We translate the angle

f(θ) =
(
θ +

c

2π

)
mod 2π

.

We start with θ0 and consider its orbit f(θ0), f
2(θ0), f

3(θ0)..... If c is a rational number
c = p/q (with p, q integers) then f q(θ0) = θ0. The orbit contains at most q points. However
if c is irrational then the orbit never repeats. Furthermore after many iterations of f the
distribution of points is uniform. Suppose we would like to get to θ∗. For any initial θ0
and any desired θ∗ if we do enough iterations we can get arbitrarily close. That means we
can find an iteration number i that gives |f i(θ0) − θ∗| < ε for any small number ε. The
smaller the value of ε, the larger the number i of iterations is required to reach any θ∗.

Why is this relevant for our problem of being able to approximate any unitary transfor-
mation of a single qubit? If we can use our set of gates to construct a unitary transformation
that is not periodic and is like an irrational rotation and our set of gates are not restricted
to give a single great circle on the Bloch sphere, then we will be able to approximate any
unitary transformation.

9

The transformation H rotates by π/2 about the y axis on the Bloch sphere. In the
standard basis, the Hadamard is real so it cannot introduce any complex phases if the
original wave vector has real coefficients.

The transformation Pπ
4

rotates by π/4 about the z-axis on the Bloch sphere. This

follows as |0〉 , |1〉 are eigenvectors and (Pπ
4
)4 = I.

The transformation

A = HPπ
2
H =

1

2

(
1 + i 1− i
1− i 1 + i

)
rotates by π/2 about the x-axis on the Bloch sphere. This follows as |+〉 , |−〉 are eigen-
vectors and A4 = H(Pπ

2
)4H = I. (Recall that H2 = I).

The transformation

B = HPπ
4
H

=
1

2

(
1 + e

iπ
4 1 + e−

iπ
4

1− e
iπ
4 1− e−

iπ
4

)
rotates by π/4 about the x-axis on the Bloch sphere. The transformations H,Pπ

2
, Pπ

4
, A,B

are rational as if we apply them 4 or 8 times we get the identity.
Consider a rotation by π/4 about the x axis followed by a rotation of π/4 about the

z-axis on the Bloch sphere. The transformation

V = Pπ
4
B

is irrational! The product of two rational rotations of a sphere can be irrational if the two
transformations rotate the sphere about different axes.

Since H,Pπ
4
, B and V have different rotation axes and V is irrational, we can reach

all possible rotations of the Bloch sphere with a series of these gates. With application of
enough gates, we can match any desired unitary transformation (of a single qubit) to any
desired level of precision.

3.4 Universal gate sets

Now that we can reach any unitary transformation for a single qubit, we explore what is
needed to reach any unitary transformation on an N-qubit system.

We chose a gate set that involves pairs or triplets of qubits and unitary transformations
on single qubits.

Why does each gate act on only a few qubits?
Physical interactions which are often local. On classical computers, complex calcula-

tions are built from simple ones and we expect that we can do the same on a quantum
computer. Realizations of quantum computers may have a limited set of possible opera-
tions. In other words, it may be easier to build a quantum computer that has a limited
number of possible operations.

10

What is the role of interference in quantum computing and what is the
role of entanglement? The CNOT entangles two qubits but the Hadamard gives a
superposition of states in a single qubit. If we place the wave vector in a superposition
and arrange the calculation so results constructively interfere and unwanted results cancel
themselves out, we can simultaneously calculate more than one thing. This implies that we
need superposition. If we don’t use entanglement then our quantum computer is not really
a quantum computer. We only reach the full capability of the quantum computer if we use
the full space of possible wave vectors. This implies that we also need entanglement.

3.4.1 Non-universal gate sets

A bad (or non-universal) gate set has no superposition. If we only use CNOTs (between
pairs of bits) we interchange states but we can’t create a superposition. A Hadamard gate
gives superposition so we need a gate like the Hadamard gate.

A bad gate set has no entanglement. The quantum computer is like a classical one. A
CNOT gives entanglement so we need a two-bit controlled gate like the CNOT gate.

A bad gate set has only real gates. It would not even be able to reach all unitary
transformations on a single qubit. A phase gate Pπ

2
is complex so we need a gate like the

phase gate.
A bad gate set gives a finite subgroup of U(2N) where N is the number of qubits. An

example is the gate set
{CNOT, H, Pπ

2
} (9)

where the phase gate Pπ
2

= diag(1, i). Here the two qubit CNOT gate can operate on any
pair of gates and the single qubit Hadamard H and phase Pπ

2
gates can operate on any

qubit. This gate set generates a finite group known as the Clifford group1. Relevant is
the Gottesman-Knill theorem which states that a quantum circuit constructed using only
these gates can be simulated efficiently (in polynomial time) on a classical computer. So
despite entanglement (from the CNOT) and superposition (from the Hadamard), the gate
set is not universal. While it would appear this gate set is too small to be useful, it turns
out to be quite useful for error correction. In this setting the gate set in equation 9 is used
to correct both bit flipping and phase flipping errors.

1The Clifford group contains normalizers of the Pauli spin matrices for each qubit. The group contains
unitary operators V that satisfy V PV † = P for all P ∈ { I, σx, σy, σz}. The Hadamard and phase gate
transform an axis direction on the Bloch sphere to another axis direction. The Clifford group on a single
qubit is like the symmetry group of a cube.

11

3.4.2 Examples of universal gate sets

Apparently the set that generates the Clifford group, along with a single other transfor-
mation that is not in the Clifford group, gives a universal gate set. The Rπ

8
gate

Rπ
8

=

(
cos π8 − sin π

8
sin π

8 cos π8

)
is not in the Clifford group.

An example of a universal gate set that uses the Rπ
8

gate is

{CNOT, H, Pπ
2
, Rπ

8
}. (10)

Another example of a universal gate set (by Yaoyun Shi) is

{Toffoli, H, Pπ
2
}. (11)

3.5 Solovay-Kitaev Theorem

The Solovay-Kitaev Theorem states that we can approximate any unitary transforma-
tion on N qubits to within precision ε using O(4Npolylog 1

ε) gates. In other words the
complexity scales only like some power of log 1

ε . The distance between two unitary trans-
formations can be computed using a sum of the norm of the difference in each matrix
entry.

(In future more details on the theorem!)

4 Circuits that reclaim unused qubits

In Figure 7 we show a circuit that computes using 3 Toffoli gates the AND of four input bits
|n0〉 , |n1〉 , |n2〉 and |n3〉 The result is in the first or bottom bit. There are two additional

Figure 6: The Deutsch algorithm is the following quantum circuit applied to an initial
state of |01〉. The Uf transformation is |xy〉 → |x, y + f(x)〉 where x, y ∈ {0, 1} and the +
is mod 2. Here f() is a Boolean function (returning 0 or 1). The goal is to determine if
f(x) is constant (with f(0) = f(1)) or balanced (with f(0) = NOT f(1)) with a single call
of the operator Uf .

12

Figure 7: The quantum circuit for a 4 bit conjunction. The output bit is the lowest one and
returns n0 ∧ n1 ∧ n2 ∧ n3 or the product base 2 of the four input bits |n0〉 , |n1〉 , |n2〉 , |n3〉.
Three Toffoli gates are used.

Figure 8: The quantum circuit for a 4 bit conjunction that reclaims temporary bits. Much
of the computation is reversed.

13

bits that were initially set to zero but now contain information that we no longer need.
We would rather be able to reuse these bits. Figure 8 shows how most of the circuit is
reversed allowing the temporary bits to be reclaimed. The cost is approximately doubling
the number of steps. Much of the computation is reversed.

Why do we need to reclaim lost bits? Consider the circuit diagram shown in
Figure 6 for the Deutsch black box algorithm. A measurement is done on the upper bit
but the unitary transformation inside the black box, Uf , which is a controlled gate, is only
applied on the bottom bit. The circuit looks like the upper bit will not be affected by
the unitary transformation Uf , however because of the combined actions of the Hadamard
transformations, introducing superposition, and the controlled gate, the upper bit is af-
fected by transformations that affect the bottom bit. To reuse bits we need to ensure that
they are unentangled from all other bits. Reversing parts of the computation to reclaim
bits is a way to ensure that bits can be reused without affecting other parts of the quantum
calculation.

5 Quantum Random Walks

A popular way to do a random walk is to start with an initial state vector |ψ〉 in a product
Hilbert space and then repetitively perform a series of unitary transformations. This is the
type introduced by Aharonov, Davidovich, and Zagury 1993. Quantum random walks can
also be called quantum cellular automata. Unlike a classical and stochastic random walk,
all transformations are unitary and hence reversible. There is no actual stochasticity. The
walk does not lose its recollection of the initial state and it cannot converge to a stationary
distribution. For some problems, such as propagation along a random tree, quantum walks
can give exponential speedups over classical walks. And some quantum algorithms look
like quantum random walks.

We explore a discrete quantum random walk of a spin (a two state system) on a circle.
The system can be at any location of a discrete set of points on the circle and it can have
be in either spin up or spin down states.

Take a state space that is a tensor product of a space with two states (a qubit), H2,
and a space with N states, HN (the discrete points on the circle). A basis for this space is

|jn〉

where j ∈ [0, 1] is spin up or down and n ∈ [0, N − 1]. The N dimensional Hilbert space
can be described as N possible particle positions.

The entire Hilbert space is a tensor product space H = H2 ⊗HN .
We start with |ψ〉 = |00〉 and alternate applying a spin mixing operator

H⊗ I

14

and a position change that depends on the spin

C = P0 ⊗U+ + P1 ⊗U−

H is the Hadamard operator on the spin state (in H2) and it takes

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉)

H =
1√
2

(
1 1
1 −1

)
The transformation H⊗ I shifts the spin state but operates on a state in H.

P0 projects the spin state onto |0〉 and P1 projects the spin state onto |1〉,

P0|0〉 = |0〉
P0|1〉 = 0

P1|0〉 = 0

P1|1〉 = |1〉

These two operate on spin states, or those in H2. We can also write

P0 = |0〉〈0| =
(

1 0
0 0

)
P1 = |1〉〈1| =

(
0 0
0 1

)
The operators U+ and U− raise and lower n

U+|n〉 = |n+ 1 mod N〉
U−|n〉 = |n− 1 mod N〉

15

These two operate on states in HN . We can also write

U+ =
N−2∑
j=0

|j + 1〉〈j|+ |0〉〈N − 1| =

0 0 0 .. 0 1
1 0 0 .. 0 0
0 1 0 .. 0 0
0 0 1 .. 0 0
: : : : : :
0 0 0 .. 1 0

U− =
N−1∑
j=1

|j − 1〉〈j|+ |N − 1〉〈0| =

0 1 0 .. 0 0
0 0 1 .. 0 0
0 0 0 .. 0 0
: : : : : :
0 0 0 .. 0 1
1 0 0 .. 0 0

The operator C moves the particle to the right if the spin is up and moves the particle

to left if the spin is down. It simulates a coin flip. This is why the procedure can be
called a random walk. Because U+|N − 1〉 = |0〉 and U−|0〉 = |N − 1〉, the end of the N
state space is connected with the beginning of it, so our position space is equivalent to N
equidistant points on a circle.

We can think of operator C as defining a network of connections between states in
the N-dimensional Hilbert space HN . The C operator entangles the spin with the particle
position.

Combining the two operators

V = C ∗ (H⊗ I)

One can plot the probability of being in each state |n〉 at each iteration.
The resulting vector is has even/odd parity and spreads out ballistically (rather than

diffusively) with more iterations. The shape of the probability distribution differs from
that of a classical random walk.

Let’s evaluate the first few states. Starting with |ψ0〉 = |00〉 we first apply the Hadamard
to the spin state and we get

H⊗ I |ψ0〉 =
1√
2

(|00〉+ |10〉)

We now apply the controlled raising and lower operator, C. |00〉 → |01〉 and |10〉 →
|1, N − 1〉.

V |ψ0〉 =
1√
2

(|01〉+ |1, N − 1〉)

Let’s operate again with the Hadamard

(H⊗ I)V |ψ0〉 =
1

2
(|01〉+ |11〉+ |0, N − 1〉 − |1, N − 1〉)

16

Now we operate again with C.

V2 |ψ0〉 =
1

2
(|02〉+ 2 |00〉 − |0, N − 2〉)

Notice the even/odd parity developing! Apply the Hadamard again

(H⊗ I)V2 |ψ0〉 =
1√
8

(|02〉+ |12〉+ 2 |00〉+ 2 |10〉 − |0, N − 2〉 − |1, N − 2〉)

Apply C again,

V3 |ψ0〉 =
1√
8

(|03〉+ |11〉+ 2 |01〉+ 2 |1, N − 1〉 − |0, N − 1〉 − |1, N − 3〉)

And so on.
A quantum random walk might be used to find a short path on a complicated network.

They also are interesting as a class of cellular automata. One can study the influence
of imperfections and external perturbations on the behavior of a quantum random walk.
While static spatial random changes of the coin may lead to Anderson localization temporal
randomness in the coin operator can cause decoherence resulting in a transition to classical
random walking behavior. Their transport and percolation behavior is dependent on the
network or graph of the shift operator. Some times people approximate continuous (in time)
Hamiltonian evolution with a series of discretely (in time) applied operators. Quantum
random walks can be considered relevant for numerical techniques aiming to approximate
continuous systems.

17

