
PHY256 Lecture notes: Introducing Quantum Information

A. C. Quillen

April 30, 2021

Contents

1 The Density operator 2
1.1 Density operator for a pure state . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The density operator for mixtures . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Examples of density matrices for pure states and mixtures . . . . . . 4
1.3 Transformations of the density matrix . . . . . . . . . . . . . . . . . . . . . 5
1.4 The density matrix for a product space . . . . . . . . . . . . . . . . . . . . 6
1.5 The partial traces – tracing out one part of a product space . . . . . . . . . 7

1.5.1 Examples of density matrices for bipartite qubit systems . . . . . . . 8
1.6 Positivity of the density matrix . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Acronyms and definitions! . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 The no communication theorem . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Schmidt decomposition of a bipartite pure state . . . . . . . . . . . . . . . . 11
1.10 Entanglement and the Schmidt number . . . . . . . . . . . . . . . . . . . . 13
1.11 Generalized Measurements: A positive operator value measure (POVM) . . 13
1.12 Evolution of density matrices – quantum channels and superoperators . . . 15

2 Entropy and Information 16
2.1 Entropy in statistical physics . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Shannon entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 von Neumann entropy and quantum information . . . . . . . . . . . . . . . 18
2.4 Quantifying the extent of entanglement . . . . . . . . . . . . . . . . . . . . 19
2.5 Distance measures for quantum information . . . . . . . . . . . . . . . . . . 19

3 Systems with three qubits 19
3.1 The GHZ state and the monogamy of entanglement . . . . . . . . . . . . . 19

1



1 The Density operator

The density operator encapsulates all that can be learned about a system through mea-
surement.

1.1 Density operator for a pure state

The density operator for a pure state |ψ〉 =
∑

i ci |i〉 is a matrix (or operator)

ρ = |ψ〉 〈ψ|

ρ =
∑
ij

cic
∗
j |i〉 〈j|

Since ψ is normalized, (it has length 1; 〈ψ|ψ〉 =
∑

i cic
∗
i = 1),

tr ρ =
∑
i

cic
∗
i = 1.

It is useful to know that the trace of a product

tr(AB) = tr(BA).

We show that this is true

C = AB

Cij =
∑
k

AikBkj

tr C =
∑
i

Cii =
∑
ik

AikBki

=
∑
ki

BkiAik

= tr(BA).

The trace of a matrix is independent of basis. A unitary transformation transforms
from one orthonormal basis to another. In other words trUAU † = trA, where U is a
unitary matrix that allows you to change basis from one orthonormal basis to another.
This follows because we can change the order trUAU † = trAU †U = trA.

Eigenvalues are independent of basis and this means that

tr ρ =
∑
i

λi = 1

for a density matrix ρ, where λi are its eigenvalues.
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We can always find an orthonormal basis that has our state vector as a basis vector.
In this basis |ψ〉 = |0〉 where |0〉 is that basis vector. In this basis the density matrix
has a single 1 on its diagonal and the rest of the matrix contains zeros. That means that
tr ρ2 = 1 and the density matrix has a single non-zero eigenvalue that is 1. This is only
true for density matrices that are derived from a single pure state.

We can write the expectation of an observable as

〈A〉 = 〈ψ|A |ψ〉

Since observables are real, A should be Hermitian. Writing this out in a basis with |ψ〉 =∑
i ci |i〉

〈A〉 =
∑
ij

c∗iAijcj

We can show that this is the same thing as

〈A〉 = tr(ρA) =
∑
ij

cic
∗
jAji

(Since A is Hermitian Aij = A∗ji).
While there is a complex phase ambiguity in a state vector, there is none in the density

matrix.

1.2 The density operator for mixtures

We can consider a system which has probability of being in various pure states,

|ψ〉 =
∑
i

pi |ψi〉

where pi are probabilities with
∑
pi = 1. Call ρi the density matrix for each pure state.

ρ =
∑
i

piρi

and
〈A〉 =

∑
i

pi tr(ρiA) =
∑
i

tr(piρiA) = tr(ρA)

The trace tr ρ = 1, as before for a pure state. Using the Schwartz inequality one can show
that tr ρ2 ≤ 1. If tr ρ2 = 1 then the system is in a pure state.

For a non-pure state, the off-diagonal elements are called coherences. Because ρ is
Hermitian one can always find a basis that makes it diagonal. Eigenvalues are real and
positive (or zero). If the system is a pure state, then in that basis, the density matrix has
a single 1 on the diagonal.

Summary.
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• Classical states An object is either in one or not. We can have a linear vector space
describing all the possible states |ai〉.

• Pure quantum states These are complex superpositions of classical states; |ψ〉 =∑
ci |ai〉. The probability pi that an object is in a state |ai〉 depends on the amplitude;

pi = cic
∗
i .

• Mixed states Classical probability distribution over pure states.

ρ =
∑

pj |ψj〉 〈ψj |

1.2.1 Examples of density matrices for pure states and mixtures

Let’s compute the density matrix of a pure state with |ψ〉0 = |0〉. The density matrix is
ρ0 = |0〉 〈0|. If the system is a two state system, in matrix form

ρ0 =

(
1 0
0 0

)
.

Now consider a composite state

|ψ〉+ =
1√
2

(|0〉+ |1〉).

The density matrix is

ρ+ =
1√
2

(|0〉+ |1〉) 1√
2

(〈0|+ 〈1|)

=
1

2
(|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1|+ |1〉 〈0|).

In matrix form

ρ+ =

(
1
2

1
2

1
2

1
2

)
. (1)

Now consider a mixture where the probability is 1/2 that the state is in |0〉 and 1/2
that the state is in |1〉. The density matrix is

ρ2 =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| .

In matrix form

ρ2 =

(
1
2 0
0 1

2

)
. (2)
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1.3 Transformations of the density matrix

If the wave-function |ψ′〉 = U |ψ〉 where U is a unitary operater, then the density matrix
transforms as

ρ′ = UρU †

This is true even for mixed states.
If we have a measurement operator Mm the probability of getting value m is

p(m) = tr
(
M †mMmρ

)
and the density matrix after measurement becomes

ρ′m =
MmρM

†
m

tr
(
M †mMmρ

)
If we don’t record the result of the measurement then the wavefunction is not collapsed

and we sum over all the probabilities for each possible measurement

ρ′ =
∑
m

p(m)ρ′m

ρ′ =
∑
m

tr
(
M †mMpρ

) MmρM
†
m

tr
(
M †mMmρ

)
ρ′ =

∑
m

MmρM
†
m. (3)

This type of transformation is usually not unitary. However it is deterministic as a
measurement value is not chosen with a probability.

This gives two types of types of quantum simulations involving a series of measurements.

• We can start with a density matrix and transform it via each measurement, conserving
probability as we go and using equation 3 each time a measurement is done. This
method is deterministic.

• Or we can start with a wave-vector, and simulate the measurements by randomly
choosing measured values consistent with the probability of measurement. After
each measurement the wave function is collapsed. Each measurement requires a
monte-Carlo simulated random event.

In the first case we evolve probability. In the second case we follow a path of possible
measurements. An ensemble of paths should be consistent with the probability distribution
predicted via the first method. In other words, if we carry out the second method a number
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of times and average the density matrices of the results at the end, we should get the density
matrix estimated from the first method.

The usefulness of the first of these methods partially explains why the density matrix
is important. As we will discuss below, the density matrix can also be used to quantitative
measure the amount of information available in a quantum system.

1.4 The density matrix for a product space

Suppose we have a two component system with quantum state in a product of two Hilbert
spaces, HAB = HA ⊗HB. An example is two qubits.

We can consider a partial measurement. For example, a measurement single of a single
qubit when there are two.

For example, if we have a pure state

|ψ〉AB = a |00〉+ b |01〉+ c |10〉+ d |11〉 (4)

the probability that the first qubit has spin up would be aa∗ + bb∗. If spin up is measured
in the first qubit, the full state becomes

|ψ〉′AB =
a

aa∗ + bb∗
|00〉+

b

aa∗ + bb∗
|01〉 .

The probability that spin down is measured in the first qubit is cc∗ + dd∗ and afterwards
the full state becomes

|ψ〉′AB =
c

cc∗ + dd∗
|10〉+

d

cc∗ + dd∗
|11〉 .

Another way to describe probabilities for measurement is to use the density matrix.
For a pure state |ψ〉

ρAB = |ψ〉AB 〈ψ|AB
where AB means we are taking the full system using both qubits. If the state is that of
equation 4, the complex conjugate or bra state vector

〈ψ|AB = 〈00| a∗ + 〈01| b∗ + 〈10| c∗ + 〈11| d∗.

The density matrix

ρAB =


aa∗ ba∗ ca∗ da∗

ab∗ bb∗ cb∗ db∗

ac∗ bc∗ cc∗ dc∗

ad∗ bd∗ cd∗ dd∗
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More generally if pure state

|ψ〉AB =
∑
ij

aij |i〉A |j〉B =
∑
ij

aij |ij〉

〈ψ|AB =
∑
kl

〈k|A 〈l|B a
∗
kl =

∑
kl

〈kl| a∗kl

ρAB =
∑
ijkl

aija
∗
kl |i〉A |j〉B 〈k|A 〈l|B =

∑
ijkl

aija
∗
kl |ij〉 〈kl| .

We can also consider mixtures, giving density matrices in the HAB product space. For
a mixture

ρAB =
∑
ijkl

ρijkl |ij〉 〈kl|

where ρAB is Hermitian, positive definite and has trace 1. The condition that the trace is
1 is

tr ρAB =
∑
ij

ρijij = 1

where we need to sum over both indices.

1.5 The partial traces – tracing out one part of a product space

The density matrix should let us find out about all possible measurements of a system. If
we have a product space of two subsystems, an experimenter may have access to to one
subsystem. How can we describe the density matrix for that subsystem alone?

Consider a density matrix for a product space of two qubits

ρAB =
∑
ijkl

ρijkl |ij〉 〈kl| =
∑
ijkl

ρijkl |i〉A |j〉B 〈k|A 〈l|B .

We can define a density matrix for the first qubit ρA with

ρA = trB(ρAB)

=
∑
ik

cik |i〉A 〈k|A =
∑
ik

∑
j

ρijkj

 |i〉A 〈k|A
cik =

∑
j

ρijkj .

Here trB means that we are taking the trace of values in the second Hilbert space and |i〉
and 〈k| are states in the first quantum system. Likewise we can take the trace over values
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in the first system giving

ρB = trA(ρAB)

=
∑
jl

c′jl |j〉B 〈l|B =
∑
jl

(∑
i

ρijil

)
|j〉B 〈l|B

c′jl =
∑
i

ρijil.

The matrices ρA, ρB are positive definite, Hermitian and have trace 1. They are density
matrices or operators for the sub-systems.

With a two qubit system the density matrices ρA, ρB are 2x2 matrices.
Consider ρAB, the density matrix of a pure state, with tr ρ2AB = 1 and eigenvalues

1,0. The partially traced matrices ρA = trB ρAB and ρB = trA ρAB need not satisfy these
relations. In other words tr ρ2A may not be 1, and tr ρ2B may not be 1. Their eigenvalues
need not be 1 or 0.

The von Neumann entropy of a pure state is 0. All information is known. However, not
all information may be available about the pure state if one can only measure quantities
in one of the subsystems, so the von Neumann entropy of ρA and ρB can be greater than
0.

1.5.1 Examples of density matrices for bipartite qubit systems

Consider a pure state
|ψ〉AB = |0〉A ⊗ |0〉B = |00〉 .

The density matrices are

ρAB = |00〉 〈00|
ρA = |0〉A 〈0|A
ρB = |0〉B 〈0|B .

The eigenvalues of all three density matrices are 1,0.
Let’s consider again a pure state that is a product state

|ψ〉AB =
1√
2

(|0〉A + |1〉A)⊗ |0〉B =
1√
2

(|00〉+ |10〉).
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The density matrices are

ρAB =
1

2
(|00〉+ |10〉)(〈00|+ 〈10|)

=
1

2
(|00〉 〈00|+ |10〉 〈00|+ |00〉 〈10|+ |10〉 〈10|)

ρA =
1

2
(|0〉A 〈0|A + |0〉A 〈1|A + |1〉A 〈0|A + |1〉A 〈1|A)

ρB = |0〉B 〈0|B .

These are consistent with density matrices formed from 1√
2
(|0〉A + |1〉A) and |0〉B alone,

which is expected since the wave vector was a product state! The eigenvalues of all three
density matrices are again 1,0.

Now let’s consider a pure but entangled state, the Bell pair,

|ψ〉Bell =
1√
2

(|00〉+ |11〉).

The density matrices are

ρAB =
1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|)

ρA =
1

2
(|0〉A 〈0|A + |1〉A 〈1|A)

ρB =
1

2
(|0〉B 〈0|B + |1〉B 〈1|B). (5)

The eigenvalues of ρAB are 1,0 because it is derived from a pure state. The eigenvalues of
ρA, ρB are 1/2,1/2. Notice that ρA, ρB resemble a density matrix of a mixture for a single
qubit (equation 2) even though |ψ〉Bell is a pure state!

If Alice is separate from Bob then she would measure |0〉 half the time and |1〉 half the
time. However, Alice and Bob have strongly correlated measurements.

Notice that ρA is not the same as that for ρ+ (see equation 1) which comes from a
superposition state |+〉 = 1√

2
(|0〉+ |1〉).

1.6 Positivity of the density matrix

A density operator ρ

• is Hermitian (ρ† = ρ).

• has trace 1 (trρ = 1).

• is positive.
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The density matrix has to be Hermitian as we could construct hypothetical measurements
using projection operators in any orthonormal basis and these should give real values. The
operator has to have trace 1 because it is comprised of a weighted sum of density matrices
formed from pure states and these have trace 1.

Positivity: What does it mean for an operator or matrix to be positive? If ρ is positive,
then for any wave vector |v〉, the expectation

〈v| ρ |v〉 ≥ 0.

Positivity also implies that means the eigenvalues of ρ must be real and non-negative.
Why should the density matrix be positive? For a pure state, we can find a basis

that gives a diagonal density matrix that has a single 1 on the diagonal. This matrix is
positive. A weighted sum of positive matrices where all the weights are positive should also
be positive. So density matrices that are derived from mixtures should also be positive.

1.7 Acronyms and definitions!

• Positive operator value measurement POVM. A generalization of measurement that
describes measurements with a set of complete, positive, but not necessarily orthog-
onal matrices. Superoperators or quantum channels can be decomposed into such a
set of operators.

• Local operations and classical communication LOCC. Local operations include uni-
tary transformations and measurements on portions of a quantum system. An unen-
tangled state cannot be converted to an entangled one using only LOCC. Two states
can be considered to be LOCC equivalent if one can be converted into the other
using LOCC.

• TPCP trace-preserving (TP) completely positive (CP) map.

• A quantum channel is a communication channel which can transmit quantum
information. A quantum channel is a completely positive (CP) trace-preserving
(TP) map between spaces of operators.

• A superoperator is a linear operator acting on a vector space of linear operators.
In quantum computing it is a completely positive map which preserves the trace of
its argument.

In quantum computing and quantum information theory I think people tend to use use
quantum channel and superoperator interchangeably.
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1.8 The no communication theorem

• A density matrix encodes all and only what is physically observable. This is also true
for the reduced or traced density matrix of a subsystem.

• No communication theorem. If Alice and Bob share an entangled state (where
each of them has a piece of tensor product space), nothing Alice chooses to do (ap-
plying unitary transformations or carrying out measurements) will have an effect on
Bob’s density matrix.

Let’s check that this is true for the Bell pair. Suppose that Alice performs a Pauli-X
on her qubit. The wave vector becomes

|ψ〉′ = σx ⊗ I
1√
2

(|00〉+ |11〉)

=
1√
2

(|10〉+ |01〉).

The density matrices become

ρ′AB =
1

2
(|10〉 〈10|+ |10〉 〈01|+ |01〉 〈10|+ |01〉 〈01|)

ρ′A =
1

2
(|0〉A 〈0|A + |1〉A 〈1|)A

ρ′B =
1

2
(|0〉B 〈0|B + |1〉B 〈1|B). (6)

Bob’s traced density matrices is not changed (see that listed in equation 5).
Suppose Alice makes a measurement of her qubit. She has a probability of 1/2 to

measure spin up. If this happens the wave vector becomes |00〉 and Bob’s density matrix
would become ρB = |0〉B 〈0|B. Alice has a probability of 1/2 to measure spin down and
the wave vector would become |11〉. Because there is 1/2 probability for these outcomes
Bob’s density matrix is

ρB =
1

2
|0〉B 〈0|B +

1

2
|1〉B 〈1|B

which is equivalent to that given in equation 5.

1.9 Schmidt decomposition of a bipartite pure state

We consider a product space of Hilbert spaces HA⊗HB and a wave vector ψ in HA⊗HB.
There is always an orthonormal basis with basis vectors |i〉A in HA and an orthonormal
basis with basis vectors |i〉B in HB and a list of non-negative real numbers pi such that

ψ =
∑
i

√
pi |i〉A ⊗ |i〉B . (7)
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This is known as the Schmidt decomposition for a pure state.
We can always diagonalize ρA = trB ρAB where ρAB = |ψ〉 〈ψ|. We chose |i〉A to be a

basis in which ρA is diagonal so

ρA =
∑
i

pi |i〉A 〈i|A

and pi are its non negative eigenvalues. In an orthogonal basis for HB described with basis

vectors
∣∣∣ĵ〉

B

ψ =
∑
ij

ψij |i〉A ⊗
∣∣∣ĵ〉

B
=
∑
i

|i〉A ⊗
∑
j

ψij

∣∣∣ĵ〉
B
.

This gives

ρAB =

∑
i

|i〉A ⊗ (
∑
j

ψij

∣∣∣ĵ〉
B

)

[∑
l

〈l|A ⊗ (
∑
k

ψ∗lk

〈
k̂
∣∣∣
B

)

]

Let’s take the trace of this over HB

ρA =
∑
il

|i〉A 〈l|A
∑
j

ψijψ
∗
lj

We assumed that ρA is diagonal, and has eigenvalues pi so∑
j

ψijψ
∗
lj = piδil (8)

This is a dot product.
We can define a series of orthonormal vectors in HB

|i〉B ≡
∑
j

ψij√
pi

∣∣∣ĵ〉
B

These vectors are orthonormal because of equation 8. Using them we can write

ψ =
∑
i

√
pi |i〉A ⊗ |i〉B ,

as in equation 7.
Among the consequences of the Schmidt decomposition (for a pure state) is that the

non-zero eigenvalues of the partially traced density matrices ρA and ρB must be the same.
If the dimensions of the Hilbert spaces HA and HB differ, then the partially traced density
matrices may have a different number of zero eigenvalues. If there are degenerate eigen-
values then it is more work to find the Schmidt decomposition (and there is an ambiguity
in it).
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The Schmidt decomposition gives us the eigenvalues pi of the partially traced density
matrices ρA, ρB. The full density matrix ρAB has eigenvalues 1,0 because it is derived from
a pure state. The von Neumann entropy is 0.

The density matrices ρA and ρB can have eigenvalues other than 1,0. The subsystems
would have non-zero entropy (and less information!). While the full system is fully specified
(and everything is known about it), this is not true in each of the subsystems.

Question: Any pure wave vector in a bipartite system can be decomposed via Schmidt
decomposition. Can this be done for a system comprised of a tripartite system, with three
subsystems, HABC = HA ⊗ HB ⊗ HC? In other words is it possible to find orthonormal
bases in HA, HB and HC such that

|ψ〉ABC =
∑
i

√
pi |i〉A |i〉B |i〉C

for any |ψ〉ABC?
Answer: No, Schmidt decomposition is not possible for any wave vector in a tripartite

system but is possible for some wave vectors in a tripartite system.

1.10 Entanglement and the Schmidt number

We consider a pure state |ψ〉AB in bipartite system HA ⊗HB. The Schmidt number of
a bipartite system is the number of non-zero eigenvalues of ρA or ρB.

When can |ψ〉AB can be written as a product state? In other words when can we write

|ψ〉AB = |φ〉A ⊗ |ξ〉B

where |φ〉A is a wave vector in HA and |ξ〉B is a wave vector in HB?
Suppose we can write |ψ〉 as a product state. Then ρA = |φ〉A 〈φ|A and ρB = |ξ〉B 〈ξ|B.

The traced density matrices are those of pure states and the Schmidt number is 1.
If |ψ〉AB can be written as a product state then any unitary transformation in the form

U⊗ I or I⊗U would give another product state. These are local transformations as they
only involve a transformation of one of the subsystems. Similarly a partial measurement in
one of the subsystems would give another product state. Local transformations (either uni-
tary or measurements) do not change the Schmidt number. These types of transformations
are in the class of Local Operations and Classical Communication or LOCC.

1.11 Generalized Measurements: A positive operator value measure (POVM)

We first review the conventional definition of quantum measurement. Previously we dis-
cussed measurement as derived from an observable A which is a Hermitian operator. We
can use the eigenvectors of the observable to form an orthonormal basis which spans the
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Hilbert space. We can construct a compete set of Hermitian orthogonal projection oper-
ators from this orthonormal basis. For each basis vector |ia〉 in the orthonormal basis we
can form a projection operator

Ea = |ia〉 〈ia| .

The projection operators satisfy

Ea = E†a EaEb = δabEa.

We can see that they are orthogonal. If the basis spans the Hilbert space, then the projec-
tion operator set is complete and ∑

a

Ea = I

is the identity matrix. If a is the eigenvalue associated with |ia〉 then

A =
∑
a

aEa.

This is known as a spectral decomposition. The probability that a measurement of wave
vector |ψ〉 gives value a is

〈ψ|Ea |ψ〉 ,

and the post measurement wave vector is

Ea |ψ〉
〈ψ|Ea |ψ〉

.

If the outcome of the measurement is not known, then post measurement the system is in
a mixed state. If the original density matrix is ρ, then the post measurement the density
matrix

ρ→
∑
a

EaρEa

which is equivalent to expressing ρ as a sum of probabilities of pure states.
What if we are only doing measurements only in a subspace? For example in one part

of a bipartite system that is described with a tensor product? What if unitary evolution
takes place in the full system and we would like to know how the density matrix evolves
in a subsystem? We can make a generalization of our measurements by relaxing the
orthogonality requirement.

Definition: A positive operator value measure (POVM) is a complete collec-
tion of positive and Hermitian operators Em. The summation property∑

m

Em = I

14



where I is the identity is known as completeness. Positivity means that 〈ψ|Em |ψ〉 ≥ 0
for all possible wave vectors |ψ〉. The operators do not necessarily need to be orthogonal.
The Em are can be considered elements associated with partial measurements and they
can determine probabilities of outcomes.

We can specify the density matrix after partial measurements or after unitary evolution.
If we are tracking a subspace, then it may not be possible to know the full wave function.
However we should be able to track the density matrix of a subsystem and we can describe
evolution of the subsystem density matrix in terms of the operators Em.

A non negative Hermitian operator has a non-negative square root Mm =
√

Em. The
new density matrix after evolution or partial measurement becomes

ρ′ =
∑
m

MmρM†
m. (9)

1.12 Evolution of density matrices – quantum channels and superoper-
ators

A mixture can be described by a density matrix ρ. At a later time, either due to mea-
surements or interaction with another quantum system, the density matrix may change to
ρ′.

We construct a map from ρ to ρ′. The map must maintain the trace and positivity. It
should keep ρ Hermitian as its eigenvalues must remain real. Such a trace preserving
completely positive map (TPCP map) is sometimes called a quantum channel.

A quantum channel ε() is a map from a density matrix to another density matrix
ρ→ ρ′ or

ρ′ = ε(ρ)

that preserves

• Linearity ε(αρ1 + βρ2) = αε(ρ1) + βε(ρ2) where α, β are real numbers.

• Hermiticity. ρ = ρ† implies that ε(ρ) = ε(ρ)†.

• Preserves positivity.

• Preserves the trace. tr(ε(ρ)) = tr(ρ).

An example: We start with a pure state |ψ〉AB in a bipartite system. The full system
can evolve via unitary evolution |ψ〉′AB = U |ψ〉AB. The density matrix ρA can evolve
according to equation 9.

ρAB → UρABU
†

ρA = trB ρAB

ρA → ρ′A = trB UρABU
†.
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The evolution of ρA is not necessarily unitary. The map of ρA → ρ′A giving the traced
density matrix at a later time would be a quantum channel ε(). If ρAB varies due to
unitary transformation, the map ρA → ρ′A is a quantum channel and sometimes it is called
a superoperator.

ρAB ρ′AB = UρU †

ρA ρ′A

U

trB trB

ε

Question What is a simple example of a POVM that is not orthogonal?
Question Is it possible to write every possible quantum channel in terms of operators

Mm such that ρ′ =
∑

mMmρM
†
m, the operators are complete;

∑
mMmM

†
m = I, and

MmM
†
m are positive? The answer I think is yes.

The operator sum decomposition I think is exactly this. Every superoperator ε(ρ)
can be written as a sum

ε(ρ) =
∑
i=0N

AiρA
†
i

The Ai are linear operators. The operator sum decomposition is not necessarily unique.

2 Entropy and Information

2.1 Entropy in statistical physics

We consider a system of a total energy but a number of different ways g to distribute the
energy in the system. The number of different ways to distribute the energy is called the
multiplicity, g. The entropy of the system is log of the multiplicity,

σ = ln g.

With multiplicity g, the system is equally likely to be in any of the g possible configu-
rations. The probability that it is in one of them is p = 1/g. The entropy can be written
as

σ = − ln p.

If we have two systems, one with multiplicity g1 and the other with multiplicity g2 (and
they are not exchanging anything), then the multiplicity of the combined system would be
g1g2. The entropy is then

σ = ln g1 + ln g2.
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For the first system the probability that it is in any single configuration is 1/p1. The
probability that the first system is in a single configuration and the second sytem is in a
particular configuration is 1/(p1p2) and the entropy can be written as

σ = − ln p1 − ln p2.

Why is this related to information? We would need a number of size g1 to specify
exactly which state the first system is in and we would need a number of size g2 to specify
exactly the state that the second system is in. So the entropy is related to the information
needed to specify the exact configuration of the system.

If we have multiple systems, each with multiplicity gi and probability 1/pi to be in a
particular configuration, the entropy

σ =
∑
i

ln gi = −
∑
i

ln pi. (10)

2.2 Shannon entropy

In the realm of classical communication, Shannon answered the following question: What
is the maximal compression that can be applied to a message?

Consider a message that is sent with only 4 letters, a, b, c, d. We could encode each
letter with two bits

a = 00 b = 01 c = 10 d = 11.

A message that is n letters long would require 2n bits.
Suppose that the letters occur with different probabilities. This would not be surprising

if our letters were in an alphabet and we were transmitting text. For example, In English
‘e’ is the most frequent letter. Suppose the letter a has a probability 1/2, the letter b has
a probability 1/4 and c, d both have probabilities of 1/8. The following encoding would be
more efficient

a = 0 b = 10 c = 110 d = 111.

The most common letter a is given 1 bit, the next most common b is given 2 bits and
the least common letters, c, d, are given 3 bits. The average length of a message that is n
letters long is

n

(
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

8
× 3

)
=

7

4
n

This is less than 2n so this encoding system is more efficient than using 2 bits for each
letter.

More generally, assume that we have k alphabet letters and each letter ai has a prob-
ability pi with the sum of the probabilities

∑k
i=1 pi = 1.
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In a typical message that is n letters long, what is the expected number of alphabet
letter ai?

The answer depends on the Shannon entropy

S ≡ −
k∑
i=1

pi log2 pi. (11)

Stirling’s approximation is used to estimate this. Notice that the log is base 2, which is
convenient if we are encoding information digitally with bits that are 0 or 1.

Compare the Shannon entropy to that we estimated from conventional entropy in equa-
tion 10. Instead of have equal probability states and keeping track of the multiplicity of
states we are choosing states with a set of probabilities. Consider a single letter in our
alphabet sequence. If the letter is a with probability 1/2 then the information content
would be − log2 1/2. But the probability of that happening would be 1/2. This gives an
estimate for the information content of the first letter, −1

2 log2
1
2 . The total information

content would be
∑

i pi log2 pi which is, in fact, the Shannon entropy. You can think of the
Shannon entropy as a probability weighted sum of information in each possible alphabet
choice.

2.3 von Neumann entropy and quantum information

Consider a system that has a various states described with probabilities pi. The Shannon
entropy is

SShannon ≡ −
∑
i

pi ln pi.

For a quantum system, the analogous entropy is known as the von Neumann entropy
and it is computed from the density matrix

s ≡ − tr(ρ ln ρ). (12)

The exponential of a matrix can be defined in terms of a series. The log of a matrix can
be defined as consistent from that definition. If we diagonalize ρ and write it as a diagonal
matrix with eigenvalues λi on its diagonal then

s ≡ −
∑
i

λi lnλi

A pure state has density matrix that has a single eigenvalue of 1 so its entropy s = 0. A
mixed state has a positive entropy as the eigenvalues are positive and they are all smaller
than 1.
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2.4 Quantifying the extent of entanglement

Consider a bipartite system that is a tensor product of two Hilbert spaces. If the density
matrix is constructed from a pure state in the full product space ρAB, then the von-
Neumann entropy of ρAB is 0. An entangled state is one that has non zero entropy in the
traced density matrices ρA and ρB. We could try to measure the extent of entanglement
from the von-Neuman entropy of the traced density matrices or the trace of their squares.

Given a state vector |ψ〉 in HA⊗HB is it possible to write it as a product of two states
|ψ〉 = |φ〉A⊗ |φ〉B. There is discussion of using negative off diagonal matrices in Presskill’s
notes to try to partially answer the question of whether a state vector can be written as a
product and so is not entangled.

2.5 Distance measures for quantum information

The distance between two classical probability distributions pi, qi can be described in terms
of a trace distance or

∑
i |pi − qi where the indices for the events are matched.

An analogy for two density matrices ρ, σ is the trace distance

D(ρ, σ) =
1

2
tr|ρ− σ|.

Related is called fidelity

F (ρ, σ) = tr

√
ρ

1
2σρ

1
2 .

3 Systems with three qubits

In this section we consider a tensor product of 3 Hilbert spaces HA⊗HB ⊗HC where each
one describes a single qubit.

3.1 The GHZ state and the monogamy of entanglement

Consider

|ψ〉Cat =
1√
2

(|000〉+ |111〉)

which is known as the cat state for 3 qubits. Each qubit in the entangled state is hosted by
a different person. Alice gets the first one, Bob gets the second and Charlie gets the third.

Let’s look at some density matrices. The density matrix of the pure state given by |ψ〉
is

ρABC,Cat =
1

2
(|000〉 〈000|+ |111〉 〈111|+ |000〉 〈111|+ |111〉 〈000|)

We trace out the first qubit giving the reduced density matrix

ρBC,Cat = trAρABC =
1

2
(|00〉 〈00|+ |11〉 〈11|) =

(
1
2 0
0 1

2

)
.

19



Similarly

ρAC,Cat = trBρABC =
1

2
(|00〉 〈00|+ |11〉 〈11|) =

(
1
2 0
0 1

2

)
(13)

ρAB,Cat = trCρABC =
1

2
(|00〉 〈00|+ |11〉 〈11|) .

We take the trace over pairs of two qubits

ρA,Cat = trBCρABC =
1

2
(|0〉 〈0|+ |1〉 〈1|)

ρB,Cat = trACρABC =
1

2
(|0〉 〈0|+ |1〉 〈1|)

ρC,Cat = trABρABC =
1

2
(|0〉 〈0|+ |1〉 〈1|) .

The non-zero eigenvalues of ρA,Cat, ρB,Cat, ρC,Cat, ρAB,Cat, ρBC,Cat, ρAC,Cat are 1/2,1/2.
There is the same amount of information in a single qubit as in the other two.

Consider Alice and Bob who together have information present in ρAB,Cat and Charlie
who has information present in ρC . Nothing Charlie does should affect Alice and Bob’s
measurements but if Charlie makes a measurement of the 3-bit Cat state then there is no
longer any entanglement between Alice and Bob.

Compare ρAB,Cat to that of a two bit 2 Cat state or Bell pair state. With

|ψ〉Bell =
1√
2

(|00〉+ |11〉)

the density matrix

ρBell =
1

2
(|00〉 〈00|+ |11〉 〈00|+ |00〉 〈11|+ |11〉 〈11|) =

(
1
2

1
2

1
2

1
2

)
.

This is not the same as ρAB,Cat (equation 13).
This is illustrates the principle called monogamy of entanglement. If Alice has a

qubit that is maximally entangled with one that Bob has, (like the Bell pair state) then
Alice’s qubit cannot be maximally entangled with Charlie’s.

An example of a 3 qubit state in which Alice and Bob share a maximally entangled
state is |ψ〉 = |ψ〉Bell⊗|0〉 = 1√

2
(|000〉+ |110〉). For this state ρAB = ρBell and ρC = |0〉 〈0|.

Let’s compare the situation in what is known as the ‘W-state’

|ψ〉W =
1√
3

(|001〉+ |010〉+ |100〉)
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ρABC,W =
1

3
(|100〉 〈100|+ |010〉 〈010|+ |001〉 〈001|

+ |001〉 〈010|+ |010〉 〈001|+ |100〉 〈010|+ |010〉 〈100|+ |001〉 〈100|+ |100〉 〈001|)

ρAB,W =
1

3
(|10〉 〈10|+ |01〉 〈01|+ |00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|)

ρA =
2

3
|0〉 〈0|+ 1

3
|1〉 〈1|

The eigenvalues of ρAB,W are 0,0,1/3, 2/3. The eigenvalues of ρA are 1/3, 2/3. Again
the amount of information present in any two bits is equivalent to that in any single bit.
However, notice that there is more information content coming from the |1〉 state than in
the |0〉 state. There’s some entanglement between Alice and Charlie, and between Alice
and Bob, but neither pair is maximally entangled.
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