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1 Introduction

The goal of these notes is not to teach quantum mechanics but introduce the frame work
for quantum mechanics well enough that we can explore concepts of quantum computing,
quantum information and quantum simulation. Quantum computers are now a reality,
and they continue to be improved. A significant fraction of research effort in physics is
now devoted to various aspects of quantum computing. They have inspired new ideas in
information theory and new types of algorithms. Quantum computers may turn out to be
useful.

2 Basis vectors and quantum states

A Hilbert space is a complex vector space that has an inner product. We can describe
a quantum state 〈ψ| or |ψ〉 with a vector of unit length in a Hilbert space. With an
orthonormal basis for the Hilbert space with basis vectors 〈ai|, (satisfying 〈ai|aj〉 = δij) we
can write

|ψ〉 =
∑
i

ci |ai〉

〈ψ| =
∑
i

〈ai| c∗i .

Here the ci are complex numbers. The wave vector or quantum state is normalized;

〈ψ|ψ〉 =
∑
i

cic
∗
i = 1.

The number cic
∗
i is associated with the probability to be in state |ai〉. Quantum mechanics

postulates that the world is described with probabilities of knowing something rather than
absolutely knowing the position or state an object is in.
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The ket or |ψ〉 =
∑

i ci |ai〉 can also be written as a vector

|ψ〉 =



c0
c1
c2
.
.

cN−1


where N is the dimension of the Hilbert space. The bra or 〈ψ| can also be written as vector

〈ψ| =
(
c∗0 c∗1 c∗2 ...c∗N−1

)
A linear operator on |ψ〉 can be written as a matrix. For example in a two state system a
linear operator A

A |ψ〉 =

(
A00 A01

A10 A11

)(
c0
c1

)
=

(
A00c0 +A01c1
A10c0 +A11c1

)
with |ψ〉 = c0 |a0〉+ c1 |a1〉 =

∑
k ck |ak〉. We can also write

A =
∑
ij

Aij |ai〉 〈aj |

giving

A |ψ〉 =
∑
ij

Aij |ai〉 〈aj |
∑
k

ck |ak〉

=
∑
ijk

Aij |ai〉 ckδjk =
∑
ij

Aijcj |ai〉 .

A Hamiltonian matrix is a Hermitian or self-adjoint matrix. A Hermitian matrix
satisfies A† = A where the dagger means taking both the transpose and complex conjugate
of the matrix. A Hermitian matrix is equal to the complex conjugate of its transpose, it is
diagonalizable and it has real eigenvalues.

Observables or measurements are represented by Hermitian matrices.
Hamiltonian evolution gives unitary evolution of the wave vector. However the Hamil-

tonian is not a unitary matrix, it is Hermitian.
A unitary matrix U satisfies UU† = I with I the identity. A unitary transformation

preserves the norm of the wave or state vector ψ. In other words, with 〈ψ|ψ〉 = 1 and
|ψ′〉 = U |ψ〉 and U unitary, then 〈ψ′|ψ′〉 = 1.

Hamiltonian evolution is done using the exponential of the Hamiltonian via

|ψ(t)〉 = e−iHt/~ |ψ(t = 0)〉
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as this is consistent with Schroedinger’s equation

i~
∂

∂t
|ψ〉 = H |ψ〉

In a particular basis, the coefficients of |ψ〉, (ci) are directly related to probabilities,
with the probability of being in state |ai〉 equal to pi = cic

∗
i . Unitary evolution is not

random but deterministic. The coefficients are not randomly varied but updated using a
Hamiltonian and evolved using unitary evolution.

The expectation value of an observable A

〈A〉 = 〈ψ|A|ψ〉

In the orthonormal basis |ai〉, the matrix A has coefficients

Aij = 〈ai|A |aj〉

and
A =

∑
Aij |ai〉 〈aj |

The expectation value of an observable should be a real number and this implies observables
should be Hermitian as Hermitian matrices have real eigenvalues.

For state |ψ〉 = a |0〉+ b |1〉, aa∗ can be interpreted as the probability that the state is
in the |0〉 state and bb∗ the probability that the state is in the |1〉 state. Expectation values
are mean values of a system that is measured many times.

We can write a matrix in the form
∑
Aij |ai〉 〈aj | as this gives a linear map taking a

vector to another vector in our Hilbert space.
A projection operator P satisfies P2 = P.
The probability pi, that a wave vector ψ is in state |ai〉 can be computed with the

projection operator
Pi = |ai〉 〈ai|

with ψ =
∑

i ci |ai〉,

〈ψ|Pi|ψ〉 =
∑
jk

〈aj | c∗j Pi,jk ck |ak〉

=
∑
ij

〈aj | c∗j |ai〉 〈ai| ck |ak〉

=
∑
ij

c∗jδjiδkick

= c∗i ci = pi.
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3 The qubit

A two state quantum system can be described with wave-vector

|ψ〉 = a |0〉+ b |1〉
〈ψ| = 〈0| a∗ + 〈1| b∗

where aa∗ + bb∗ = 1 and |0〉 and |1〉 are the two energy states. You can also think of a
particle with spin up and spin down as a two energy state object. Here we take |0〉 = |↑〉
and |1〉 = |↓〉. This is a building block for many quantum computer designs and is called
a qubit or q-bit.

In vector notation the first state and second states are

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
and

|ψ〉 =

(
a
b

)
. (1)

Coefficients a, b are both complex numbers, but the vector is normalized so that

aa∗ + bb∗ = 1.

A state ψ is described by two complex numbers a, b. Each one has a real and a complex
part. This gives a four dimensional space. As 〈ψ|ψ〉 = 1, the sum

Re(a)2 + Im(a)2 + Re(b)2 + Im(a)2 = 1

restricting the space to a 3d spherical surface in this 4d space.

3.1 The Bloch Sphere

It is convient to define

|+〉 =
1√
2

(|0〉+ |1〉)

|−〉 =
1√
2

(|0〉 − |1〉)

|i〉 =
1√
2

(|0〉+ i |1〉)

|−i〉 =
1√
2

(|0〉 − i |1〉)

These four and with |0〉 , |1〉 are 6 equidistant poles on the Bloch sphere.
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Global phase is unobservable whereas relative phase is observable. Global means we can
multiply the entire state by eiα and we not see any difference in our measurements.

The two states 1√
2

(|0〉+ |1〉) and 1√
2

(|0〉 − |1〉) have different relative phases. We could

rotate the states and then measure their spin. We would measure different spin values in
these rotated states. Relative phase is observable.

By adjusting the global phase we can take a wave vector

|ψ〉 = a |0〉+ b |1〉

and write it as ∣∣ψ′〉 = a′ |0〉+ b′eiφ |1〉

with a′, b′ both real and a′ ≥ 0. We do this by multiplying by a∗/|a|.
The map onto the Bloch sphere

|ψ〉 |ψ′〉π

with map π

a, b a′, b′π

given by

a′ = |a|

b′ =
|ba∗|
|a|

φ = arctan2(Im(ba∗),Re(ba∗))

The map is a projection as π2 = π. In other words π(π(|ψ〉)) = π(|ψ〉).
The wave vector has a norm of 1 so we we can find an angle θ with∣∣ψ′〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉 . (2)

The factor of 2 within the cosine and sine lets us associate θ with a co-latitude on a sphere.
The angles

θ ∈ [0, π] φ ∈ [0, 2π)

with φ acting like a longitude. With θ ∈ [0, π] the factor cos(θ/2) ranges from 1 to 0. This
means we have chosen a global phase that keeps a′ positive!

We can describe the wave vector as a point on the sphere, or with unit vector

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ). (3)

This is known as the Bloch sphere. The projection π to the Bloch sphere can also be
written as a map from complex numbers a, b to angles θ, φ,

a, b θ, φπ

6



Figure 1: The Bloch sphere.

given by

θ

2
= arctan2(b′, a′) = arctan2(|b|, |a|)

φ = arctan2(Im(ba∗),Re(ba∗)).

A general qubit state |ψ〉 depends on two complex numbers, giving 4 degrees of freedom,
when counting each real and complex part of the two complex numbers. However 〈ψ|ψ〉 = 1
reduces the degrees of freedom by 1. There is a redundant phase. If we drop it by projecting
onto the Bloch sphere, then this reduces the dimension again. This is why the Bloch sphere
is a 2-d object, and is a sphere in 3d rather than a 3-sphere embedded in 4-dimensions,
like the qubit prior to projection onto the Bloch sphere.

Points 180◦ apart on the Bloch sphere are orthogonal states. We have given three pairs
of them, the spin up and down states, |0〉 , |1〉, the states |+〉 , |−〉, and the complex states
|i〉 , |−i〉. We could also rotate into another basis and find a different set of 6 extreme
points. The spin up and down states are eigenvectors of σz.

Question: What are the θ, φ angles and x, y, z coordinates for the 6 states on the Bloch
sphere?

Answer: Here is a table:
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Points on the Bloch sphere

State θ φ (x, y, z)

|0〉 0 - (0,0,1)
|1〉 π 0 (0,0,-1)
|+〉 1√

2
(|0〉+ |1〉) π/2 0 (1,0,0)

|−〉 1√
2
(|0〉 − |1〉) π/2 π (-1,0,0)

|i〉 1√
2
(|0〉+ i |1〉) π/2 π/2 (0,1,0)

|−i〉 1√
2
(|0〉 − i |1〉) π/2 −π/2 (0,-1,0)

Question: How do the Pauli spin matrices, σx, σy, σz operate on the Bloch states?

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

Answer: here is a table:

Action of Pauli Matrices

|ψ〉 σx |ψ〉 σy |ψ〉 σz |ψ〉
|0〉 |1〉 i |1〉 |0〉
|1〉 |0〉 −i |0〉 − |1〉
|+〉 |+〉 −i |−〉 |−〉
|−〉 − |−〉 i |+〉 |+〉
|i〉 i |−i〉 |i〉 |−i〉
|−i〉 −i |i〉 − |−i〉 |i〉

Question: Find a matrix for which the complex states |i〉 and |−i〉 are eigenvectors.
The answer is the Pauli-Y or σy.

Question: Find a matrix for which the states |+〉 and |−〉 are eigenvectors.
Answer is the Pauli-X or σx.

Question: Is there a way to figure this out without guessing?
Answer: Yes. Make a unitary transformation U to transfer from |0〉 , |1〉 basis to

|+〉 , |−〉. This can be done with the states themselves as these states are orthonormal
and rows of unitary matrices are orthonormal. Then compute UσzU

†.
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3.2 Single qubit Gates

Quantum gates are unitary transformations. I give some examples of common gates that
operate on a single qubit.

Hadamard −H − H = 1√
2

(
1 1
1 −1

)
NOT or Pauli-X −X − σx =

(
0 1
1 0

)
Pauli-Y −Y − σy =

(
0 −i
i 0

)
Pauli-Z − Z − σz =

(
1 0
0 −1

)
Phase =

√
Z − S − S =

(
1 0
0 i

)
π/8 =

√
S − π

8 −
π
8 =

(
1 0

0 eiπ/4

)
I have also include the quantum circuit symbols. The Hadamard gate takes a |0〉 and

returns a |+〉 and takes a |1〉 and returns a |−〉. The Hadamard gate obeys H2 = I. The
NOT interchanges the |0〉 , |1〉 states. The π/8 is the square root of the Phase Gate which
itself is the square root of the Pauli-Z gate.

Unitary matrices satisfy UU† = I. The rows and columns of a unitary matrix are
orthonormal. The above gates are unitary matrices.

The phase gate is sometimes called P or Pπ
2
. The π/8 is sometimes called Pπ

4
.

3.3 Exponentials of matrices

The exponential of a matrix A is

eA = I + A +
1

2
A2 +

1

3!
A3....

1

i!
Ai... (4)

We can generate a smooth trajectory in the space of matrices with

etA

where t is like time. At t = 0 we recover the identity matrix I as

lim
t→0

etA = I.

When applied on a vector |ψ(t)〉 = etA |ψ〉, and starting at t = 0, the initial condition
returns |ψ〉 itself. Then as t varies we have a trajectory in the Hilbert space in which |ψ〉
lives. Unitary evolution is more commonly written as eitH where H is a Hermitian matrix.
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Let us compute the exponentials of the Pauli matrices. Because σ2x = σ2y = σ2z = I the
exponentials of the Pauli matrices can be evaluated from the expansion in equation 4. The
exponentials of the Pauli matrices are sometimes described like rotations Rx(α), Ry(α),
Rz(α),

Rx(α) = eiασx = cosα I + i sinα σx =

(
cosα i sinα
i sinα cosα

)
(5)

Ry(α) = eiασy = cosα I + i sinα σy =

(
cosα sinα
− sinα cosα

)
(6)

Rz(α) = eiασz = cosα I + i sinα σz =

(
eiα 0
0 e−iα

)
(7)

and they are functions of an angle α. They can be considered rotations in U(2) that are
generated exponentially from infinitesimal operators, the Pauli spin matrices.

The matrices Rx(α), Ry(α), Rz(α) are unitary transformations.

3.4 Some properties of unitary transformations

Some properties of unitary transformations:

• Reversible. They have an inverse. If U is a unitary transformation U−1 = U †.

• Deterministic. No random choices are required when a wave vector transforms via
unitary transformation.

• They can be applied in a time continuous way with an exponential matrix.

• They preserve the wave vector norm, 〈ψ|ψ〉 = 〈Uψ|Uψ〉 = 〈ψ|U †U |ψ〉 = 1.

• A unitary matrix has columns that are orthonormal and rows that are orthonormal.

• The determinant of a unitary matrix |det(U)| = 1.

• A unitary matrix can be written as U = eiH where H is a Hermitian matrix.

4 Measurements

Measurements are

• Irreversible.

• Information is lost.

• Probabilistic.
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• Involve collapse of wave-function. They can be discontinuous. (Though not neces-
sarily in the setting of weak measurements).

Measurements can be described as a projection of the wave-function with a Hermitian
projection operator that is chosen using a probability.

In contrast, unitary transformations always preserve the norm, are reversible, and in-
volve no random choices.

Measurements involve a sum of probabilities that equal 1.
The Pauli spin matrix

σz =

(
1 0
0 −1

)
The expectation

〈σz〉 = 〈ψ|σz |ψ〉
gives us the expectation value of the spin value with a measured 1 being spin up and a
measured -1 being spin down. (For a spin 1/2 particle the spin operator is J = ~σ/2 so a
measurement of spin in the z direction actually gives ±~/2). With |ψ〉 = |0〉 the spin is up
and with |ψ〉 = |1〉 the spin is down. With |ψ〉 = a |0〉+ b |1〉, the probability of measuring
spin up is aa∗ and the probability of measure spin down is bb∗ = 1− aa∗. After measuring
a spin up, the wave vector collapses and becomes a complex number of magnitude 1 times
|0〉. After measuring a spin down, the wave vector collapses and becomes |1〉 times a
complex number of magnitude 1. Is the phase important? If you are later on carrying out
an interference experiment, the phase could be important.

We can collapse the wave function with two projection operators

P0 =

(
1 0
0 0

)
P1 =

(
0 0
0 1

)
The projection operators can also be written

P0 = |0〉 〈0| P1 = |1〉 〈1|

The projection operators satisfy P2
0 = P0, P2

1 = P1. After a measurement giving spin up,
the wave-vector must be normalized∣∣ψ′〉 =

P0 |ψ〉
〈ψ|P0 |ψ〉

The probability that a wave vector |ψ〉 is in the spin up state is 〈ψ|P0|ψ〉 and that it
is in the spin down state is 〈ψ|P1|ψ〉.

The measurement operator σz can be written as

σz = m0P0 +m1P1(
1 0
0 −1

)
= 1×

(
1 0
0 0

)
+ (−1)×

(
0 0
0 1

)
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where m0 = 1 is the measurement associated with the P0 projection operator and m1 = −1
is the measurement associated with the P1 projection operator.

To simulate measurement of a single state, you need a set of projection operators, Pi

each associated with each possible measurement value mi. To simulate a measurement,
project the state with each projection operator. For example if |ψ〉 = a |0〉+ b |1〉 then

P0 |ψ〉 = a |0〉
P1 |ψ〉 = b |1〉

The probability of getting spin up is aa∗ and the probability of getting spin down is
bb∗. Now you would choose a possible measurement value randomly, using these two
probabilities. After you know what state resulted from the measurement you then would
normalize the state vector. If spin up was measured then the resulting statevector after
measurement is a

|a| |0〉, otherwise it is b
|b| |1〉. Here I am keeping track of the phase. If you

don’t want to keep track of the phase then after measurement you get |0〉 or |1〉.
Simulation of measurement on a single state involves making a random choice. A

series of measurements would then be a series of random choices each giving you a new
statevector. Mimicking a series of measurements is a Markov chain Monte Carlo (MCMC)
model.

If you have an experiment that you run many times, then the expectation value of the
spin would be

〈ψ|σz |ψ〉

with 1 corresponding to spin up and -1 corresponding measuring spin down. This expec-
tation value would be the average over many possible measurements of the state vector
|ψ〉.

4.1 Measurement Postulates of Quantum Mechanics

• A measurement can be specified via a Hermitian operator A which can also be called
an observable.

• The eigenvalues mi of the operator are the possible measured values. Because A is
Hermitian, the measurement values mi are real numbers.

• The eigenvectors vi of the operator can be used to construct a set of orthogonal
projection operators. The measurement operator can be written as

A =
∑
i

miPi

where mi are the possible measurement values and Pi = |vi〉 〈vi| are the projection
operators.
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• The dot product of a normalized eigenvector vi with the wave function |ψ〉 gives the
probability of a particular measurement value.

pi = | 〈vi|ψ〉 |2 = 〈ψ|Pi |ψ〉 .

• The expectation value of the measurement 〈A〉 = 〈ψ|A |ψ〉. If you redid the mea-
surement many times (on the same wave vector) the expectation value is the average
of all the measurements.

• After a single measurement the wave function is collapsed using one of the projection
operators. If the measured value is mi then the wave function becomes

ψ → Piψ

〈ψ|Pi |ψ〉
.

After measurement, the wavefunction is a normalized eigenvector of the measurement
operator.

4.2 The Quantum Zeno effect

The Quantum Zeno effect describes what happens if you measure a state over and over
again. It is nearly frozen into a single measured state. With a slowly drifting system, the
process of repeated measurement and wave vector collapse keeps the probability low that
the system can evolve into a different state and that a subsequent measurement will give
a different value.

Consider a single qubit that is initially in the spin up state |ψ〉 = |0〉. We operate on
it with a smoothly varying unitary operation U(t) = Rx(βt) = eiβσxt where t is time and
β is small and specifies how fast U varies. We consider the state at time intervals of

δt =
2π

Nβ
.

Here N is the number of time intervals required for a complete revolution of 2π. At time

interval jδt, the unitary transformation Uj = e
i2πjσx
N rotates the state by angle α = 2πj

N .
We evaluate this matrix using equation 5 to find

Uj =

(
cos 2πj

N i sin 2πj
N

i sin 2πj
N cos 2πj

N

)
(8)

With a single time interval dt the unitary transformation is

U1 =

(
cos 2π

N i sin 2π
N

i sin 2π
N cos 2π

N

)
(9)
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Figure 2: A qubit drifts in the counter clockwise due to continuous unitary evolution.
Measurement by σz projects the state either into |0〉 or |1〉. If the state originates at |0〉
repeated measurements tend to keep it near |0〉. This is called the Quantum Zeno effect.

We evolve with U1, then measure the state, then evolve it again, and so on, alternating
between continuous unitary evolution and measurement.

After evolving via U1 the wave vector becomes

|ψ〉 = cos
2π

N
|0〉+ i sin

2π

N
|1〉

We measure it with σz. The probability that the state has a spin up is cos2 2π
N = 1−sin2 2π

N
and that the state has spin down is sin2 2π

N . Let ε = sin 2π
N and we assume that ε is small,

which is equivalent to assuming that N large. The probability that a spin up is measured
is 1− ε2.

Suppose we alternate between unitary evolution by dt and measurement by σz. We do
this M times. We estimate theprobability that a spin up is measured after M repeats is

PUM ∼ (1− ε2)M ∼ 1−Mε2.

The probability that a spin up is measured after M unitary evolutions by U1 and measure-
ments by σz is actually higher than this since one of the intermediate measurements could
have been spin down.

Suppose instead the system is allowed to evolve without measurement during the M
time intervals. The wave-vector becomes

|ψ〉 = cos
2πM

N
|0〉+ i sin

2πM

N
|1〉

The probability that spin up is measured after time T = Mδt is

PU ∼ cos2
2πM

N
.
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Suppose we chose number of evolution steps to be M = N/4. This gives probably of
spin up PU = 0 (without measurement) because the state evolves to |1〉. In contrast the
probability of spin up when measurements are taken

PUM ∼ 1−M 4π2

N2
∼ 1− π2

N
.

This is much higher than 0 if N is large. The probability can be high that the spin up is
measured after the evenly spaced M measurements. The frequent measurements keep the
system near the spin up position! The Qauntum Zeno effect is when rapid measurements
keep a system from evolving.

5 Product spaces and 2 qubits

With two qubits we have a Hilbert space HAB that is a product of two Hilbert spaces HA

and HB.
A state in the Hilbert space HAB = HA ⊗HB can be written in terms of basis vectors

for HA and HB,

|ψ〉 =
∑
ij

aij |i〉A ⊗ |j〉B .

where |i〉A is in HA and |j〉B is in HB. Shorthand includes

|i〉A ⊗ |j〉B = |i〉 |j〉 = |ij〉 .

With two qubits, a state looks like this

|ψ〉 = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉

with four complex coefficients. Our Hilbert space has 4 elements in its basis and must be
normalized so that |a00|2 + |a01|2 + |a10|2 + |a11|2 = 1.

We could also write |00〉 as |0〉⊗|0〉 making it clearer that our Hilbert space is a product
of two complex vector spaces. The product space contains elements like aij |i〉 ⊗ |j〉 or
aij |ij〉. The product is known as a tensor product.

A single qubit has wavevector in the form |ψ〉 = a |0〉 + b |1〉. We can make a tensor
product with two single qubits (each in their own 2d Hilbert space) with

(a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉) = ac |0〉 |0〉+ bd |1〉 |1〉+ ad |0〉 |1〉+ bc |1〉 |0〉
= ac |00〉+ bd |11〉+ ad |01〉+ bc |10〉 . (10)

However not every state in the product space can be written in the form on the left hand
side. In others words, there are wave vectors |ψ〉AB ∈ HA⊗HB where there does not exist
|φ〉A ∈ HA and |φ〉B ∈ HB such that |ψ〉AB = |φ〉A ⊗ |φB〉.
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5.1 Entanglement

We consider the product space of 2 qubits. Not all states in the full 2-qubit Hilbert space
can be written as a tensor product. For example consider the state

1√
2

(|00〉+ |11〉).

Can we find a, b, c, d
(a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)

that would allow us to write the wavevector as a tensor product? We need to find a, b, c, d
that would satisfy

1√
2

(|00〉+ |11〉) = (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)

Using equation 10 we find that gives ac = 1/
√

2 = bd and ad = bc = 0. The second
condition implies that one of a, d must be zero but neither can be zero according to the
first condition. There is no solution.

States that cannot be written as a tensor product are called entangled.
We consider a state-vector |ψ〉 =

∑
ij aij |i〉 |j〉. There might be a basis

∣∣̃i〉 ⊗ ∣∣j̃〉 in
which we can write the state-vector as

|ψ〉 =
∑
ij

aiaj |i〉 |j〉 =

(∑
i

bi
∣∣̃i〉)⊗

∑
j

cj
∣∣j̃〉
 .

If there is no-such basis, then the state is described as entangled.

5.2 The Bell pair state

The state

|ψ〉Bell =
1√
2

(|00〉+ |11〉)

is called a Bell pair or EPR pair state. Consider making a Bell pair state and then sending
the first qubit to Alice and the second qubit to Bob. Alice and Bob perform measurements
on their qubits. We now consider creating a sequence of Bell pair states and sending the
first qubit in each pair to Alice and the second qubit in each pair to Bob. Alice makes
a series of measurements and so does Bob. Looking at her results, Alice sees a sequence
that appears to be randomly distributed with 0 and 1 states given with equal probability.
Similarly Bob measures a sequence that appears to be random. However, when Alice and
Bob compare their sequences they notice that they are highly correlated. Alice and Bob
measure the same value at each iteration in the sequence.
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5.3 Operations on two qubits

For the product of two qubits, we can order matrices and vectors using the order above so

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 |10〉 =


0
0
1
0

 |11〉 =


0
0
0
1

 (11)

The order of these states is consecutive in base two: 00 is 0, 01 is 1, 10 is 2 and 11 is 3.
The identity for the 2 qubit system can be written as I⊗ I,

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Many operators can be written as direct products, like A ⊗ I where I is the identity
for a single qubit and A is an operator for a single qubit. We can construct operators (or
gates) in the full space that are products of gates in the subspaces. For example H ×H
where H is the Hadamard gate or H⊗ I.

I⊗H =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1



H⊗ I =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

For example

H⊗ I |00〉 =
1√
2

(|00〉+ |10〉)

H⊗ I |01〉 =
1√
2

(|01〉+ |11〉)

H⊗ I |10〉 =
1√
2

(|00〉 − |10〉)

H⊗ I |11〉 =
1√
2

(|01〉 − |11〉).
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The product of I⊗H and H⊗ I is

H⊗H =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

It may help to know that unitary matrices have rows and columns that have norm 1 and
are orthogonal. It is also useful to check that the conjugate transpose of the matrix times
itself gives the identity.

5.4 Controlled NOT gate

An interesting new gate that operates on 2 qubits is the Controlled NOT or CNOT
where the second bit is flipped only if the first bit is 1.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

With basis as defined in equation 11.

CNOT |00〉 = |00〉
CNOT |01〉 = |01〉
CNOT |10〉 = |11〉
CNOT |11〉 = |10〉 .

The CNOT cannot be written as a tensor product.
The CNOT can also be written as

CNOT |xy〉 = |x, x+ y〉

where x, y are either 0 or 1 and the sum x + y is mod 2. Treating the states as classical
bits, x+ y mod 2 is also XOR applied to bit x, y, which gives 0 if both bits are the same
but 1 otherwise. The XOR is sometimes written as x⊗ y.

I can start with a state that is a tensor product and apply the CNOT

CNOT
1√
2

(|0〉+ |1〉)⊗ |0〉 = CNOT
1√
2

(|00〉+ |10〉)

=
1√
2

(|00〉+ |11〉).
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Figure 3: Common convention (though there are exceptions to this rule) with quantum
circuit drawings is that the first qubit is on the top. The operation is the CNOT but with
first (top) bit as control and second (bottoom) bit as target. The CNOT looks like a plus
on the second qubit because the CNOT can be written as |x, x+ y〉 with x, y ∈ {0, 1}.

The result is an entangled state (as we showed above that this state could not be written
as a tensor product). So the CNOT takes a tensor product state that is not entangled, and
turns it into an entangled state.

The CNOT is said to induce correlations. With |+0〉 the original state, there is 50%
chance for the first qubit to be measured in the 0 state, 50% chance of it being measured
in the 1 state and 100% chance that the second qubit is measured in the 0 state. The
final entangled state when measured has a 50% chance of both qubits being zero and 50%
chance of both qubits being 1.

Example: Starting from |00〉 construct a Bell pair state 1√
2
(|00〉 + |11〉) using simple

gates. See Figure 4 for an illustration.
Here’s how we do it.

• Apply H⊗ I, the Hadamard gate to the first qubit.

H⊗ I |00〉 =
1√
2

(|00〉+ |10〉).

• Then apply the CNOT where the control bit is the first qubit and the 2nd qubit is
the target

CNOT
1√
2

(|00〉+ |10〉) =
1√
2

(|00〉+ |11〉)

A diagram of the quantum circuit for the creating the Bell pair state is shown in Figure
4. Convention seems to be putting the first qubit on the top of the diagram (following
QuTip and Presskill’s book but not Reifel & Polack’s books). Inputs are on the left and
outputs are on the right.
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Figure 4: The first quantum operation is a Hadamard on the bottom qubit. This corre-
sponds to the unitary transformation H ⊗ I. The second operation (on the right) is the
CNOT but with first (bottom) bit as control and second (top) bit as target. The CNOT
looks like a plus on the second qubit because the CNOT can be written as |x, x+ y〉. Start-
ing with state |00〉 on the left, the result, on the right is the Bell pair state 1√

2
(|00〉+ |11〉).

5.5 Other controlled 2 qubit operators

We can consider a 2 qubit gate with the first bit a control bit and the second bit a target
bit. Instead of flipping the target bit if the first bit is 1, we can execute a gate on the
target bit if the first bit is 1 and not change it if the first bit is 0. Any one bit gate can be
controlled. We write the CNOT gate as Λ(X), where X is the NOT gate and equivalent
to the Pauli-X gate. We can use the Λ symbol to denote other types of controlled gates.

For the first qubit we use projection operators

P0 = |0〉 〈0| =
(

1 0
0 0

)
P1 = |1〉 〈1| =

(
0 0
0 1

)
.

In the tensor product space

P0 × I =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 P1 × I =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (12)

We can write CNOT gate as

CNOT = Λ(X) = P0 ⊗ I + P1 ⊗X.

Figure 5: A controlled gate. The control bit is the top one and if it is 1 then the gate U
operates on the bottom bit.
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For example a controlled phase gate Λ(S) gate operates on the second bit with the
phase gate if the first bit is 1. Recall that the phase gate looks like

S =

(
1 0
0 i

)
.

The controlled phase gate

Λ(S) = P0 ⊗ I + P1 ⊗ S

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 i

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .

5.6 Partial measurement on two qubits

Supose we have
|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

Question: We measure the first qubit. What is the probability to get a 0 (or spin up)?
Answer: The probability to get 0 in a measurement of the first qubit is |α|2 + |β|2.
Question: We measure a 0. What does the wave vector look like now?
Answer: ∣∣ψ′〉 = α′ |00〉+ β′ |01〉

with coeffcients

α′ =
α

|α|2 + |β|2
β′ =

β

|α|2 + |β|2
.

What are the projection operators associated with measuring the first bit? They look
like P0 ⊗ I and P1 ⊗ I as shown in equation 12.

5.7 The no-cloning theorem

Cloning means taking taking an arbitrary state in the first qubit, a specific state in the
second one and making the second qubit the same as the first qubit and keeping the state
unentangled. In other words finding a transformation

(α |0〉+ β |1〉)⊗ |0〉 → (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉)

with a unitary transformation and for any α, β.
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In matrix form, the transformation would satisfy

U


α
0
β
0

 =


α2

αβ
αβ
β2


The transformation is non-linear. There is no way to solve for a matrix U that does not
depend on α, β. So, it is not possible to do this with a unitary transformation.

Can you make a copy of a state with a CNOT? Let’s recall Figure 3 showing the
CNOT operation |x, y〉 → |x, x+ y〉 with x, y ∈ {0, 1}. Let’s apply the CNOT operation
to (α |0〉+ β |1〉)⊗ |0〉

CNOT (α |0〉+ β |1〉)⊗ |0〉 = α |00〉+ β |11〉 .

This result is not the same as (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉).
In general a cloning device can only simultaneously clone a set of states which are

orthogonal to one another and a general quantum cloning device is impossible. In other
words suppose we have two states |ψ〉 and |φ〉 in HA and a state |s〉 ∈ HB giving states in
HA ×HB

|ψ〉 ⊗ |s〉 and |φ〉 ⊗ |s〉 .

Now suppose we have a unitary transformation U

U |ψ〉 ⊗ |s〉 = |ψ〉 ⊗ |ψ〉
U |φ〉 ⊗ |s〉 = |φ〉 ⊗ |φ〉 .

We take the inner product of these two equations

〈ψ| ⊗ 〈s|U †U |φ〉 ⊗ |s〉 = (〈ψ| ⊗ 〈ψ|)(|φ〉 ⊗ |φ〉)
(〈ψ| ⊗ 〈s|)(|φ〉 ⊗ |s〉) = 〈ψ|φ〉 〈φ|ψ〉

〈ψ|φ〉 = | 〈ψ|φ〉 |2.

The only solutions of x = x2 are 0, 1. So if |ψ〉 6= |φ〉 then 〈ψ|φ〉 = 0 and they are
orthogonal. The states can only be simultaneously cloned if they are orthogonal.

5.8 Qutrits instead of Qubits

So far we have discussed bipartite systems of two qubits. A qutrit is a three state system
with |0〉 , |1〉 , |2〉. We could make a Hilbert space that is a product of a qubit and a qutrit
or a product of a qutrit and a quitrit. And so on!
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Figure 6: A Quantum circuit that swaps two bits. Here x, y ∈ {0, 1}.

5.9 Some quantum circuits

5.9.1 A swap circuit

Let’s construct a quantum circuit that flips the states of 2 qubits. The first qubit becomes
whatever the other one was and vice versa. In other words we want a circuit that does this
transformation

SWAP : |00〉 → |00〉
|11〉 → |11〉
|10〉 → |01〉
|01〉 → |10〉 . (13)

A circuit that does this is shown in Figure 6 and involves 3 CNOTs applied consecu-
tively. Let’s show that it works. We start with |x, y〉 where x can be 0 or 1 and y can be
0 or 1. The first CNOT changes the second bit if the first one is 1. This can be written as

First CNOT |x, y〉 → |x, x+ y〉

where x+ y is 1 if one of them is 1 and is 0 if both are 1 or both are 0. The second CNOT
flips the first bit if the second one is 1.

Second CNOT |x, x+ y〉 → |x+ x+ y, x+ y〉 .

Let’s look at x+ x. If x = 0 then x+ x is 0. If x = 1 then x+ x is 0 mod 2. So the second
CNOT does this

Second CNOT |x, x+ y〉 → |y, x+ y〉 .

Now we apply the third CNOT which flips the second bit if the first one is 1.

Third CNOT |x, x+ y〉 → |y, y + x+ y〉 = |y, x〉 .

Altogeter our circuit does this

SWAP : |x, y〉 → |y, x〉

which is consistent with our desired transformation in equation 13.
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5.10 Dense Coding. Sending two classical bits via sending one qubit and
sharing a Bell pair

Alice wishes to send two classical bits of information to Bob. She and Bob start with a Bell
pair state that is shared between them (Alice has the first qubit and Bob has the second)

|ψ〉 =
1√
2

(|00〉+ |11〉) .

The datum Alice wants to send to Bob has one of 4 values: 00, 01, 10, or 11 in base 2
— or 0, 1, 2, or 3 in base 10. The operation she applies to the Bell pair depend upon
which datum number she wants to send. She operates on her half of the Bell pair using
the following recipe:

Al’s Data and Operations

Value Operation Resulting state

00 I⊗ I 1√
2

(|00〉+ |11〉)
01 σx ⊗ I 1√

2
(|10〉+ |01〉)

10 σz ⊗ I 1√
2

(|00〉 − |11〉)
11 σy ⊗ I i√

2
(− |10〉+ |01〉)

Alice then sends her qubit to Bob. Bob applies the following operations to the 2 qubits,
(H ⊗ I)CNOT |ψ〉. In other words, he first applies a CNOT with control bit the first one
and target the second qubit, and then he performs a Hadamard op on the first qubit. Bob’s
operations are shown in quantum circuit form in Figure 7, Afterwards he measures both
qubits.

Bob’s Operations and Measurements

|ψ〉received CNOT(0,1) |ψ〉 H⊗I CNOT(0,1)|ψ〉 Measurement
1√
2

(|00〉+|11〉) 1√
2

(|00〉+|10〉)= 1√
2

(|0〉+|1〉)⊗ |0〉 |0〉 ⊗ |0〉 00
1√
2

(|10〉+|01〉) 1√
2

(|11〉+|01〉)= 1√
2

(|1〉+|0〉)⊗ |1〉 |0〉 ⊗ |1〉 01
1√
2

(|00〉−|11〉) 1√
2

(|00〉−|10〉)= 1√
2

(|0〉−|1〉)⊗ |0〉 |1〉 ⊗ |0〉 10
i√
2

(−|10〉+|01〉) i√
2

(− |11〉+|01〉)= i√
2

(−|1〉+|0〉)⊗ |1〉 i |1〉 ⊗ |1〉 11

Here CNOT(0,1) is the CNOT with control bit 0 (the first qubit) that operates on bit
1(the second qubit). I am using the order and notation for the control and operation bits
that is used in the addgate routine in the python package qutip.
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Figure 7: Bob’s operations after receiving the 2 qubit state from Alice.

Why is this called dense coding? We used 2 qubits to send 2 classical bits of information.
Notice that Alice only operated on one of the qubits. The original Bell pair could have been
created and then a single qubit sent to Alice and the other sent to Bob. Then Alice operates
on her qubit. She does not perform any measurements on it so it remains entangled. She
then sends her qubit to Bob who decodes the information she wanted to send by measuring
both qubits. Technically Alice only sent 1 qubit to Bob, though a Bell pair was shared
prior to the information transfer.

6 Interpretations of Quantum Mechanics

6.1 Thoughts on the EPR paradox

The EPR paradox refers to a paper by Albert Einstein, Boris Podolsky, and Nathan Rosen
entitled “Can quantum-mechanical description of physical reality be considered complete?”

We start with two particles in a locally generated Bell pair state |ψ〉 = 1√
2
(|00〉+ |11〉).

Then the two qubits are spit up and Alice is given one of them and Bob is given the other.
If Alicee measures 0 then Bob’s particle must instantaneously be put in the state |0〉 and
she would then also measure 0. This could be interpreted as transfer of information over
large distances in an infinitely small period of time. It may seem like the particles are
communicating faster than the speed of light.

What if both Alice and Bob are given a newspaper? They both can simultaneously
know the same information. In both cases the information is not actually transferred
instantaneously. Hence information is not necessarily transmitted faster than the speed
of light. The experimental results can be explained equally well by Bob measuring first
and then Alice as in the opposite order. This symmetry shows while there is a correlation
between the two measurements, it is not causal and Alice and Bob are not communicating
faster than the speed of light. This conundrum is known as the EPR paradox.

What if particles are not really described by probabilities but rather the uncertainty
arises due to local hidden variables. In this case particles have an internal hidden state
that determines the result of measurements. The hidden state is identical in two particles
when the Bell pair is generated. However, the hidden variable is not the same for each
generated Bell pair.
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This local hidden variables interpretation can be ruled out via Bell’s inequalities which
we discuss below.

So far we have divided up our operations on quantum states into two categories

1. Unitary evolution. Nobody is watching. No information loss.

2. Measurement. The wave-function is collapsed to a single state which is chosen based
on a probability described by the wave-function.

This division also presents some paradoxes. If physical laws are based on quantum
mechanics why can’t everything be described via unitary evolution only? When can we
approximate coupling between systems as a measurement?

6.2 Copenhagen interpretation

It’s not all that easy to pin down the Copenhagen interpretation. It is more like a set of
guiding principles.

In the appropriate limit, quantum theory should resemble classical physics and repro-
duces the classical predictions. Quantum mechanics obeys different rules than classical
physics. The results provided by measuring devices are essentially classical. Measurement
involves an interaction between the system and a laboratory device and this interaction
‘collapses’ the wave function. A wave function is a mathematical entity that provides a
probability distribution for the outcomes of each possible measurement on a system.

The Born rule: The wave function gives probabilities for the outcomes of measure-
ments.

The correspondence principle: In the appropriate limit, quantum theory should
give predictions consistent with classical mechanics.

Complementarity: Certain properties cannot be simultaneously measured on a par-
ticular system (this is related to the Heisenberg uncertainty principle).

There are now numerous other interpretations.

6.3 The many worlds interpretation

For example the many worlds interpretation describes the universe with a single wave
function that evolves deterministically via unitary evolution. Interactions of objects within
the universe can behave like measurements. The subjective appearance of wavefunction
collapse is explained by the mechanism of quantum decoherence.

The universe’s wave function then describes probabilities for ensembles of many uni-
verses. As this idea is not testable, some people think that it is not really a theory. In
contrast, quantum mechanics is accurately predictive and has been overwhelmingly verified
experimentally. In this sense quantum mechanics is a very good theory.
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Figure 8: Shrödinger’s cat is in a box. A mechanism, here the ‘quiet quantum cat carnage
contrivance’, has probability 1/2 that it will kill the cat. The state of the cat is |ψ〉cat =
1√
2
(|dead〉 + |alive〉). The observer cannot see into the box until after the experiment is

done. The observer cannot tell from listening (or any other probe) what is going on inside
the box until he or she opens it.

6.4 Shrödinger’s cat

Schrödinger’s cat is a thought experiment that illustrates an apparent paradox caused by
quantum superposition. A cat is in an opaque box. There is a Geiger counter next to some
radioactive material. In a single hour, the probability that the Geiger counter counts 1
radioactive decay is 1/2 and counts 0 decays is 1/2. If the Geiger counter counts a decay,
then the cat is automatically killed.1 After the hour is up, the box is opened to see if the
cat is alive or dead. During this hour, the cat can be considered to be in a superposition
of dead and alive states;

|ψ〉cat =
1√
2

(|dead〉+ |alive〉) .

In the Copenhagen interpretation, the superposition of states exists only while the box
is closed. Only when the box is opened and the cat inside is observed is the cat’s wave
function collapsed.

However Niels Bohr suggested instead that effectively irreversible processes causes the
decay of quantum coherence which imparts the classical behavior of observation to the cat.
The cat is either alive or dead before the box is opened.

In the many worlds interpretation the universe with the observer and the possibly-dead
cat split into a universe with an observer looking at a box with a dead cat, and a universe

1Apparently Shrödinger’s version involved hydrocyanic acid whereas Einstein’s version involved gunpow-
der.
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with an observer looking at a box with a live cat. Since the dead and alive states are
decoherent, there is no effective communication or interaction between the two universes.

6.5 EPR polarization measurements

Bell’s inequalities which are used to rule out hidden variable interpretations are often dis-
cussed in terms of photon polarization. The polarization of a single photon can be described
in terms of basis states |↑〉, corresponding to vertical polarization and |→〉 corresponding to
horizontal polarization. A photon can be in a superposition |ψ〉 = a |↑〉+ b |→〉 where aa∗

is the probability that a vertical polarizer allow the photon to pass through it. A photon
that passes through a vertical polarizer becomes vertically polarized, |ψ〉 → a

aa∗ |↑〉.
Consider a photon source, called an EPR source (for the Einstein-Podolsky-Rosen para-

dox) that generates two entangled photos,

|ψ〉 =
1√
2

(|↑↑〉+ |→→〉) .

One photon travels to Alice and the other travels to Bob. Both Alice and Bob can measure
the photon polarization, but each of them can measure the polarization in one of three
orientations. They can measure the polarization in the vertical direction, at 60◦ from
vertical or at −60◦ from vertical. The different directions are chosen by changing the
orientation of the polarizer.

If they both measure polarization in the same orientation, they will 100% of the time
measure the same polarization (whether the photon passes through or is absorbed by the
polarizer). This follows if we consider rotations of the Bell state, R(θ) ⊗ R(θ), for both
qubits by the same angle θ. This rotation transfers both qubits to the same new basis.
To make a polarization measurement that is an angle, we can rotate the measurement and
projection operators and keep the wave vector in the same basis or equivalently we can
rotate the basis of the wave vector and use diagonal matrices for measuring the polarization.

What happens if Alice measures the polarization of the first qubit in the vertical direc-
tion and Bob measures it at angle θ? In the |↑〉 , |→〉 basis,

|↑〉 =

(
1
0

)
|→〉 =

(
0
1

)
.

We rotate the basis of the second qubit

|ψ〉′ = I⊗R(θ)
1√
2

(|↑↑〉+ |→→〉)

= I⊗
(

cos θ − sin θ
sin θ cos θ

)
1√
2

(|↑↑〉+ |→→〉)

=
1√
2

(cos θ |↑↑〉+ sin θ |→↑〉 − sin θ |↑→〉+ cos θ |→→〉) .
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This rotation let’s us mimic measurement of the second photon with a polarizer rotated
by angle θ.

We measure the first photon with a vertical polarizer. The probability is 1/2 that
the polarization of the first photon is vertical and after measurement the wavevector is is
|ψ〉 = cos θ |↑↑〉 − sin θ |↑→〉. The probability is cos2 θ that the second qubit passes (P)
through the polarizer aligned with θ and sin2 θ that it is absorbed (A).

Polarization Measurements of the EPR source

State 1√
2

(cos θ |↑↑〉+ sin θ |→↑〉 − sin θ |↑→〉+ cos θ |→→〉)
Measurement New Measurement New
First photon Wavevector Probability Second photon Wavevector Probability

P cos θ |↑↑〉−sin θ |↑→〉 1
2 P cos θ |↑↑〉 cos2 θ

P cos θ |↑↑〉−sin θ |↑→〉 1
2 A − sin θ |↑→〉 sin2 θ

A sin θ |→↑〉+cos θ |→→〉 1
2 P sin θ |→↑〉 sin2 θ

A sin θ |→↑〉+cos θ |→→〉 1
2 A cos θ |→→〉 cos2 θ

Similarly the probability is 1/2 that the polarization of the first photon is horizontal
and is absorbed (A) by the polarizer. After measurement |ψ〉 = sin θ |→↑〉 + cos θ |→→〉
and the probability is sin2 θ that the second photon has polarization aligned with θ.

The probability that Alice and Bob’s measurements agree (either both passing through
PP or both absorbed by the polarizers AA) is

Pagree =
1

2
cos2 θ +

1

2
cos2 θ = cos2 θ. (14)

If θ = 60◦, the probability that their measurements agree is 1/4. Here we asserted that
the polarizers were like this ↑↗ as Al’s was up and Bob’s was at 60◦. We summarize:

QM : for Polarizers ↑↗, pagree =
1

4
. (15)

Exploiting the symmetry of the problem, we make a table of the possible orientations
for Alice and Bob’s polarizers and the probability that their measurements agree. Here
↗,↖ are the ±60◦ orientations.
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Quantum EPR Measurements

Alice’s Bob’s probability
polarizer polarizer meas. agree

↑ ↑ 1
↑ ↗ 1/4
↑ ↖ 1/4
↗ ↑ 1/4
↗ ↗ 1
↗ ↖ 1/4
↖ ↑ 1/4
↖ ↗ 1/4
↖ ↖ 1

One third of the possible rows in this table always give agreement. The probability is
1/3 that they will measure have the same polarizer orientation and it is 2/3 that they will
not. Altogether the probability that their measurements agree is

pagree =
1

3
+

2

3
× 1

4
=

4

12
+

2

12
=

1

2
.

The measurements should agree half of the time!

6.6 EPR polarization measurements with hidden variables

Suppose there is some hidden state associated with each photon that determines the result
of measuring the photon with a polaroid in each of the three possible settings. We list
the possible polarization measurements with P for pass and A for absorb. We can refer to
these possibilities as covering the possible range of hidden states.

The idea is that the choice of the hidden variables determines the polarization mea-
surement results ahead of time. Later on Alice and Bob chose an orientation and measure
the polarization of their photons but the outcome of these measurements would have been
determined ahead of time from the hidden variables. The hidden variables are created or
set when the two photons are created.
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Hidden variables states

↗ ↑ ↖ pagree
P P P 1
P P A
P A P
P A A
A P P
A P A
A A P
A A A 1

We expect that two polarization measurements will agree for the two photon Bell state
if the measurements of individual photons are the same or if the hidden states are PPP or
AAA. I added a third column in the above table giving pagree = 1 for these two possible
hidden variable states.

Let us consider the second line with PPA and list the possibilities for each possible
measurement.

Hidden variables are PPA

Alice’s Bob’s PPA meas. meas.
polarizer polarizer Al/Bob agree

↑ ↑ PP yes
↑ ↗ PP yes
↑ ↖ PA no
↗ ↑ PP yes
↗ ↗ PP yes
↗ ↖ PA no
↖ ↑ AP no
↖ ↗ AP no
↖ ↖ AA yes

We see that there are 5 cases where the measurements agree so the probability is 5/9 of
measurements agreeing if the photon variables were in the PPA state. Using the symmetry
of the problem, we can fill in the table of hidden states.
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Hidden variable states

↗ ↑ ↖ pagree
P P P 1
P P A 5/9
P A P 5/9
P A A 5/9
A P P 5/9
A P A 5/9
A A P 5/9
A A A 1

What is the probability that the measurements agree?

pagree =
1

8

(
2× 1 + 6× 5

9

)
=

1

8

(
6

3
+

10

3

)
=

16

3× 8
=

2

3

This exceeds the 1/2 expected (and verified experimentally) from the Quantum mea-
surement in section 6.5.

6.7 Bell’s inequality

Bell’s inequality is a generalization of the preceding two sections. Polarizers can be set
at any triple of three distinct angles a, b, and c. Pab is the sum of probability that both
photons both pass through or both are absorbed by the polarizers, if the first polarizer is
at angle a and the second is at angle b and the probability that the first polarizer is at
angle b and the second is at angle a.

For any local hidden variable theory,

Pab + Pac + Pbc ≥ 1. (16)

This is Bell’s inequality.
Quantum mechanics allows Bell’s inequality to be violated. For example, in section

6.5 we determined that the probability that Alice’s and Bob’s polarization measurements
agree if Alice’s polarizer is vertical and Bob’s polarizer is at 60◦ is 1/4 (see equation 15).
This means that P↑↗ = 1

4 . Because of symmetry, P↑↖ = 1
4 . With the two polarizers

separated by angle θ, the probability that the two measurements agree is equal to cos2 θ
(equation 14). For P↗↖ the two polarizers differ by 120◦ and the probability is also 1/4
as cos 120◦ = −1/2.

The sum of
QM : P↑↗ + P↑↖ + P↗↖ = 3/4,

and as this is less than 1, the inequality is violated.
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We now show how equation 16 is derived. According to a local hidden-variable theory,
the result of measuring a photon by a polarizer in each of the three possible settings is
determined by a local hidden state h of the photon. Any measurement has only two possible
outcomes P (for pass) and A (for absorb). We assume if Alice and Bob’s polarizers are
oriented the same, their measurements or outcomes will agree on an EPR pair. This implies
that for an EPR pair, the hidden state is the same for both photons.

Let P hab be 1 if the measurements agree for hidden state h and be zero otherwise. The
two photons in the EPR pair are assumed to be in the same hidden state h. Because P hah
can only be 1 or zero and outcomes can only be P or A one of Pab, Pbc, Pac must be 1 (with
agreement for the outcomes). This implies that for state h

P hab + P hbc + P hac > 1.

Consider a probability distribution for the hidden variable states h, where wh is the
probability that the EPR source emits photons of kind h. As wh gives the probability of
each kind,

∑
hwh = 1. The sum

Pab + Pbc + Pac =
∑
h

wh(P hab + P hbc + P hac).

The weighted average of a sum of terms that is greater than 1 must also be greater than
1. Hence

Pab + Pbc + Pac > 1.

We have shown that a local hidden variable theory satisfies Bell’s inequality.
Let’s check how this relates to the hidden variable assumptions we made in section 6.6.

Hidden variable states - Probabilities for pairs

Hidden vars a b agree b c agree c a agree
↖↑↗ ↑↗ ↖↗ ↖↑
PPP PP y PP y PP y
PPA PP y PA n AP n
PAP AP n PP y PA n
PAA AP n PA n AA y
APP PA n AP n PP y
APA PA n AA y AP n
AAP AA y AP n PA n
AAA AA y AA y AA y

Pab Pbc Pca
1
2

1
2

1
2

For the hidden variable states we assumed in section 6.6

Pab + Pbc + Pac =
3

2

which exceeds 1, as expected from Bell’s inequality.
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Figure 9: A recipe for teleporting a qubit |ψ〉 using two additional entangled qubits, a
CNOT, a Hadamard operation and two measurements. Alice and Bob share an entangled
state. The transmitter (Alice) applies the CNOT and the Hadamard and makes the two
measurements. The transmitter then tells the receiver the results of the two measure-
ments. The receiver (Bob) applies a transformation on the third qubit that is based on the
measurements of the first two qubits. The receiver then holds the third qubit which has
become identical to |ψ〉, the original state of the first qubit.

7 Teleportation with a Bell pair

We describe how an unknown state can be transferred from one qubit to another with a
series of measurements and two qubits in an entangled state.

We have three qubits. Two of them are in an entangled Bell pair state. Alice has a
single qubit |ψ〉 = a |0〉+ b |1〉 where a, b are not known. She wants to teleport its state to
Bob. Alice can measure 1 qubit of the Bell pair and Bob can measure the other qubit in
the Bell pair.

• Alice performs a transformation on a qubit |ψ〉 that entangles it with the Bell pair.

• Alice measures the transformed qubit and her qubit that is part of the entangled
pair.

• Alice tells Bob (via classical communication) what she has measured.

• Bob performs a transformation on his half of the entangled qubit pair that depends
on these measurements.

• Bob now holds the information that was in |ψ〉.

• Alice no longer holds the information that was in |ψ〉.

• The information that was in |ψ〉 (the values of a, b) has teleported to Bob.

We start with total state

|ψ〉 = (a |0〉+ b |1〉)⊗ 1√
2

(|00〉+ |11〉)
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This can be written as

|ψ〉 =
1√
2

(a |000〉+ a |011〉+ b |100〉+ b |111〉)

Alice performs the CNOT gate on the total state with target the second qubit and
control the first qubit. The CNOT gate flips the second qubit if the first one is 1. The
total state becomes

1√
2

(a |000〉+ a |011〉+ b |110〉+ b |101〉) .

Alice performs a Hadamard operation on the first qubit. The total state becomes

1

2
(a |000〉+ a |100〉+ a |011〉+ a |111〉 − b |110〉+ b |010〉 − b |101〉+ b |001〉) .

Alice now measures the first two bits. She can measure 0,0 with a probability of
1/4(aa∗ + bb∗) = 1/4. If this happens the state becomes

a |000〉+ b |001〉 .

All her possible measurements are equally likely.
Let’s make a table summarizing all possible measurements.

Alice measures the first two qubits

Alice measures 00 01 10 11

The state becomes a |000〉+b |001〉 a |011〉+b |010〉 a |100〉−b |101〉 a |111〉− b|110〉

Alice sends her measurements to Bob who then performs the following transformations
on the last qubit.

If the first bit that Alice measures is 1, Bob applies σz(
1 0
0 −1

)
to the last qubit. This flips the sign of |1〉.

If the second bit that Alice measures is 1, Bob applies σx to the last qubit,(
0 1
1 0

)
This sends |1〉 → |0〉 and vice versa.

Let’s apply these transformations to the above table.
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Alice measures 00 01 10 11

The state is now a |000〉+ b |001〉 a |011〉+ b |010〉 a |100〉 − b |101〉 a |111〉 − b |110〉
Bob applies I⊗ I⊗ I I⊗ I⊗ σx I⊗ I⊗ σz I⊗ I⊗ (σxσz)

The state becomes a |000〉+ b |001〉 a |010〉+ b |011〉 a |100〉+ b |101〉 a |110〉+ b |111〉
Which is equal to |00〉⊗(a|0〉+b|1〉) |01〉⊗(a|0〉+b|1〉) |10〉⊗(a|0〉+b|1〉) |11〉⊗(a|0〉+b|1〉)

Examining this table we see that the wave vector that was initially in the first bit has
been transported (teleported) to the third bit.

Note: Alice never knew what a, b were. At the end, there is nothing left of interest in
the first two bits as both Alice and Bob know what they are. The Bell pair is ‘used up’.

With more Bell pairs, more qubit states can be teleported. If two qubits are teleported
and they are initially entangled, the resulting teleported state will also be entangled.
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