
Spectral Analysis –  
 Fourier Decomposition 

Adding together different sine waves 
PHY103  
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Spectral decomposition 
Fourier decomposition 

•  Previous lectures we focused on a single sine 
wave. 

•  With an amplitude and a frequency 
•  Basic spectral unit  ----  
How do we take a complex signal and describe its 

frequency mix? 
We can take any function of time and describe it as a 

sum of sine waves each with different amplitudes 
and frequencies 



Sine waves – one amplitude/ one 
frequency 

Sounds as a series of pressure or motion 
variations in air. 

Sounds as a sum of different amplitude 
signals each with a different frequency. 

Waveform vs Spectral view in Audition   



Clarinet spectrum Clarinet spectrum with only  
the lowest harmonic remaining 

Time ! 
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Spectral view 



Waveform view 

Full sound                         Only lowest harmonic 



Four complex tones in which all 
partials have been removed by 
filtering (Butler Example 2.5) 

One is a French horn, one is a violin, one is a pure 
sine, one is a piano  (but out of order) 

It’s hard to identify the instruments.  However clues 
remain (attack, vibrato, decay) 



Making a 
triangle wave 
with a sum of 
harmonics. 

Adding in 
higher 
frequencies 
makes the 
triangle tips 
sharper and 
sharper. 

From Berg and Stork 



Sum of waves 

•  Complex wave forms can be reproduced 
with a sum of different amplitude sine 
waves 

•  Any waveform can be turned into a sum of 
different amplitude sine waves 

“Fourier decomposition  - Fourier series” 



What does a triangle wave sound 
like compared to the square wave 

and pure sine wave? 

•  (Done in lab and previously in class) 
•  Function generators often carry sine, triangle and 

square waves (and often sawtooths too) 
If we keep the frequency the same the pitch of these 

three sounds is the same. 
However they sound different. 
Timbre ---  that character of the note that enables us 

to identify different instruments from their sound. 
Timbre is related to the frequency spectrum. 



Square 
wave 

Same harmonics 
however the 
higher order 
harmonics are 
stronger.   

Square wave 
sounds shriller 
than the triangle 
which sounds 
shriller than the 
sine wave 

From Berg and Stork 



Which frequencies are added 
together? 

To get a triangle or 
square wave we only 
add sine waves that fit 
exactly in one period.  
They cross zero at the 
beginning and end of 
the interval. 

These are harmonics. 

f frequency 

5f 

3f 



Periodic Waves 
•  Both the triangle and square 

wave cross zero at the 
beginning and end of the 
interval. 

•  We can repeat the signal 
Is “Periodic” 
•  Periodic waves can be 

decomposed into a sum of 
harmonics or sine waves 
with frequencies that are 
multiples of the biggest one 
that fits in the interval. 



Sum of harmonics 

•  Also known as the Fourier series 
•  Is a sum of sine and cosine waves which 

have frequencies f, 2f, 3f, 4f, 5f, …. 
•  Any periodic wave can be decomposed in a 

Fourier series 



Building a sawtooth by waves 

•  Cookdemo7 
a. top down 
b. bottom up 



Light spectrum 

Image from http://scv.bu.edu/~aarondf/avgal.html 



Sound spectrum 
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Sharp bends 
imply high 
frequencies 

Leaving out  the high 
frequency 

components 
smoothes the curves   

Low pass filter 
removes high 
frequencies –  

Makes the sound less 
shrill or bright 



Sampling 

If sampled every 
period then the 

entire wave is lost 

The shorter the sampling 
spacing, the better the wave 
is measured --- more high 

frequency information 



More on sampling 

Two sample rates A. Low sample rate that distorts the original sound 
wave. B. High sample rate that perfectly reproduces the original sound 
wave. Image from Adobe Audition Help. 



Guideline for sampling rate 
•  Turning a sound wave into digital data: you must measure 

the voltage (pressure) as a function of time.  But at what 
times? 

•  Sampling rate (in seconds) should be a few times faster 
than the period (in seconds) of the fastest frequency you 
would like to be able to measure 

•  To capture the sharp bends in the signal you need short 
sampling spacing 

•  What is the relation between frequency and period? 



Guideline for choosing a digital 
sampling rate 

Sampling rate should be a few times shorter than 
1/(maximum frequency) you would like to measure 
For example.  If you want to measure up to 10k Hz. 
The period of this is 1/104 seconds or 0.1ms. 
You would want to sample at a rate a few times less 
than this or at ~0.02ms. 

Period is 1/frequency 



Recording in Audition 
The most common sample 

rates for digital audio 
editing are as follows: 

•  11,025 Hz Poor AM Radio 
Quality/Speech (low-end 
multimedia) 

•  22,050 Hz Near FM Radio 
Quality (high-end 
multimedia) 

•  32,000 Hz Better than FM 
Radio Quality (standard 
broadcast rate) 

•  44,100 Hz CD Quality 
•  48,000 Hz DAT Quality 
•  96,000 Hz DVD Quality 



Demo –degrading sampling and 
resolution 

•  Clip of song by Lynda Williams sampling is 
48kHz resolution 16 bit  

•  48kHz sampling , 8 bit   
•  11kHz sampling, 16bit 



Bits of measurement 

8 bit binary number 00000000b = 0d 
00000001b = 1d 
00000010b = 2d 
00000011b = 3d 
00000100b = 4d 
… 
11111111b = 511d 

can describe 2^8 = 512 different levels  



Bit of 
precision  

Error in amplitude of 
signal  
loudness error  
error in recording the 
strength of signal  

sampling 



Bits of measurement 
A signal that goes between 0Volt and 1Volt 
•  8 bits of information 
•  You can measure 1V/512  = 0.002V = 2mV 

accuracy 

•  16bits of information 2^16 = 65536 
•  1V/65536= 0.000015V = 0.015mV = 

15micro Volt accuracy 



Creating a triangle wave with Matlab 
using a Fourier series 

dt = 0.0001;    % sampling  
time = 0:dt:0.01;  % from 0 to 0.01 seconds total  
with sampling interval dt 
% Here my sample interval is 0.0001sec or a 
frequency of 10^4Hz 
frequency1 = 440.0;  % This should be the note A 
% harmonics of this odd ones only 
frequency2 = frequency1*3.0; 
frequency3 = frequency1*5.0; 
frequency4 = frequency1*7.0; 
% here are some amplitudes 
a1 = 1.0; 
a2 = 1.0/9.0; 
a3 = 1.0/25.0; 
a4 = 1.0/49.0; 
% here are some sine waves 
y1 = sin(2.0*pi*frequency1*time);    
y2 = sin(2.0*pi*frequency2*time);  
y3 = sin(2.0*pi*frequency3*time); 
y4 = sin(2.0*pi*frequency4*time); 
% now let's add some together 
y = a1*y1 - a2*y2 + a3*y3 - a4*y4; 
plot(time, y);  % plot it out 



Playing the sound 

%Modify the file so the second line has 
time = 0:dt:2;  %(2 seconds) 
%Last line: play it: 
sound(y, 1/dt) 
Save it as a .wav file for later 
wavwrite(0.8*y,1/dt,'triangle.wav')  



Phase 
Up to this point we 
have only discussed 
amplitude and 
frequency 

x = 0:pi/100:2*pi; 
y = sin(x); 
y2 = sin(x-.25); 
y3 = sin(x-.5); 
plot(x,y,x,y2,x,y3) 



Sine wave 
period 
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What happens if we vary the phase 
of the components we used to make 

the triangle wave? 
y1 = sin(2.0*pi*frequency1*time);    
y2 = sin(2.0*pi*frequency2*time - 1.6);  
y3 = sin(2.0*pi*frequency3*time - 0.1); 
y4 = sin(2.0*pi*frequency4*time +1.3); 

y = a1*y1 + a2*y2 + a3*y3 + a4*y4; 

Shape of wave is changed even 
though frequency spectrum is 

the same 



Is there a difference in the sound? 

These two are sums with the same amplitude 
sine waves components, however the phases of 

the sine waves differ.  



Another example 

This sound file has varying phases of its 
frequencies. 
Do we hear any difference in time? 

Sound file from 
http://webphysics.davidson.edu/faculty/dmb/py115/MusTechS05.htm 



Spectrum of this sound 



Waveform views at different times 



Do we hear phase? 
Helmholtz and Ohm argued that our ear and brain 
are only sensitive to the frequencies of sounds.  
Timbre is a result of frequency mix. 
There are exceptions to this (e.g., low frequencies) 
Two major psycho-acoustic models 
1) Place theory – each spot in basal membrane is 
sensitive to a different frequency 
2) Timing – rate of firing of neurons is important and 
gives us phase information 
What is the role of each in how our ear and brains 
process information?  Open questions remain on this. 



Cutting and pasting audio 

High frequencies 
introduced 

Sharp changes in wave form 

Phase 
shift 

Demo with a cut and paste in Audition/Audacity of a 
generated sine. Note: the effect in spectral view depends on 
the length of the FFT used, also you need to be fairly zoomed 
out horizontal to see the noise. 



Transform and 
inverse 

transform  
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Time  

I have shown how to go this way  

How we will talk about how to take a 
signal and estimate the strength of its 
frequency components 



Multiplying two cosines with different 
frequencies 



Multiplying two cosines with the 
same frequency 

The 
average is 
not zero. 

The 
average is 

1/2 



Multiplying two cosines with different 
frequencies 

What if your 
window fits 

here? 



Windowing and errors 



Calculating the amplitude of each 
Fourier component 

What is the average of  

Over a long interval this averages to zero 
unless  

 f=g 
Sine/Cosine functions are “orthogonal” 



Calculating the amplitude of each 
Fourier component 

•  Procedure: multiply the waveform f(t) by a 
cosine or sine and take the average. 

•  Multiply by 2.  This gives you the 
coefficient Am or Bm. 



Predicting the spectrum of a 
plucked string 

•  Can one predict the amplitude of each mode 
(overtone/harmonic?) following plucking? 

•  Which pluck will contain only odd harmonics? 
•  Which pluck has stronger higher harmonics? 



Odd vs Even Harmonics and 
Symmetry 

•  Sines are Anti-
symmetric about 
mid-point 

•  If you mirror 
around the 
middle you get 
the same shape 
but upside down   



More on 
Symmetry 

•  Sines are anti-
symmetric 

•  Cosines are 
symmetric 



Symmetry 

•  Additional symmetry 
of odd sines if you 
consider reflection at 
the black line. 

•  About this line, Odd 
harmonics are 
symmetric but even 
ones are anti-
symmetric 

n=1 
odd 

n=3 
odd 

n=2 
even 



Symmetry of the triangle wave 

Obeys same 
symmetry as 
the odd 
harmonics so 
cannot 
contain even 
harmonic 
components 



Odd Fourier components 
Both triangle waves and square waves contain odd 

Fourier components. 
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Sawtooth 

•  What overtones are present in this wave?  
Use its symmetry to guess the answer. 



Spectrum of sawtooth 
All integer harmonics are present.  The 
additional symmetry about the ¼ wave that both 
triangle and square wave have is not present in 
the sawtooth.  



Generated tones 
Order of 440Hz tones:   

 Sine, Triangle, Sawtooth, Square, Rectangular 
with 10%/90% 

Sawtooth 

Triangle  



Symmetry as a compositional 
element 

•  From Larry Solomon’s “Symmetry as a compositional 
element”  -- last phrase of Bartok’s Music for Strings, 
Percussion and Celesta, movement I 

•  Reflection symmetry in tones --- axis of symmetry is an A 
•  microcosmos vol 6 141 Free variations 



Reflection in 
time 

Axis of 
symmetry is a 
time 

(Example from 
Larry Solomon) 
Anton Webern, 
Opus 27 



Predicting the spectrum of a 
plucked string 

•  Can one predict the amplitude of each mode 
(overtone/harmonic?) following plucking? 

•  Using the procedure to measure the Fourier 
coefficients it is possible to predict the amplitude  
of each harmonic tone. 



Predicting the 
spectrum  

of a plucked 
string 

• You know the shape just before it is plucked. 
• You know that each mode moves at its own 
frequency 
• The shape when released  
• We rewrite this as  



Predicting the motion of a plucked 
string (continued) 

Each harmonic has its own frequency of 
oscillation, the m-th harmonic moves at a 
frequency                or m times that of the 
fundamental mode.  



Moving string in general 

Does this make sense? Some checks: 

Are left and right boundaries fixed? 

Is the string not moving at t=0? 



Sum of forward 
+ backwards 

travelling 
waves 

Initial condition given above, and the velocity every 
where is zero. 
This is equal to the sum of two traveling waves  

Shape of wave form can be predicted at future times by 
considering each traveling wave and how it reflects off 
of the boundaries  



Violin and stick slip motion 

Figure and animation from http://
www.phys.unsw.edu.au/jw/Bows.html 



Iphone films 
•  http://www.wired.com/gadgetlab/2011/07/

iphones-rolling-shutter-captures-amazing-
slo-mo-guitar-string-vibrations/ 

Each line scanned at a different time.  

The “rolling shutter” 
Between 24 and 30fps. 
1280 x 720 pixels 
At fastest 0.033s per frame If I 
divide by 1/1000 then ~ 30 
microseconds delay between lines 



Guitar string 
•  Length of string, L, is about a meter, frequency of lowest 

string is 82Hz, P=0.012s   
•  Speed on the string  

 v/(2L) = f   !  v = 2Lf ~160 m/s 
•  The delay between lines is 30 microseconds corresponding 

to a distance of 160m/s x 30 microseconds = 5e-3m = 
0.5cm  

•  Number of lines to get there and back travel times 
0.012/33e-6=400  (half the picture) as expected 

•  Maybe could do this calculation more efficiently by 
considering what fraction of wavelength fits in view of 
camera, giving phase information 



Clarinet spectrum 

506 Hz 172 Hz  

333 Hz  

172*2=344 

172*3=516 

Why is the third harmonic stronger than the second? 



Piano spectrum 
347Hz  697Hz  

1396Hz  

1094Hz  

Even harmonics are the same size 

347*2=694 
347*3=1041 
347*4=1399 



Piano spectrum 

•  C4 piano on left, 
sawtooth at same 
frequency on 
right. 

•  High overtones 
are higher in 
piano. 

•  Why? 



Are these frequency shifts 
important? 

Butler (example 2.4). 
a) Piano playing C4 
b) Piano playing C4 but the partials have been 

lowered by digital processing so that their 
frequencies are exact integer multiples of 
the fundamental.   

Pair of tones repeated 3 times. 



Synthesized voicing 

•  Voice and many instruments make a nearly 
periodic signal 

•  Overtones are all integer multiples of each other 
•  Frequencies are fixed 
•  However if a tone is synthesized to have exact 

integer overtones and fixed frequencies it sounds 
electronic 

•  How do you synthesize more realistic tones? 



Irregularities are important 
•  Slight frequency shifts 
•  Slight timing differences in the periodic waveform 

Timing differences 
from turbulence in 
throat and other 
sources. 
If there is no 
irregularity then 
the tones are 
unnatural and dull. 



Synthesized singer 

Cookdemo70 
a. No vibrato 
b. Random and periodic vibrato and singer 

scooping slightly upward at beginning of each 
note 



Nearly Periodic Waveforms  
•  Voice, guitar, flute, horn, didgeridu, piano:  all have ladder spectrum 
Why nearly periodic signals? 
•  Stringed instruments.  Modes of vibration have frequencies that are 

integer multiples of a fundamental tone.  All modes are excited by 
plucking.  Harmonics are modes. 

•  Wind instruments.  Mode frequencies are close to integer multiples of 
a fundamental.  Excitation builds on one mode.  Excitation (mouth) is 
nearly periodic. Resulting sound contains harmonics.  The harmonics 
may not be modes.  Sometimes other modes can be seen in the sound 
spectrum that are not harmonics. 

•  Voice.  Excitation is nearly periodic. Tract resonances give formants, 
but not key toward driving sound.  Emerging sound since nearly 
periodic contains harmonics.   

Not all musical sounds are nearly periodic in nature 



Some history 

Earliest sound spectra taken by Helmholtz ~1860 who used 
glass spheres or cylinders, each with a difference size and 
hole diameter setting its resonant frequency.   The opposite 
side would have a slender opening that could be held in the 
ear. The enclosed volume of air acts as a spring connected to 
the mass of the slug of air, and vibrates in an adiabatic 
fashion at a frequency dependent on the density and volume 
of the air, its molecular composition, and the mass of the slug 
of air in the neck.  

Images and information from http://physics.kenyon.edu/
EarlyApparatus/Rudolf_Koenig_Apparatus/
Helmholtz_Resonator/Helmholtz_Resonator.html 



•  Sets of these were built and ordered by universities to 
allow spectra of sounds to be measured in the lab 

•  This very large set of twenty two Helmholtz resonators is in the Garland 
Collection of Classic Physics Apparatus at Vanderbilt University. These were 
bought by Chancellor Garland to outfit the Vanderbilt physics department for 
the opening of the university in 1875. Garland had previously gone to visit 
Koenig in Paris to discuss his order. in 1889 a set of nineteen resonators cost 
170 francs.  



Tunable 
resonators 

•  a cylindrical resonator 
permits the volume of the 
resonator to be changed by 
sliding the tubes in and out. 
The notes (and hence the 
resonant frequencies) are 
engraved on the side of the 
apparatus. This is one of a 
number of tunable 
Helmholtz resonators at the 
University of Vermont.   



Tunable resonators 

Ocarinas and 
whistling 

Unlike with flutes 
the pitch is not set 
by the effective 
length of the 
instrument 



Whistle 
•  To do : film a whistle of across an octave 



Fourier analysis 
in 1890 

•  "Manometric Flame Analyser for the timbre of 
sounds, with 14 universal resonators --- originally 
650 francs" ($130).     The adjustable Helmholtz 
resonators are tuned to the fundamental frequency 
of the sound to be analyzed, plus its harmonics. 
The holes on the other side of the resonators are 
connected by the rubber tubes to manometric 
flame capsules, and the variation in the height of 
the flames observed in the rotating mirror. The 
variation is proportional to the strength of the 
Fourier component of the sound.   

•     The picture at the left, below, shows the 
manometric capsules and the jets where the flames 
are produced. Note the black background to made 
the flames more visible. 

•  BTW nice display at U Toronto! 



Now how is the frequency analysis 
computed? 

•  The fast Fourier transform (FFT) is a discrete Fourier 
transform algorithm which reduces the number of 
computations needed for  N points from  2N2 to 2Nlog2N 
computations  

•  Discrete: works on data points rather than a function. 
•  A nice, space efficient algorithm exists for the number of 

points N equal to a power of 2.  
•  When you do a frequency analysis in Adobe Audition one 

of the parameters you can choose is N (and you will notice 
that the menu only allows powers of 2). 



The FFT algorithm 

•  A nice, memory efficient algorithm exists if 
the number of points is a power of 2 

•  Each component can be written as a sum of 
components from a transform of the interval 
divided in half.  

•  It maybe makes sense that the number of 
steps depends on log N 



Taking an FFT 

•  Total interval P 
•  Number of points N 
•  Sampling dt 
•  P=N*dt 
•  Windowing function –

entire interval is 
multiplied by a function 

dT 

P 



Output of FFT 

•  Frequencies are computed at frequencies 
•   f, 2f, 3f, 4f, ……Nf where 1/f=P is the length of the 

interval used to compute the FFT and N is the number 
of points 

•  Difference between frequencies measured is set by 
the length of the whole interval P. 

•  If P (or number of points N) is too small then 
precision of FFT is less.   



Accuracy of FFT 

•  To get better frequency measurements you 
need a larger interval to measure in 

•  You can’t make extremely fine frequency 
measurements over extremely small time 
intervals 

•  Similar to a Heisenberg uncertainty relation 



Sum of two sine waves with 
frequencies very close together 

Frequency f and 1.02f  and their sum  
The closer the two frequencies, the longer it takes until  
they start to cancel 



If I measure a fixed frequency over a small window then I don’t 
know whether I have a single frequency of a sum of nearby 
frequencies.  The longer the window I measure a pure sine wave, 
the more exactly I know the frequency of the sine wave. 



Effect of window length on FFT 
precision 

•  Demo in Audition or Audacity different 
FFT lengths and windows on a sine wave  

green 1024 sample window 
red 16834 sample window  

piccolo sound 



Window length and precision 

digi low frequency sound 

green 1024 sample window 
red 16834 sample window  



Effect of Window function on 
FFT 

red = Blackman-Harris 
blue = triangle  

n=2408 on digi sound 



Terminology 

•  Fourier decomposition 
•  Spectrum 
•  Spectral analysis 
•  Sampling rate 
•  Phase 
•  FFT (Fast Fourier Transform) 



Good/Bad physics -- Animusic 



Good/Bad Physics 

•  Donald Duck in Mathemagic land 



Recommended Reading 

•  Berg and Stork Chap 4 


