
Simulating Self Gravitating

Planetesimal Disks on the

Graphics Processing Unit (GPU)

Alice C. Quillen

Alex Moore

University of
Rochester

Poster

DPS 2008
semi major axis �

E
c
c
e
n
tr

ic
it
y
�

Abstract

Planetesimal and dust dynamical simulations require
computations of many gravitational force pairs as well as collision
and nearest neighbor detection. These are order N2 or O(N2)
computations for N the number of particles. I describe an efficient
parallel implementation of an N-body integrator capable of
integrating a self-gravitating planetesimal disk in single floating point
precision. The software runs on a GPU (graphics processing unit)
and is written in CUDA, NVIDIA’s programming language for video
cards. The integrator is a parallel 2nd order symplectic that works
in heliocentric coordinates and barycentric momenta.

A brute force implementation for sorting interparticle distances
requires O(N2) computations, limiting the numbers of particles that
have been simulated. Algorithms recently developed for the GPU,
such as the radix sort, can run as fast as O(N) and sort distances
between a million particles in a few hundred milliseconds. We
explore improvements in collision and nearest neighbor detection
algorithms and how we can in future incorporate them into our
integrator.

Parallel computations on the GPU

• Graphics cards are a cheap and new
parallel computing platform

• On a single chip: large number of
arithmetic computation units (ALUs) and
large on-board memory. The fraction of
the chip devoted to arithmetic
computation units exceeds that on
CPUs.

• Optimization of code: maximizing the
numbers of computations while
minimizing slow memory transfers.
Having a large on-board memory is
extremely efficient as it bypasses many
of the man hours involved in writing
code that shares information across
processors ---a problem of MPI
(message passing interface)
approaches to parallel computing.

ALUs

N-body planetesimal systems in

single precision floating point
• Most video applications do not require double precision

floating point calculations
• Current GPUs either are not capable of doing double

precision calculations or have a reduced number of units
devoted to this and so are not as fast.

• Precision limit for single precision is ~10-7. Compare this
to the ratio of the mass of Earth to the Sun ~10-6. The
force from the Sun swamps that from the Earth if single
precision is used and the terms added.

• To carry out N-body calculations in a circumstellar disk in
single precision the central force term must be removed
from the force computation sum.

• We work in a coordinate system that allows interaction
terms to be separated from Keplerian evolution.

The Hamiltonian for the N-body system in heliocentric
coordinates and associated barycentric canonical
momentum separates into 3 terms (Duncan et al. 1998).

HInt The interaction term contains
the interparticle force pairs but lacks
the force from central mass!
O(N2) computations.

HSun is a correction caused
by working in a heliocentric frame
rather than an inertial frame.
O(N) computations.

HKep Keplerian evolution for
each particle separately
O(N) computations.

Second order Symplectic Integrator

• To advance a timestep we use a series of evolution
operators each based on a term in the Hamiltonian.

• The interaction evolution kernel is called once per
timestep because this is the most computationally
intensive step.

• The drift and Keplerian evolution kernels are called twice
per timestep but they require only O(N) computations.

Evolution in timestep τ

Memory layout and Kernels

• All particle coordinates reside in GPU global
memory. Heliocentric/barycentric coordinates
used on GPU.

• Particle coordinates only transferred on+off the
GPU for initial setup and outputs.

• Separate Kernels written for each term in
Hamiltonian. A kernel is code that runs on the
GPU but called from the CPU.

• Shared memory on GPU used for computational
intense force pair calculation

Interaction Kernel on the GPU

All force pairs calculated as

efficiently as on a GRAPE board

but using ~20 processors on

board a video card

Faster code when shared memory

used. p coordinates transferred to

shared memory for each

computation tile.

Same tiling and almost identical

code can be used for calculating

total energy as for calculating

forces
Nyland et al. 2008 GPU Gems3

Kepstep Kernel

• f and g functions used to advance particle positions.

• These functions are computed with an iterative solution
of the universal differential Kepler’s equation (e.g.,see
Prussing & Conway 1993; chapter 2). A Universal form
is used so that hyperbolic, parabolic and eccentric orbits
can be computed with the same equation. It’s important
that the algorithm be robust --- never give NANs. No
case statements are required for different classes of
orbits facilitating parallel implementation.

7 Iteration solution of the Universal

Kepler’s equation on the GPU

Kepler’s equation must be solved iteratively.

Usually the iteration is done until the equation is solved within a desired precision level.

compute_first_iteration();

while(computed_difference() < desired_precision){

compute_next_iteration();

}

However this makes little sense on a GPU where all particles are integrated
simultaneously. If one particles pops out of the while statement early it does not speed
up the code because this particle has to wait for the other particles to exit the loop.

Fortunately we can chose an iteration method that rapidly converges. Using the Laguerre
cubic convergence method, I find that 7 iterations is enough for all possible initial
conditions to achieve double precision accuracy. On the GPU we just iterate 7 times no
matter what. We trade computations for complexity which could have slowed the code.

compute_first_iteration();

compute_next_iteration(); compute_next_iteration();

compute_next_iteration(); compute_next_iteration(); compute_next_iteration();

Angular momentum conservation

enforcement in the Kepstep kernel

• In our first implementation we noted a steady loss in angular
momentum for particles after 106 timesteps were taken. We
pinpointed the problem finding that it was due to errors in single
precision computation in the Kepstep that don’t average to zero.

• We got rid of the problem by insisting that angular momentum is
conserved during the step.

We solve for one of these 4 functions, after using the

universal Kepler’s equation to iteratively find the other 3.

This ensures that errors in angular momentum average to

zero rather than accumulating.

Angular momentum

conservation implies that

Drift Kernel

Requires a sum of all momenta. This is
done with a parallel reduction sum (Harris
et al. 2008) on the GPU.

References:
• Duncan, M. J., Levison, H. F., & Lee, M. H. 1998, A multiple timestep symplectic

algorithm for integrating close encounters, AJ, 116, 2067

• Nyland, L., Harris, M., & and Prins, J. 2008, Chap 31, Fast N-body simulation

with CUDA, in GPUGems3, edited by Hubert Nguyen, 2008, Addison-Wesley,

Upper Saddle River, NJ, page 677

• Prussing, J. E. & Conway, B. A. 1993, Orbital Mechanics, Oxford University

Press, Inc., New York, New York

• Harris, M., Sengupta, S, & Owens, J. D. 2008, Chap 39, Parallel Prefix Sum

(scan) with CUDA, in GPUGems3,

Going beyond N-body:

Identifying Collisions and close

approaches

Regime of sparse collisions: Collision timescale is longer than an
orbital timescale.

For Gravitating bodies:
• N-body uses a smoothing length to prevent spurious large velocity

kicks caused by close approaches. Smoothing length is chosen
based on typical mean particle spacing or Hill sphere radii.

• We would rather not use smoothing length but instead identify which
particles are likely to approach within a Hill sphere. The 2 body
problem can be solved exactly, including collisions leading to
planetary growth or planetesimal destruction.

For dust particles:
• We can integrate particles that only feel gravity of massive bodies

(and not each others) but can be sufficiently numerous to collide.

Algorithms for close approach and

collision detection
For gravitating bodies:

• Typical travel distance in each timestep can be chosen to be small
compared to Hill sphere.

• For planetesimals Hill sphere is large enough that a grid with each cell this
size can be made.

• Procedure for rapidly identifying nearest neighbors: create a hash table for
each particle on grid, followed by parallel sort. Can be done faster than the
interaction step.

For dust

• So numerous and small that we could never simulate them all.

• Possible approaches:
– sample density distribution with a grid so collisions probabilities can be computed

from the density field. Drawback is that this is sensitive to the grid size and the
number of particles and time used to construct the density distribution.

– Inflate dust particle size and use approach above for gravitating bodies.

– Create an SPH type kernel and use this to compute collision probabilities.
Creating an SPH kernel can also be done rapidly in parallel on the GPU as
sorting by distance can be done rapidly.

More information

• Alex Moore’s talk on Tuesday at the DPS
2008 meeting

• http://arxiv.org/abs/0809.2855, Planet
Migration through a Self-Gravitating
Planetesimal Disk

• http://astro.pas.rochester.edu/~aquillen/res
earch1.html , for code examples

