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Abstract

Planetesimal and dust dynamical simulations require 
computations of many gravitational force pairs as well as collision 
and nearest neighbor detection.   These are order N2 or O(N2) 
computations for N the number of particles.  I describe an efficient 
parallel implementation of an N-body integrator capable of 
integrating a self-gravitating planetesimal disk in single floating point 
precision.  The software runs on a GPU (graphics processing unit) 
and is written in CUDA, NVIDIA’s programming language for video 
cards.   The integrator is a parallel 2nd order symplectic that works 
in heliocentric coordinates and barycentric momenta.  

A brute force implementation for sorting interparticle distances 
requires O(N2) computations, limiting the numbers of particles that 
have been simulated. Algorithms recently developed for the GPU, 
such as the radix sort, can run as fast as O(N) and sort distances 
between a million particles in a few hundred milliseconds. We 
explore improvements in collision and nearest neighbor detection
algorithms and how we can in future incorporate them into our 
integrator. 



Parallel computations on the GPU

• Graphics cards are a cheap and new 
parallel computing platform

• On a single chip:  large number of 
arithmetic computation units (ALUs) and
large on-board memory.   The fraction of 
the chip devoted to arithmetic 
computation units exceeds that on 
CPUs.

• Optimization of code:  maximizing the 
numbers of computations while 
minimizing slow memory transfers.  
Having a large on-board memory is 
extremely efficient as it bypasses many 
of the man hours involved in writing 
code that shares information across 
processors ---a problem of MPI 
(message passing interface) 
approaches to parallel computing.

ALUs



N-body planetesimal systems in 

single precision floating point 
• Most video applications do not require double precision 

floating point calculations
• Current GPUs either are not capable of doing double 

precision calculations or have a reduced number of units 
devoted to this and so are not as fast.

• Precision limit for single precision is ~10-7. Compare this 
to the ratio of the mass of Earth to the Sun ~10-6.  The 
force from the Sun swamps that from the Earth if single 
precision is used and the terms added.

• To carry out N-body calculations in a circumstellar disk in 
single precision the central force term must be removed 
from the force computation sum. 

• We work in a coordinate system that allows interaction 
terms to be separated from Keplerian evolution.



The Hamiltonian for the N-body system in heliocentric 
coordinates and associated barycentric canonical 
momentum separates into 3 terms (Duncan et al. 1998).

HInt The interaction term contains 
the interparticle force pairs but lacks 
the force from central mass!
O(N2) computations.

HSun is a correction caused 
by working in a heliocentric frame 
rather than an inertial frame.
O(N) computations.

HKep Keplerian evolution for 
each particle separately
O(N) computations.



Second order Symplectic Integrator

• To advance a timestep we use a series of evolution 
operators each based on a term in the Hamiltonian.  

• The interaction evolution kernel is called once per 
timestep because this is the most computationally 
intensive step.

• The drift and Keplerian evolution kernels are called twice 
per timestep but they require only O(N) computations.

Evolution in timestep  τ



Memory layout and Kernels

• All particle coordinates reside in GPU global 
memory.   Heliocentric/barycentric coordinates 
used on GPU.

• Particle coordinates only transferred on+off the 
GPU for initial setup and outputs.

• Separate Kernels written for each term in 
Hamiltonian.  A kernel is code that runs on the 
GPU but called from the CPU.

• Shared memory on GPU used for computational 
intense force pair calculation



Interaction Kernel on the GPU

All force pairs calculated as 

efficiently as on a GRAPE board 

but using ~20 processors on 

board a video card

Faster code when shared memory 

used. p coordinates transferred to 

shared memory for each 

computation tile.

Same tiling and almost identical 

code can be used for calculating 

total energy as for calculating 

forces
Nyland et al. 2008 GPU Gems3



Kepstep Kernel

• f and g functions used to advance particle positions.

• These functions are computed with an iterative solution 
of the universal differential Kepler’s equation (e.g.,see
Prussing & Conway 1993; chapter 2).  A Universal form 
is used so that hyperbolic, parabolic and eccentric orbits 
can be computed with the same equation.  It’s important 
that the algorithm be robust --- never give NANs.  No 
case statements are required for different classes of 
orbits facilitating parallel implementation.



7 Iteration solution of the Universal 

Kepler’s equation on the GPU

Kepler’s equation must be solved iteratively. 

Usually the iteration is done until the equation is solved within a desired precision level.

compute_first_iteration();

while(computed_difference() < desired_precision){ 

compute_next_iteration();

}

However this makes little sense on a GPU where all particles are integrated 
simultaneously.  If one particles pops out of the while statement early it does not speed 
up the code because this particle has to wait for the other particles to exit the loop.

Fortunately we can chose an iteration method that rapidly converges. Using the Laguerre
cubic convergence method, I find that 7 iterations is enough for all possible initial 
conditions to achieve double precision accuracy.  On the GPU we just iterate 7 times no 
matter what.  We trade computations for complexity which could have slowed the code.

compute_first_iteration();

compute_next_iteration();  compute_next_iteration();

compute_next_iteration();  compute_next_iteration(); compute_next_iteration();



Angular momentum conservation 

enforcement in the Kepstep kernel

• In our first implementation we noted a steady loss in angular 
momentum for particles after 106 timesteps were taken.  We 
pinpointed the problem finding that it was due to errors in single 
precision computation in the Kepstep that don’t average to zero.  

• We got rid of the problem by insisting that angular momentum is 
conserved during the step.

We solve for one of these 4 functions,  after using the 

universal Kepler’s equation to iteratively find the other 3.  

This ensures that errors in angular momentum average to 

zero rather than accumulating. 

Angular momentum 

conservation implies that



Drift Kernel

Requires a sum of all momenta.  This is 
done with a parallel reduction sum (Harris 
et al. 2008) on the GPU.
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Going beyond N-body:

Identifying Collisions and close 

approaches

Regime of sparse collisions: Collision timescale is longer than an 
orbital timescale.   

For Gravitating bodies:
• N-body uses a smoothing length to prevent spurious large velocity 

kicks caused by close approaches.  Smoothing length is chosen 
based on typical mean particle spacing or Hill sphere radii. 

• We would rather not use smoothing length but instead identify which 
particles are likely to approach within a Hill sphere. The 2 body 
problem can be solved exactly, including collisions leading to 
planetary growth or planetesimal destruction.

For dust particles:
• We can integrate particles that only feel gravity of massive bodies 

(and not each others) but can be sufficiently numerous to collide.



Algorithms for close approach and 

collision detection
For gravitating bodies:

• Typical travel distance in each timestep can be chosen to be small 
compared to Hill sphere.   

• For planetesimals Hill sphere is large enough that a grid with each cell this 
size can be made.

• Procedure for rapidly identifying nearest neighbors:  create a hash table for 
each particle on grid, followed by parallel sort. Can be done faster than the 
interaction step.

For dust

• So numerous and small that we could never simulate them all.  

• Possible approaches:  
– sample density distribution with a grid so collisions probabilities can be computed 

from the density field.  Drawback is that this is sensitive to the grid size and the 
number of particles and time used to construct the density distribution. 

– Inflate dust particle size and use approach above for gravitating bodies.

– Create an SPH type kernel and use this to compute collision probabilities.   
Creating an SPH kernel can also be done rapidly in parallel on the GPU as 
sorting by distance can be done rapidly.



More information

• Alex Moore’s talk on Tuesday at the DPS 
2008 meeting

• http://arxiv.org/abs/0809.2855, Planet 
Migration through a Self-Gravitating 
Planetesimal Disk

• http://astro.pas.rochester.edu/~aquillen/res
earch1.html , for code examples


