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ABSTRACT

We present a simple resonant Hamiltonian model for the vertical response of a stellar disk to the growth of
a bar perturbation. As a bar perturbation grows, stars become trapped in vertical inner Lindblad resonances
and are lifted into higher amplitude orbits. The vertical structure of a boxy and peanut-shaped bulge as a
function of radius and azimuthal angle in the galaxy plane can be predicted from the strength and speed of
the bar perturbation and the derivatives of the gravitational potential. This model predicts that stars on the
outer side of the resonance are lifted higher than stars on the inner side, offering an explanation for the sharp
outer edge of the boxy/peanut.
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1. INTRODUCTION

The existence of spiral galaxy bulges with boxy or peanut
shapes has been recognized for many years through the
study of edge-on galaxies (e.g., Burbridge & Burbridge
1959; de Vaucouleurs 1974). Recent work has found that
edge-on galaxies with prominent boxy or peanut-shaped
bulges, in most cases, show kinematic evidence for noncir-
cular motions associated with a bar, whereas galaxies lack-
ing boxy or peanut-shaped bulges do not show kinematic
evidence for a bar (Bureau & Freeman 1999; Merrifield &
Kuijken 1999). A few cases exist where highly inclined sys-
tems exhibit both bars and peanuts (e.g., NGC 7582,
Quillen et al. 1997 and NGC 4442, Bettoni & Galletta
1994). The link between a galactic bar and a boxy/peanut-
shaped bulge has been firmly established.

Mechanisms proposed to explain the formation of boxy
and peanut-shaped structures include accretion of small sat-
ellite galaxies (Binney & Petrou 1985), bar buckling via the
fire-hose–type instability (Toomre 1966; Raha et al. 1991;
Merritt & Sellwood 1994; Fridman & Polyachenko 1984),
and resonant heating (Pfenniger 1984, 1985; Combes et al.
1990).

The fire-hose (bar-buckling) instability is a global time-
dependent instability that relies on the centrifugal force
caused by highly eccentric orbits in the plane caused by the
bar and is damped via a dissipative process similar to
Landau damping (Fridman& Polyachenko 1984). The reso-
nant heating model has been inspired by the study and clas-
sification of orbit families in three-dimensional systems
(Pfenniger & Friedli 1991) and through the phenomena dis-
played inN-body simulations (Combes et al. 1990).

No study has yet considered the evolution of three-
dimensional stellar orbits in a barred system that is varying
with time. In this paper, we investigate the possibility that
the growth of the bar itself traps particles in the vertical
inner Lindblad resonances (ILRs). We develop a simple
Hamiltonian analytical model for these resonances and use
it to predict the vertical distribution of a bar following the
growth of the bar. Our approach of considering resonance
trapping is similar to that explored by Sridhar & Touma

(1996) for disk heating. However, their model is for the
general case of a growing axisymmetric disk, whereas our
model applies specifically to a growing bar perturbation.

2. DYNAMICAL MODEL

To exhibit resonant phenomena, Contopoulos (1975)
showed that the Hamiltonian must be expanded to at least
third order in the epicyclic approximation. When this is
done, there are higher order cross terms in the action vari-
ables, and the model will exhibit phenomenology such as
the bifurcation of orbit families seen in characteristic dia-
grams, which are created through numerical integration of
orbits.

We first consider the Hamiltonian lacking nonaxisym-
metric or time-dependent perturbations:

H0ðL; pr; pz; �; r; zÞ ¼
L2

2r2
þ p2r

2
þ p2z

2
þ V0ðr; zÞ ; ð1Þ

where V0 is the gravitational potential, which is assumed to
be axisymmetric, and L, pr, and pz are the momenta conju-
gate to the cylindrical coordinates h, r, and z. For the two-
dimensional problem restricted to the Galactic plane (z = 0,
pz = 0), Contopoulos (1975) showed how to put the
Hamiltonian in the form

K0ðI1; I2; �1; �2Þ ¼ hþ �I1 þ �I2 þ aI21 þ 2bI1I2 þ cI22 � � �
ð2Þ

in a third-order epicyclic approximation. The action vari-
ables I1 ¼ 1=2�

R
_rr dr and I2 = J0 � Jc are integrals of

motion. J0 is the particle’s angular momentum, and Jc is the
angular momentum of a particle in a circular orbit at a
radius rc, which is the radius of a circular orbit with energy
h. The variable h1 is the epicyclic angle, and h2 is the azimuth
of the epicyclic center. Here h1 and h2 are the angle variables
conjugate to I1 and I2. The variable � is the epicyclic fre-
quency, and � is the angular rotation rate; both are eval-
uated at r = rc, z = 0.

To extend the theory into the third dimension, we must
add additional terms to the restricted Hamiltonian that
depend upon z:

H0 ¼ K0 þH0z : ð3Þ
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We expand the potential V0 about z and rc, defining the
variables

�2 ¼ @2V0=@z
2 ; ð4Þ

� ¼ @4V0=@z
4 ;

which are evaluated at z = 0, r = rc. Inserting this into the
full Hamiltonian, we find

H0zðL; pr; pz; �; r; zÞ ¼
1

2
ðp2z þ �2z2Þ þ �z4

4!

þ �2z2

2
rc�

2ðr� rcÞ þ
1

2
ð�2 � 3�2Þðr� rcÞ2

� �
; ð5Þ

where we have made use of the relations
�2 ¼ ð1=rÞð@V0=@rÞ and �2 ¼ ð@2V0=@r2Þ þ 3�2, and both
� and � are evaluated at r = rc, z = 0.

For this Hamiltonian, following Contopoulos (1975), we
can choose a third action variable I3 to represent the ampli-
tude of vertical oscillations:

z � 2I3=�ð Þ1=2 cos �3 ; ð6Þ

dz=dt � � 2I3�ð Þ1=2 sin �3 ;

where � is the vertical oscillation frequency, and h3 is the
angle associated with the vertical oscillations. The above
expressions are given to first order in I

1=2
3 and require higher

order terms to be exact.
After a couple of canonical transformations (see Appen-

dix), the Hamiltonian to second order in I
1=2
3 takes the form

H0zðI1; I2; I3; �1; �2; �3Þ ¼ �I3 þ
�I23
32�2

þ ð�2 � 3�2Þ �I1I3
4�

:

ð7Þ

Since this is independent of the angles h1, h2, and h3 , the
momenta I1, I2, and I3 are conserved quantities and we say
we have put the nonperturbed Hamiltonian (eq. [5]) in
action angle form.

2.1. Perturbation

We now consider the form of the perturbation of the
gravitational potential caused by a bar. In the plane of the
galaxy, we can expand the gravitational potential in terms
of Fourier components

V1ðr; �; z ¼ 0Þ ¼
X
m

Am cos ½mð�� �btÞ� ð8Þ

(e.g., see Quillen, Frogel, & Gonzalez 1994). The strongest
term due to the bar should be the m = 2 term with A2 < 0,
so that the bar major axis lies along h � �bt = 0, �. For
small z, we assume that the potential can be expanded, so
that we can write for eachm Fourier component

V1mðr; �; zÞ ¼ Am cos ½mð�� �btÞ� 1� z2

2h21

� �
; ð9Þ

where h1 is the scale height of the perturbation. We also
assume that Am and h1 vary only weakly with radius. Since
z2 � ð2I3=�Þ cos2 �3, we can rewrite the perturbation com-
ponents to second order in I

1=2
3 as

V1mðI3; �3; I2; �2Þ ¼
�AmI3

4h21�
cos ½mð�2 � �btÞ � 2�3� þ � � � :

ð10Þ

We focus on the particular resonance that we expect is
important and ignore all the other terms:

HðI2; I3; �2; �3Þ ¼ �I3 þ
�

32�2
I23 þ �I2

þ I3
�Am

4h21�
cos ½mð�2 � �btÞ � 2�3� þ � � � : ð11Þ

To go into a coordinate system with an angle that librates
when a particle is trapped in the resonance, we do a canoni-
cal transformation with the following generating function:

F2ðJ3; J2; �3; �2Þ ¼ J2�2 � ðJ3=2Þ½mð�2 � �btÞ � 2�3� ; ð12Þ

so that our resonant angle and newmomenta,

� ¼ �3 � ðm=2Þð�2 � �btÞ ;
I2 ¼ J2 � J3ðm=2Þ ;
I3 ¼ J3 ; ð13Þ

and h2 is unchanged. Our generating function is time
dependent: @F2=@t ¼ ðm=2Þ�bJ3. Following this canonical
transformation, our Hamiltonian becomes

HðJ2; J3; �2; �Þ ¼
�
� �m

2
ð�� �bÞ

�
J3 þ

�

32�2
J2
3

þ J3
�Am

4h21�
cos 2�þ �J2 þ � � � : ð14Þ

The motion in the two different degrees of freedom are now
decoupled, so we can neglect J2 and write the Hamiltonian
in the simpler form

HðJ3;�Þ ¼ �0J3 þ aJ2
3 � �J3 cos 2� ; ð15Þ

where

�0 � � � ðm=2Þð�� �bÞ ;
a � �=32�2 ;

� � Am=4h
2
1� : ð16Þ

Equation (15) has a resonant term proportional to J3
instead of proportional to J

1=2
3 , as was the case for the inner

Lindblad resonance considered by Contopoulos (1975) and
for e-e’ orbit-orbit resonances commonly studied in celestial
mechanics (Murray & Dermott 1999). However, the Hamil-
tonian is similar to that of J + 2 : J orbital resonances
studied by Borderies & Goldreich (1984). Orbits captured in
the 2 : 1 vertical ILR were seen in the numerical simulations
of Combes et al. (1990), but they expected the resonance to
be first order in J

1=2
3 rather than second order as we have

found here. By symmetry, the gravitational potential when
expanded should not contain terms proportional to z, and
so terms / J

1=2
3 , unless we consider a global instability such

as the fire-hose bar-buckling instability. Indeed, Pfenniger
& Friedli (1991) found that a temporal z-symmetry breaking
(due to a collective effect) would make the resonance first
order. Friedli & Pfenniger (1990) reported thatN-body sim-
ulations that forced z-symmetry did grow boxy/peanut
shaped bulges but more slowly than those that did not force
the symmetry.

Unless the galaxy is extremely thin and the bulge small,
we expect that the 2 : 1 vertical ILR will occur in the inner
region of the bar (Pfenniger & Friedli 1991; Combes et al.
1990). It is also possible that the 1 : 1 vertical ILR will be
present. The 2 : 1 vertical ILR produces banana-shaped

PEANUT-SHAPED BULGE 723



orbits, referred to as BAN in the characteristic diagrams of
Pfenniger & Friedli (1991), and the 1 : 1 vertical ILR
produces titled orbits that are referred to as anomalous by
Pfenniger & Friedli (1991). If the galaxy is very thin, it is also
possible that there will be orbits associated with the 4 : 1
vertical ILR (Pfenniger 1985).

If we concentrate on the 2 : 1 vertical ILR, then the per-
turbation term from the bar that is relevant is the m = 4
Fourier term; if we focus on the 1 : 1 vertical ILR then the
m = 2 term is relevant. It has long been known that bars
exhibit significant m = 4 Fourier components and contain
boxy or square contours when projected onto the plane of
the galaxy (Athanassoula 1990). From Figure 4 by Quillen
et al. (1994), we estimate that in the m = 4 Fourier compo-
nent of the barred galaxy NGC 4314, the potential peaks at
A4 � �0.04 in units of v2c and at A2 � �0.16 in the same
units. We can use these as typical values for the potential
perturbations in a barred galaxy.

We now transform equation (15) so that our coefficients
are unitless. We put length in units of rres, the center of the
resonance where �0 = 0, and time in units of 1/�. Our action
variables are in units of r2res�, so we define j3 � J3=r

2
res�. We

divide the entire Hamiltonian by r2res�2, so that our new
Hamiltonian becomes

hðj3; �Þ=ðar2resÞ ¼ j23 þ ���j3 � ���j3 cos 2� ; ð17Þ

where

��� � 32�0�

r2res�
� �32�0

�

h21
r2res

;

��� � 8Am

r2resh21�
� �8Am

v2c

v2c
�2r2res

; ð18Þ

and we have assumed that the vertical form of the potential
can be approximated by � � ��2=h21. The value of � should
be negative because the vertical oscillations are expected to
be slower for particles traveling well above the galactic
plane.

For a bar with a peak, A4=v2c � �0:04, as estimated from
NGC 4314. We find �rres � 2�rres � 2vc at the 2 : 1 reso-
nance, and �rres � vc at the 1 : 1 resonance. We estimate that
��� peaks at �0.08 for both resonances because A2 � 4A4.
Barred galaxies have an observed ratio of bar length to pea-
nut length of 2.7 � 0.3 (Lütticke, Dettmar, & Pohlen 2000).
Measurements of the ratio of bar length to thickness give a
typical value of �10 (Sellwood &Wilkinson 1993), with the
measurement of Lütticke et al. (2000) being on the high end
at 14 � 4 and the Milky Way bar likely to be lower than the
typical value. Using these typical values, we estimate that
h1/rres � 0.3:

��� � �3
�0

�

h1=rres
0:3

� �2

;

��� � 0:08
�Am=v2c
0:04

� �
2

�rres=vc

� �2

: ð19Þ

We expect the resonance to be important in the region
where ��� ¼ 0 ! ��� or across a range dr:

dr �0;r
�

¼ �Am

4�2h21
; ð20Þ

where the subscript ‘‘ ;r ’’ denotes a derivative with respect to

radius. If ��� and �0 varies slowly with radius, then the reso-
nance can be felt over a significant range of radius.

Given the definition of our variables, we estimate that the
expectation value

hz2i � hj3ir2res : ð21Þ

From Figure 1, we infer that when ���=��� ¼ �1, the minimum
value of vertical oscillations occurs for the fixed points at
j3 = 1. We therefore expect the maximum height of the pea-
nut to be at ���=��� ¼ �1, where hj3i � ���. For ��� � 0:08, this
implies a peanut width of order 2

ffiffi
���

p
rres � 0:6rres, where we

gain the factor of 2 when we consider orbits of both signs
(� = 0 and � = �). This is sufficiently large to explain the
observed vertical extent of boxy/peanut shaped bulges.

2.2. Structure of the Resonance

As shown by Borderies &Goldreich (1984), the resonance
contains three separate regions. To show the separate
regions, we use a coordinate system x = (2j3)

1/2 cos � and
y = (2j3)

1/2 sin �. Contours of constant h (eq. [17]) are
shown in Figure 1. For ���=��� < �1, three fixed points exist;
for �1 < ���=��� < 1, two fixed points exist; and for ���=��� > 1,
only one fixed point exists. Orbits circulating around � = 0
correspond to banana-shaped orbits with positive z at the
ends of the bar, and orbits correspond to banana-shaped
orbits with negative z at the ends of the bar. As shown in
Figure 8b of Pfenniger & Friedli (1991), banana-shaped
orbits appear on the characteristic diagram at a particular
value of the Hamiltonian, consistent with them appearing at
a particular value of ���=���. For orbits circulating around the
origin, the resonant angle, �, circulates; referred to as oscil-
lation as opposed to libration in analogy with a pendulum.

We consider the signs of each term in equations (15) and
(17) � > 0, but we expect that �, A4, A2 < 0. Consequently,
a < 0 and �; ��� > 0, and ��� has the opposite sign of �0. Because
� and � increase at small radii, we expect �0 > 0 and ��� < 0
for r > rres. We see from Figure 1 that near ��� ¼ ���� no orbits
exist with low values of j3. This implies that all orbits will
rise out of the plane of the galaxy. As ��� decreases the mini-
mum size of the vertical oscillations increases until
���=��� < �1, then orbits with small amplitude vertical oscilla-
tions appear again. The vertical extent of the galaxy should
increase until a particular radius and then drop abruptly
(see Fig. 2). This would naturally correspond to a bow tie or
peanut shape when viewed edge-on.

2.3. Growing the Bar

To explore the simple model given in equation (17), we
integrate particle trajectories assuming that the perturba-
tion is growing. In other words, we assume that ��� begins at
zero and reaches a maximum value a few rotation periods
later. We begin the integrations with a particle distribution
pð j3Þ / exp ð�j23=2�

2Þ and with an angle � randomly chosen
between 0 and 2�. Four thousand particles were integrated
using equation (17) for the simulations shown in Figures 3–
6. The growth time for the perturbation is given in periods,
where P ¼ ð2�=�Þjajr2res. Since jajr2res � ðr2res=h2132Þ � 1=3, P
is about one-third the bar growth time in units of the vertical
oscillation period.

In the adiabatic limit, the capture probability of a region
of phase space depends upon the ratio between the rate that
phase-space volume is swept across the separatrix bounding
this region divided by the rate that phase-space volume is
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Fig. 1.—Contour levels of the Hamiltonian in eq. (17) have been plotted where x = (2j3)
1/2 cos � and y = (2j3)

1/2 sin �. Only one resonance region exists
for ���=��� > 1, two exist for�1 < ���=��� < 1, and three for ���=��� < �1. The resonance bifurcates at ���=��� ¼ �1 giving banana-shaped orbits at � = 0 and upside-down
banana-shaped orbits at � = �. The bar strength sets ���, and ��� varies with radius from the center of the resonance where ��� ¼ 0. Between ���=��� ¼ �1 ! 1, no small
j3 circulating orbits exist. We can think of the progression of resonance sizes between ���=��� � �1 ! 1 as describing the radial variation of the width of the
peanut. We expect maximum vertical amplitudes at ���=� � �1,which is on the outer, larger radius side of the resonance. As the bar grows, phase space moves
downward from plot to plot, and particles are trapped and then lifted upward. Likewise, if the bar slows down, the same thing will happen.



swept across the entire separatrix bounding the entire reso-
nance (Henrard 1982; Borderies & Goldreich 1984). For
��� < 0, phase space initially looks like the panel on the bot-
tom right of Figure 1 and then moves upward on this figure.
When the separatrix touches the particle distribution cen-
tered at the origin, particles are captured into librating
regions near � = 0 and � (see Figs. 3–4). For ��� > 0, phase
space initially looks like the panel on the top left of Figure 1
and then moves downward on this figure. When ��� � ���, par-
ticles at low j3 are captured into the librating regions around
� ¼ 0; �. Figures 3–4 illustrate that smoother particle distri-
butions are achieved when the growth rate is faster (shorter
number of periods P), as we would expect when the vari-
ation is no longer adiabatic and when the initial momentum
distribution is wider (larger �).

Given a distribution in j3 and � resulting from the growth
of the perturbation, we can predict the vertical distribution
as a function of azimuthal angle in the plane of the galaxy.
For a value of the resonant angle � and an azimuthal angle
h � �bt in the plane of the galaxy in the frame rotating with
the bar, h3 is determined via equation (13), and z is then
determined from the definition of our action angle variables
(eq. [6]). In Figure 5, we show vertical distributions for the
action angle distributions shown in Figures 3 and 4b for
m = 2, and in Figure 6 we show the equivalent but for
m = 4.

We see from Figures 5 and 6 that the vertical height
reaches a maximum near ���=��� � �1, as we expected from the
form of the resonance. The height increases slowly between
���=��� � 1 and �1 and then drops swiftly, confirming concep-
tually our bow-tie picture shown in Figure 2. For m = 2
(shown in Fig. 5), corresponding to the 1 : 1 vertical ILR,
the major axis of the bar becomes bulbous, as would be
expected from a sum of anomalous orbits of both orienta-
tions (shown in Fig. 7). For m = 4 (shown in Fig. 5), corre-
sponding to the 2 : 1 vertical ILR, both the major and minor
axes of the bar have increased vertical heights. Again, this is
expected from a sum of banana-shaped orbits of both orien-
tations (see Fig. 7).

Observations of peanut-shaped galaxies where both the
bar and the peanut are observed (e.g., Quillen et al. 1997)
suggest that the ends of the peanut are aligned with the bar.
As a result, it could be that the 1 : 1 resonance orbit family is
more likely to explain the bulbous ends of boxy/peanut
shaped bulges. However, when the radial oscillations of the
galaxy are taken into account, the banana-shaped orbits
may still be viable, particularly if the extent of their vertical
oscillation is smaller along the minor axis than it is along
the major axis.

We remind the reader that in x 2.1 we dropped the last
term in equation (7), which is proportional to I1I3. As a bar
grows, the epicyclic amplitude I1 of the stars will grow. This
has the effect of shifting the location of the vertical reso-
nance so that �0 becomes

�0 ¼ � �m

2
ð�� �bÞ þ ð�2 � 3�2Þ �I1

4�
: ð22Þ

For a flat rotation curve, �2 = 2�2, so we expect that �0 will
be more negative than expected if this additional term is
neglected. This has the affect of moving the resonance out-
ward in radius. One reason that the 2 : 1 ILR resonance was
considered a logical choice for exciting the peanut is that
when the galaxy is thin, the 1 : 1 may only occur at extremely
small radii, well inside the galaxy bulge. However, the esti-
mates for the resonance locations were made assuming
I1 � 0 (e.g., Pfenniger & Norman 1990). The point here is
that the growth of the epicyclic amplitude will shift the loca-
tion of the vertical resonances outward, so that the lower
order resonances may manifest at larger radii than previ-
ously considered. It is possible that the growth of the bar
causes the vertical resonances to sweep through the inner
part of the galaxy.

3. SUMMARY AND DISCUSSION

We have presented a simple Hamiltonian dynamical
model for the vertical ILR in the presence of a bar perturba-
tion. The Hamiltonian model is similar to that introduced
by Contopoulos (1975) to describe the 2 : 1 Lindblad reso-
nances in the plane of the galaxy but uses the vertical action
angle variables. Using this model, we consider the growth of
a boxy/peanut shaped bulge via resonance trapping in the
vertical ILR caused by the growth of the bar. Following the
growth of the bar, our model predicts that the height of the
peanut increases as a function of radius until it reaches a
maximum at the outermost radius that is set by the condi-
tion ���=��� ¼ �1. Our model naturally accounts for the sharp
outer edge of observed boxy/peanut shaped bulges. The
maximum total vertical width of the peanut is of order
� 2

ffiffi
���

p
rres, which we estimate for a typical bar could be

about 23 rres, where rres is the radial location of the resonance.
This model is therefore capable of accounting for the
observed widths of boxy/peanut shaped bulges.

The scenario explored here suggests that the boxy/peanut
shaped bulge is grown at the same time as the bar forms. We
predict that recently formed bars should manifest strong
boxy/peanut shaped bulges, and barred galaxies should
never be found without boxy/peanut shaped bulges. If the
boxy/peanut shapes take nearly a Hubble time to grow, as
found in the N-body simulations of Combes et al. (1990),
then there should be barred galaxies that lack boxy/peanut
shaped bulges. However, Bureau & Freeman (1999) consid-
ered a control sample of edge-on galaxies lacking boxy/pea-
nut bulges. No examples of barred galaxies that lack a
boxy/peanut shaped bulge have yet been identified. Pfen-
niger & Friedli (1991) found that the boxy/peanut only
required 3–4 bar growth periods to grow, and this could be
significantly shorter, only a few gigayears. If this timescale
were more appropriate, then the lack of barred galaxies
that do not display boxy/peanut shaped bulges is less of a
problem.

ν/ε = 1

ν/ε = −1

rres

Fig. 2.—Cartoon of the edge-on galaxy labeling the approximate
location of the peanut in terms of the values of ���=���.
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One way to probe the formation timescale of the boxy/
peanut is to search for barred galaxies that have recently
formed bars. If boxy/peanuts require many rotation peri-
ods to form, then these barred galaxies should have normal
(nonboxy) bulges. Because of the high rate of star formation
along the bar, Quillen et al. (1997) inferred that NGC 7582
was a case of a recently formed bar. They pointed out that
the galaxy bulge did show a strong prominent peanut and so
argued that boxy/peanut shaped bulges are formed quickly
after the onset of a bar. Observations of edge-on galaxies

are therefore consistent with a rapid boxy/peanut forma-
tion mechanism such as we have proposed here.

Our scenario does not require the galaxy to buckle in
order to form the boxy/peanut shaped bulge. The fire-hose
instability scenario for bar buckling (beautifully illustrated
in three-dimensional N-body simulations by Raha et al.
1991) predicts that the galaxy will literally be bent in a
U shape while the galaxy buckles, but no examples of
U-shaped edge-on galaxies have been identified in galaxy
surveys (with the exception of galaxies that are believed to

Fig. 3.—Particle distribution following growth of a perturbation with ��� ¼ 0:1 for different values of ���. The initial dispersion in j3 was � = 0.1. The perturba-
tion was grown in P = 3 periods, and then the integration continued for 5 times longer than the growth period, so that orbits become more evenly distributed
in phase. The x and y axes are defined as in Fig. 1.
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be ram pressure stripped in clusters). It is likely that the
period of time during which the galaxy is U-shaped is short.
However, galaxy collisions have a similar estimated lifetime
and are detected in nearby galaxy surveys. We note that
Friedli & Pfenniger (1990) reported that N-body simula-
tions with fixed z-symmetry did grow boxy/peanut shaped
bulges, although at a slower rate than unconstrained
simulations.

We have constructed an analytical framework that can be
used to predict the height distribution of the peanut as a
function of radius and the azimuthal angle in the galaxy

plane. The nature of the dependence is primarily determined
by the resonance responsible for the vertical excitations. A
three-dimensional study of a nearby boxy bulge (such as
that seen in our galaxy) could determine which resonance is
most likely to be responsible. The shape of the boxy/peanut
shaped bulge is also sensitive to the dependence of the
gravitational potential on height from the midplane and
on the way the bar grew. Further study of boxy/peanut
shaped bulges may allow us to place constraints on the
vertical shape of the galaxy and on the early evolution of the
bar.

Fig. 4a

Fig. 4.—(a) Similar to Fig. 3, except the initial dispersion in j3 is � = 0.05. (b) Similar to (a), except the perturbation was grown in 10 rotation periods.
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The toy model introduced in this paper was designed to
illustrate the process of resonance capture during the growth
of a bar. We have argued that the growth of the bar itself
causes stars to become trapped into vertical resonances and
so lifted out of the plane of the galaxy. However, simultane-
ous growth of a bar and boxy/peanut shaped bulge has not
yet been observed in three-dimensional N-body simulations
of nonbending bars. This could, in part, be because N-body
simulations are typically thicker than thin bars such as
NGC 7582. Moreover, N-body simulations (Pfenniger &
Friedli 1991; Friedli & Pfenniger 1990; Combes et al. 1990)
have shown that the boxy/peanut continues to grow well

after the bar is stable. Since resonance capture is likely to be
a natural consequence of bar growth, it might be useful to
reexamine N-body simulations and verify if orbits are
trapped into vertical resonances during the bar growth
period. After the bar stabilizes, the analytical framework
developed here might also be applied toward predicting the
evolution of stellar orbits caused by secular evolution of a
bar. For example, a slow decrease in pattern speed will also
trap particles in the vertical resonances and cause them to
be lifted into higher orbits. In this case, ��� decreases with
time, so that phase space moves downward in Figure 1,
causing similar phenomenology as growing the bar; par-

Fig. 4b
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Fig. 5a Fig. 5b

Fig. 5.—(a) For the distribution in action angle variables displayed in Fig. 3, this shows the vertical distribution as a function of azimuthal angle for the case
m = 2 corresponding to the 1 : 1 resonance. The x-axis shows the azimuthal angle, h � �bt, in the plane of the galaxy in the frame that rotates with the bar and
is given in degrees. The y-axis shows the z distribution in units of rres. (b) Same as (a), but for P = 10 (also shown in Fig. 4b). We see from these figures that we
expect a maximum peanut width at the radius where ���=��� ¼ �1.
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Fig. 6.—Same as Figs. 5a and 5b, but for the case whenm = 4
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ticles trapped into resonances can be lifted higher as the bar
evolves.

This work would not have been carried out without help-
ful discussions with Andrew Anissi and Larry Helfer. A. C.
Q. gratefully thanks the Technion for hospitality and sup-
port during the fall of 2001.

APPENDIX

To put the Hamiltonian into action angle variables to first
order, we use the generating function

F1ðz; �0Þ ¼ �ð�=2Þz2 tan �0 : ðA1Þ

Following this canonical transformation, the z part of the
Hamiltonian restricted to r = rc,

Hzðpz; zÞ ¼
1

2
ðp2z þ �2z2Þ þ �z4

4!
; ðA2Þ

becomes

HzðI 0; �0Þ ¼ �I 03 þ ð�I 02=6�2Þ cos4ð�0Þ : ðA3Þ

To put the Hamiltonian into a form that does not depend
on the angle, we must do another canonical transformation.
Note that cos4 � ¼ 1

8 cos 4�þ
1
2 cos 2�þ

3
8.

We try the following generating function:

F2ð�0; I3Þ ¼ I3 �
�

6�2
I23

�
1

4
sin 2�0 þ 1

32
sin 4�0

�
; ðA4Þ

which leads to new variables I3 and h3, such that

I 0 ¼ I3 þ
�

6�
I23

1

2
cos 2�0 þ 1

8
sin 4�0

� �
;

�3 ¼ �0 � �

6�2
I 03

1

4
sin 2�0 þ 1

32
sin 4�0

� �
: ðA5Þ

To fourth order in I
1=2
3 , the Hamiltonian becomes

HzðI3; �3Þ ¼ �I3 þ ð�I23=32�2Þ ; ðA6Þ

which is independent of h3, so that I3 is a conserved quan-
tity, and we find that we have successfully transferred the
Hamiltonian into action angle variables.

Via a similar canonical transformation, the term propor-
tional to (r � rc)z

2 in equation (5) disappears, but the term
proportional to (r � rc)

2z2 remains, yielding the additional
term (�2 � 3�2)(�I1I3/4�), which we have included in
equation (7).
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Fig. 7.—Anomalous orbits at the 1 : 1 resonance are shown on the top
and give increased widths at the ends of the bar. Banana-shaped orbits at
the 2 : 1 resonance are shown on the bottom and give increased widths at
the ends and sides of the bar. The x-axis is assumed to lie along the major
axis of the bar.
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