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2Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
3Visitor, Observatoire de la Côte d’Azur
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ABSTRACT

We consider constraints on the planetesimal population residing in the disks of AU
Microscopii, Beta Pictoris and Fomalhaut taking into account their observed thick-
nesses and normal disk opacities. We estimate that bodies of radius 5, 180 and 70 km
are responsible for initiating the collisional cascade accounting for the dust production
for AU-Mic, Beta-Pic and Fomalhaut’s disks, respectively, at break radii from the star
where their surface brightness profiles change slope. Larger bodies, of radius 1000km
and with surface density of order 0.01g cm−2, are required to explain the thickness of
these disks assuming that they are heated by gravitational stirring. A comparison be-
tween the densities of the two sizes suggests the size distribution in the largest bodies
is flatter than that observed in the Kuiper belt. AU Mic’s disk requires the shallowest
size distribution for bodies with radius greater than 10km suggesting that the disk
contains planetary embryos experiencing a stage of runaway growth.

1 INTRODUCTION

Recent visible band images taken with the Advanced Cam-
era for Surveys on the Hubble Space Telescope well resolve
the vertical scale height of two edge on debris disks, the
12Myr old (Barrado y Navascues et al. 1999; Zuckerman
et al. 2001) dusty circumstellar disks of the M1Ve star AU
Microscopii (AU Mic) and the A5V star β Pictoris (β Pic)
(Krist et al. 2005; Golimowski et al. 2006). Also resolved is
the inner edge of Fomalhaut’s eccentric ring also allowing
a measurement of the disk scale height (Kalas et al. 2005).
The vertical scale height, H , is related to the inclination
dispersion of dust particles and so allows an estimate of the
velocity dispersion of the smallest particles. The velocity
dispersion of planetesimals sets the energy of inter-particle
collisions and so affects a calculation of the dust production
rate through a collisional cascade (e.g., Kenyon 2002; Wyatt
& Dent 2002; Dominik & Decin 2003; Wyatt et al. 2007).
The velocity dispersion is also sensitive to the presence of
larger bodies in the disk as gravitational scattering or stir-
ring causes an increase in the velocity dispersion with time
(e.g., Stewart & Ida 2000; Kenyon & Bromley 2001). Here by
combining observations of observed vertical thickness with
estimates for the dust production and gravitational stirring
rates we will place constraints on the underlying planetesi-
mal population in these disks. Because of the difficulty in re-
solving vertical structure, previous cascade calculations have
not used a velocity dispersion consistent with that estimated
for these disks or estimated the role of gravitational stirring.

2 SCALING ACROSS THE COLLISIONAL

CASCADE

We consider three disks with resolved vertical scale heights.
The properties of these three systems along with the quanti-
ties we estimate from them are listed in Table 1. For Foma-
lhaut, we list properties in the ring edge. For AU Mic and
β Pic we list properties at the radius, r, from the star where
there is break in the surface brightness profile. Models taking
into account dust collisions and radiation pressure predict
that interior to the break radius the disk is likely to contain
dust producing planetesimals whereas exterior to this radius
the dust distribution could be dominated by small particles
on highly eccentric orbits that were generated from the disk
interior (Augereau & Beust 2006; Strubbe & Chiang 2006).

One of the observed quantities listed in Table 1 is the
optical depth, τ̄(λ), at wavelength, λ, normal to the disk
plane. Because the absorption or emissivity coefficient of a
dust grain with radius a is reduced for λ > a, and there are
more dust grains with smaller radii, we expect the optical
depth to be related to the number density of particles of
radius a ∼ λ (e.g., see discussion in section 4 by Wyatt &
Dent 2002). As we only detect the dust particles in scattered
light or in thermal emission, we use scaling arguments to
estimate the number of larger bodies residing in the disk.

Another observed quantity is the disk thickness that we
describe in terms of a scale height H that here is a half width.
The disk aspect ratio is the scale height divided by radius;
h ≡ H/r. A population of low inclination orbits has 〈z2〉 ≈
r2〈i2〉

2
, so ī ∼

√
2h. Here ī =

√

〈i2〉 and 〈i2〉 is the inclination

dispersion. Subsequently we also refer to ē =
√

〈e2〉 where
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〈e2〉 is the eccentricity dispersion. We assume a Rayleigh
distribution of particle inclinations and eccentricities.

We review how the dust opacity and disk thickness can
be used to estimate the planetesimal size distribution. Dust
production in a destructive collisional cascade can in its sim-
plest form be studied with a power law size distribution.
The single power law form for the size distribution is in part
based on the simplest assumption that the specific energy
(kinetic energy per unit mass), Q∗

D, required to catastroph-
ically disrupt a body is a fixed number independent of body
radius; (often 2 × 106erg g−1 for icy bodies is used based
on the estimates by Kenyon & Luu 1999). The number of
particles with radius a in a logarithmic bin of size d ln a is
predicted to be

dN

d ln a
≡ N(a) ∝ a1−q (1)

Using a logarithmic bin gives the same scaling with a as
a cumulative distribution N>a (see appendix A by O’Brien
& Greenberg 2005). In an infinite destructive self-similar
collisional cascade, the exponent is predicted to be q = 3.5
(Dohnanyi 1968; Tanaka et al. 1996; Davis & Farinella 1997;
Kenyon 2002). The main asteroid belt, if fit with a single
power law, has a lower exponent of q ∼ 2.3 (Ivezic et al
2001). It is collisionally evolved but deviates from q = 3.5
because of additional removal mechanisms (e.g., Yarkovsky
drift and resonances) and because the material properties
depend non trivially on size (O’Brien & Greenberg 2005). In
contrast the larger bodies in the Kuiper belt are consistent
with q ∼ 5 (Bernstein et al. 2004). Because of their low
number these do not collide often enough to be part of an
ongoing destructive collisional cascade. The high exponent
probably reflects conditions during the early solar system
when planetesimals were growing as well as colliding (e.g.,
Wetherill & Stewart 1993; Kokubo & Ida 1996).

The number of objects of radius a can be estimated
from another of radius ad using the scaling relation

N(a) = Nd

(

a

ad

)1−q

. (2)

This relates the number of larger particles to the smallest
and so observable particles. Estimates of the number of dust
particles, Nd, as a function of their radius, ad, can be made
from studies of optical, infrared and submillimeter observa-
tions. It must be kept in mind that because of the uncer-
tainty in the exponent q, it is difficult to be accurate when
extrapolating over orders of magnitude in the size distribu-
tion (e.g., Thebault et al. 2003; Krivov et al. 2006; Thebault
& Augereau 2007).

The fractional area covered by particles of radius a or
τ (a) in a log radial bin can be similarly estimated. Because
the opacity depends on the number per unit area times the
cross section area, our assumed power law gives for the opac-
ity integrated over a log radial bin

τ (a) =
dτ

d ln a
= τd

(

a

ad

)3−q

(3)

where τd = πa2
ds(ad) and s(ad) is the number of particles

per unit area with radius ad in a log radial bin. Likewise the
surface mass density

Σ(a) = Σd

(

a

ad

)4−q

(4)

where Σd ≈ τdρdad. For q = 3.5, most of the disk mass is
in the largest particles or at the top of the cascade. Gravi-
tational stirring and dynamical friction heating and cooling
rates are proportional to the product of the surface density
time the mass (e.g., equations 6.1 and 6.2 by Stewart & Ida
2000), scaling as

Σ(a)m(a) = Σdmd

(

a

ad

)7−q

, (5)

where Σdmd ≈ τdρ
2
da4

d. Even when the size distribution is as
steep as that for the large objects in the Kuiper belt (q ∼ 5)
gravitational stirring is dominated by the largest bodies.

The optical depth is related to the collision time. For a
population of identical objects the collision timescale

tcol ∼ (3τΩ)−1, (6)

(Hanninen & Salo 1992) where Ω is the mean motion (angu-
lar rotation rate for a particle in a circular orbit) at radius
r. Since the collision lifetime is proportional to the inverse
of the optical depth, the timescale for a particle of radius a
to hit another with the same size scale (again in log radial
bins) is

tcol,s(a) ≈ tcol,d

(

a

ad

)q−3

. (7)

As explored by Dominik & Decin (2003); Wyatt et al. (2007),
smaller particles are capable of dispersing a larger one if the
specific energy of the collision exceeds the critical value. The
collision lifetime is shorter by a factor of ≈ ǫ1−q (Equation
21,22 and associated discussion by Dominik & Decin 2003),
where ǫ−1a is the radius of a smaller particle capable of
disrupting one with radius a. The parameter ǫ is estimated
by considering what energy projectile object can disrupt the
target,

ǫ ∼
(

v2
rel

2Q∗
D(a)

)1/3

, (8)

(approximating Equation 25 by Dominik & Decin 2003)1,
where v2

rel is the relative or inter-particle velocity disper-
sion. We expect the relative velocity dispersion is twice the
particle velocity dispersion or v2

rel ∼ 2u2.
We can now estimate the collisional lifetime for par-

ticles in a log radial bin taking into account collisions with
smaller particles. After multiplying by Equation 8, Equation
7 becomes

tcol(a)

tcol,d
≈

(

a

ad

)q−3
(

u2

Q∗
D

)
1−q

3

. (9)

For q = 3.5, the timescale tcol(a) ∝ a0.5 consistent with
Equation 23 by Dominik & Decin (2003). The maximum
radius object that will disrupt during the lifetime of the
system is found by setting tcol(a) to the age of the system,
tage, and solving Equation 9 for a. This estimate was also
used by Wyatt & Dent (2002) in their section 5.3. In other
words we define a radius, atop such that tcol(atop) = tage or

atop = ad

(

u2

Q∗
D

)
q−1

3(q−3)

(tage3τdΩ)
1

q−3 . (10)

1 The square root term in equation 25 by Dominik & Decin (2003)
should be positive
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For q = 3.5 this gives

atop = ad

(

u2

Q∗
D

) 5
3 (

tage

P

)2

(6πτd)
2 (11)

where P is the rotation period at radius r. If the disk is hot-
ter or older then a higher surface density disk that contains
more massive bodies is required to initiate the collisional
cascade and account for the dust production.

Objects of radius atop are those likely to be currently
initiating the collisional cascade. Using Equation 4 with atop

we can estimate the total surface density in these massive
objects. As the disk grinds up and is depleted, more massive
but lower number density objects can enter and generate the
cascade.

2.1 In relation to observables

We first relate the disk aspect ratio, h, to the velocity dis-
persion and the inclination and eccentricity dispersions. A

population of low inclination orbits has 〈z2〉 ≈ r2〈i2〉
2

, so

ī ∼
√

2h. An isotropically scattering disk is expected to
have ī ∼ ē/2 (e.g., Inaba et al. 2001). At low eccentricity, the
radial velocity dispersion is 〈v2

r〉 ∼ 〈e2〉v2
K/2, and the tan-

gential and vertical velocity dispersions are 〈v2
φ〉 ∼ 〈v2

z〉 ∼
〈e2〉v2

K/8, where vK is the velocity of a particle in a circu-
lar orbit (e.g., see equations C10a,b by Wetherill & Stewart
1993). The total velocity dispersion is the sum of the three
velocity components corresponding to u2 ∼ 3

4
〈e2〉v2

K or

u ∼
√

3 īvK ∼
√

6hvK . (12)

These approximations are consistent with v2
rel = (1.25ē2 +

ī2)v2
K used by previous studies (Wyatt & Dent 2002;

Wetherill & Stewart 1993).
In Equation 3 we described the scaling of opacity in a

log radial bin. The normal disk opacity inferred from obser-
vations at wavelength λ, depends on the disk emissivity or
absorption coefficient (here denoted Q)

τ̄(λ) ≈
∫ amax

amin

τ (a)

a
Q(λ, a)da. (13)

This is consistent with our definition for τ (a) (Equation 3)
and approximations commonly used in interpreting observed
fluxes (e.g., equation 1 by Backman et al. 1992 relating dust
opacity to flux and the definition given in the caption of Fig.
6 by Pantin et al. 1997). The simplest models for the absorp-
tion or emissivity coefficient of a particle estimate that these
coefficients are

Q(λ, a) ≈
{

1 for λ 6 a
(

λ
a

)−n
for λ > a

(14)

(e.g., Backman et al. 1992; Wyatt & Dent 2002) with n ∼ 1.
For n ∼ 1 and q ∼ −3.5 by integrating Equation 13 we find
that τ̄ (λ) ∼ 4τ (a = λ).

More detailed modeling of the absorption coefficients
(e.g., Pollack et al. 1994) shows deviations from this sim-
plest model with strong structure at specific wavelengths
such as the 10µm silicate feature. In addition, the exponent
q describing the dust size distribution, may not be well con-
strained, may not be the same for small dust particles as
for larger ones or the size distribution may deviate from

a powerlaw form (e.g., Thebault et al. 2003; Augereau &
Beust 2006; Krivov et al. 2006; Thebault & Augereau 2007).
The wavelength at which the absorption coefficient begins to
drop for equation 14 may depend on dust composition (see
discussion in appendix D by Backman et al. 1992). Multi-
wavelength observations are required to better model the
size distribution and composition of the dust. To take this
uncertainty into account we describe our estimates in terms
of a factor fτ , such that

τ (a = λ) = τ̄(λ)/fτ (15)

that relates the opacity estimated at a wavelength based on
observations to the size distribution of particles with radius
equal to that wavelength.

An estimate of normal disk opacity at a particular ra-
dius requires modeling the surface brightness distribution
(Golimowski et al. 2006; Krist et al. 2005; Augereau &
Beust 2006). Unfortunately, normal disk opacity estimates
are available only at a few wavelengths for the three disks
we are considering here and not all of these are based on
multi-wavelength models. While optical and near-infrared
wavelength observations tend to better resolve the disks,
they may not accurately predict the mm size distribution
(e.g., see the discussion comparing the optical and near-
infrared opacities to that predicted from the submillimeter
for AU Mic by Augereau & Beust 2006). We summarize
the existing observed optical depth measurements for these
three disks in Table 1 and in the associated table notes but
note that there is uncertainty in the conversion factor fτ be-
tween the measured optical depths and the opacity function
that we have use here, τ (ad), the optical depth integrated
in a log radial bin of size 1 for dust particles of size ad = λ.
As the opacity of smaller grains is sensitive to the removal
process as well as collisions it is important to use observed
opacity that is dominated by particles that are not affected
by radiative forces (e.g., see discussion by Dominik & Decin
2003).

We now convert Equation 11 into a form more easily
computed from observables. The observables are the disk
aspect ratio, h and the normal disk opacity τ̄(λ) at wave-
length λ. The size of the objects initiating the collisional
cascade when q = 3.5

atop ≈ 5.4km

(

λ

10µm

)(

M∗

M⊙

) 8
3 (

r

100AU

)− 14
3

×
(

Q∗
D

2 × 106erg g−1

)− 5
3
(

tage

107yr

)2
(

h

0.02

)

10
3

×
(

τ̄ (λ)

10−2

)2
(

fτ

4

)−2

(16)

Because we have scaled with the inclination or aspect ratio
instead of the collision velocity the exponent of r and M∗

differ from but are consistent with equation 36 by Dominik
& Decin (2003). The relation also differs from previous work
(Wyatt & Dent 2002; Dominik & Decin 2003; Wyatt et al.
2007) because we have based our estimate on a collision time
scaled from the face on disk opacity at a particular radius
rather than the total fraction of starlight re-emitted in the
infrared.
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Inserting our value for the atop into equation 4 yields
an estimate for the total disk density,

Σ(atop) ≈ 0.0018 g cm−2

(

ρd

1g cm−3

)(

M∗

M⊙

) 4
3 (

r

100AU

)− 7
3

×
(

Q∗
D

2 × 106erg g−1

)− 5
6
(

tage

107yr

)

(

h

0.02

)

5
3

×
(

λ

10µm

)(

τ̄(λ)

10−2

)2
(

fτ

4

)−2

. (17)

We have assumed here that the collision cascade started very
early in the life of the system, however at early stages the
inter-particle velocities were probably not high enough for
destructive collisions (Kenyon & Bromley 2001; Dominik &
Decin 2003). If the timescale of the destructive cascade were
smaller then atop and Σ(atop) would both be smaller than
the estimates given above.

The product of the density times the mass for the bodies
initiating the cascade atop

(Σm)(atop) ≈ 8.9 × 1015g2 cm−2

×
(

M∗

M⊙

) 28
3 (

r

100AU

)− 49
3

×
(

Q∗
D

2 × 106erg g−1

)− 35
6

(

tage

107yr

) 7
2

×
(

λ

10µm

)4
(

τd

10−3

)8 (

fτ

4

)−8

×
(

h

0.02

)

35
3

(

ρd

1g cm−3

)2

. (18)

3 HEATING THE DISK WITH

GRAVITATIONAL STIRRING

We explore the idea that the observed thickness of the disk
is due to gravitational stirring by bodies of mass, ms, surface
density, Σs, and size as. We define a mass ratio µs ≡ ms

M∗

,

and surface density ratio σs ≡ Σsr2

M∗

. If the disk is in colli-

sional equilibrium then we expect that ē ∼ 2̄i.
In the dispersion dominated regime, and assuming that

the dispersions of the tracer particles exceed those of the
massive particles doing the stirring (̄i > īs and ē > ēs)

1

Ω

d〈i2〉
dt

≈ σsµsBJz(β)β√
π〈i2〉 (19)

(based on Equation 6.2 by Stewart & Ida 2000) where
β = ī

ē
∼ 0.5 (corresponding to Equation 2.11 by Stew-

art & Ida 2000). The function described by Stewart & Ida
(2000) Jz(β = 0.5) ≈ 2.0. The coefficient B ∼ 2 ln Λ and we
estimate Λ using Equation 2.7 by Stewart & Ida (2000)

Λ ≈ 3µ−1
s ī3. (20)

As the coefficient, B, only depends logarithmically on Λ we
can use the scale height estimated from observations to esti-
mate Λ and we can solve Equation 19 finding that ī ∝ t−1/4,
specifically

ī(t) ≈
(

2 ln ΛΩtσsµs√
π

)1/4

(21)

The above Equation can be inverted at time tage

σsµs ≈ ī4P

4 ln Λ
√

πtage
, (22)

where we have set P to be the rotation period at r. In terms
of observables this leads to a constraint on the largest bodies
with size as

(Σm)(as) ≈ 2.4 × 1024g2 cm
−2

(

h

0.02

)4
(

tage

107yr

)−1

×
(

M∗

M⊙

) 3
2 (

r

100AU

)− 1
2

(

ln Λ

12

)−1

. (23)

We note that the constraint on the product of the surface
density times the mass of the largest bodies is independent of
the disk opacity. In contrast the estimates for the top of the
collisional cascade (size of object and density) are sensitive
to the dust opacity.

3.1 Connecting the size distributions

Equation 16 gives us an estimate for the size of the bodies at
the top of the collisional cascade, and Equation 18 gives us
the surface density times mass in the disk for these bodies.
This product is well below that needed to account for the
disk thickness with gravitational stirring (Equation 23). To
find the size, as, of the bodies responsible for the gravita-
tional stirring we must extend the size distribution beyond
atop.

Unfortunately, for bodies with sizes a > atop we can no
longer assume a size distribution consistent with a collisional
cascade. There are few guidelines on what type of power law
to use for bodies greater than 10km. The only known system
that differs significantly from the size distribution expected
from collisional evolution might be the largest bodies in the
Kuiper belt that have size distribution with power law q ∼ 5
(Bernstein et al. 2004). A variety of size distributions might
be produced during the phase of planetesimal growth with
low values for the exponent q at the high mass end implying
runaway growth (e.g., Wetherill & Stewart 1993; Kokubo &
Ida 1996; Inaba et al. 2001).

To place constraints on the size and density of the
largest bodies and exponent of the size distribution for these
bodies we compare our constraint on the product of the sur-
face density and mass of the largest bodies to the surface
density and size of the bodies initiating the collisional cas-
cade.

In Figure 1 we plot the constraint on the product of
disk surface density times mass for AU Mic. This constraint
corresponds to a surface density as a function of the radius
of a body and is computed from Equation 23 using values
listed in Table 1 and fτ = 4. The horizontal axis is log
radius instead of log mass so the slope of this constraint is
-3. The conversion between mass and radius has been done
with a density of 1 g cm−3. On this plot we have plotted as
dotted lines two other constraints on bodies in the disk. We
estimate that the most massive bodies cannot on average be
closer together than their mutual Hill spheres,

Σ(m) .
m

r2
mH

(24)

where the mutual Hill radius for two bodies of similar mass

c© 0000 RAS, MNRAS 000, 000–000
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Figure 1. The thick solid line shows the constraint on the prod-
uct of the surface density times mass in the most massive bodies
present for AU Mic, required to account for the disk thickness
from heating by gravitational stirring. This is computed using
Equation 23 and values listed in Table 1. The upper dotted line
shows the upper limit on the surface densities for these massive
bodies set by requiring that they be on averaged spaced further
apart than their mutual hill spheres (Equation 24). The lower
dotted line shows the lower limit on their surface density set by
requiring more than a few bodies of this mass reside in the disk
(Equation 25). The large circle is placed at the estimated location
of the top of the collisional cascade (computed using Equations
16 and 18 and listed in Table 1). Arrows are shown with slopes
predicted for size distributions with q = 3.5 and q = 5. The size
distribution must connect the circle and the segment of the thick
solid line that lies between the two dotted thin lines. The large
circle was estimated using a size distribution with q = 3.5. For
q = 3.6 the estimated top of the collisional cascade would be at
the location of the triangle.

rmH ≡ r
(

2m
3M∗

)1/3
. This constraint gives the upper dotted

line. We also require that the number of bodies not be ex-
tremely low,

Σ(m) &
10m

πr2
. (25)

This constraint is plotted as the lower dotted line. The range
of densities for the most massive bodies in the disk must lie
on the solid one and between the two dotted ones. Also
plotted on this plot is the estimated density, Σ(atop), and
radius, atop, of the particles initiating the cascade. Arrows
are drawn for surface densities Σ(a) that have size distri-
butions with exponents q = 3.5 and q = 5.0 and that have
Σ(atop). The circle showing the top of the collisional cascade
must be connected to the thick solid line segment that lies
between the two dotted ones to estimate the exponent of the
size distribution for a > atop.

The solid thick line segment between the two thin dot-
ted lines in Figure 1 suggests that 1000km bodies reside in
AU Mic’s disk even though the collisional cascade only re-
quires bodies of radius a few km. We have checked that our
estimated value of 12 for log Λ is consistent with the mass
of these 1000 km bodies and the disk thicknesses. (equation
20). For q > 4 most of the disk mass resides in the most
massive bodies. Connecting the circle with the line segment
requires a slope shallower than q = 3.0. Most of the disk
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-1  0  1  2  3  4  5
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0 
Σ 

(g
 c

m
-2

)

log10 a (km)

Beta Pic

q=5.0

q=3.5

Figure 2. Similar to Figure 1 except for β Pic’s disk.
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g 1

0 
Σ 

(g
 c

m
-2

)

log10 a (km)

Fomalhaut

q=5.0

q=3.5

Figure 3. Similar to Figure 1 except for Fomalhaut’s disk.

mass must reside in 1000 km embryos in AU Mic’s disk to
account for its thickness even though only km sized bodies
are required to account for its dust production.

Figure 2 and 3 are similar to Figure 1 except computed
for β Pic’s and Fomalhaut’s disks also using parameters
listed in Table 1. We attribute the differences in these figures
primarily to the observed thickness as atop ∝ h10/3 (equa-
tion 16). β-Pic’s disk is quite a bit thicker than Fomalhaut’s
or AU Mic’s so its collisional cascade is more efficient and
so requires higher mass progenitors. Fomalhaut is older al-
lowing a lower density disk to account for the thickness.

Gravitational stirring requires similar sized embryos for
the three disks but for Fomalhaut the mass and surface den-
sity of the bodies is only an order of magnitude larger than
that predicted from estimating the top of the collisional cas-
cade. Nevertheless, the bodies we infer at the top of the
collisional cascade are not sufficiently dense and massive to
account for the thickness of this disk.

A comparison between the surface densities in the bod-
ies required to account for the disk thickness and that pre-
dicted at the top of the collision cascade allows exponents
q . 3, 3.5 and 4.5 for the three disks AU Mic, β-Pic and Fo-
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malhaut, respectively. The extremely shallow exponent for
AU Mic at the top end suggests that the size distribution
deviates from power law form. A curve in the size distribu-
tion at the high mass end has been predicted by models and
simulations of planetesimal accretion when the disk contain
embryos in a stage of runaway growth (Wetherill & Stewart
1993; Kokubo & Ida 1996; Inaba et al. 2001).

We have only considered the effect of gravitational stir-
ring in the dispersion dominated regime. Now that we have
an estimate for the masses of the most massive bodies re-
siding in these disks, we check this assumption. Only for
a > 1.2 × 104km does a body’s Hill radius approach a scale
height rī for an inclination ī = 0.01. The dispersion dom-
inated gravitational stirring estimate used in Equation 19
(rather than a sheer dominated one) is therefor reasonable.
Previous work has found that passage through the sheer
dominated regime is comparatively fast (e.g., Kenyon &
Bromley 2001). A better estimate would take into account
both regimes, though the improved constraints on the mas-
sive bodies should not significantly deviate from those esti-
mated here.

The largest uncertainty in our estimates is due to un-
certainty in the power law exponent q since we have ex-
trapolated over about 10 orders of magnitude in the size
distribution. On Figures 1-3 we also plot as diamonds atop

and Σ(atop) estimated for an exponent q = 3.6 that is 0.1
larger than assumed previously using equation 10. This esti-
mate is not self-consistent as only a change in the collisional
statistics (for example that would be caused by a size de-
pendent change in Q∗

D) would change the size distribution.
Nevertheless this procedure should allow us to estimate how
our value for atop and Σ(atop) depend on q.

An increase in q causes a decrease in both the esti-
mated size, atop, (equation 10) and surface density, Σ(atop)
(equation 4). Thus variations in q cause the estimated point
corresponding to the top of the cascade to move along a line
that is nearly parallel to the upper dotted lines shown in the
figures. Uncertainty in q only affects our estimate of the size
and mass density of objects likely to initiate the collisional
cascade (equation 10) and not those of objects responsible
for gravitational stirring. (equation 23). If the exponent is
higher than q = 3.5 then the comparison between the top of
the cascade and the mass surface density required to account
for the disk thickness yields similar but stronger results to
those discussed previously. All 3 disks would require a low
exponent, q . 3.5, in the largest bodies.

If q in the cascade is lower than 3.5 the estimated size
and mass surface density of objects initiating the collision
cascade are higher. This moves the top of the cascade to a
point that is higher and to the right of the circles shown in
Figures 1 - 3. As we found before, Fomalhaut’s estimated
top of the cascade contains nearly enough mass to account
for the disk thickness. It is unlikely that q . 3.4 for Foma-
lhaut or q . 3.3 for β-Pic and AU Mic otherwise bodies
initiating the cascade would have produced a disk thicker
than observed. For β-Pic and AU Mic a value of q ∼ 3.3
would imply that 1000km sized bodies could both initiate
the collisional cascade and account for the disk thickness.

4 DISCUSSION

We have used estimates of collisional cascades (e.g., Kenyon
2002; Dominik & Decin 2003; Wyatt et al. 2007) to esti-
mate the size and surface density of the bodies responsible
for initiating the collisional cascade. We have done this for
3 debris disks, that of AU Mic, β-Pic and Fomalhaut, with
resolved vertical structure estimating that these bodies have
radii of 4, 180, and 70 km, respectively. We have estimated
these at the radius at which the surface brightness profile
changes slope (also called the break radius). The body sizes
are a few times larger than previous estimates (e.g., Wyatt
& Dent 2002). The differences arise because we have based
our estimate on a collision time scaled from the face on disk
opacity at a particular radius rather than the total fraction
of starlight re-emitted in the infrared and we have used the
observed disk aspect ratio to estimate the velocity of colli-
sions.

Assuming that the smallest particles are heated solely
by gravitational stirring from the largest ones, the disk thick-
ness can be used to place a constraint on the product of the
surface density times mass of the largest bodies (Equation
18). From this we infer that 1000km radius bodies or plan-
etary embryos are likely to reside in these three disks. The
large body sizes do not conflict with the lack of observed
gaps in the disks (Quillen 2006, 2007) except possibly for the
extreme high mass end allowed for β-Pic’s disk. A compar-
ison between the surface densities in these bodies and that
predicted at the top of the collision cascade allows exponents
q . 3, 3.5, 4.5 for the three disks AU Mic, β-Pic and Fomal-
haut, respectively. The shallow exponent for AU Mic at the
top end suggests that this disk contains embryos in a stage
of runaway growth, as predicted by simulations (Wetherill
& Stewart 1993; Kokubo & Ida 1996; Inaba et al. 2001). For
all three disks we infer that most of the disk mass is likely
to reside in embryos and estimate that the surface densi-
ties are of order 10−2g cm−2. The largest uncertainty in our
estimate of the size and mass surface density of bodies ini-
tiating the collisional cascade arise from the uncertainty of
the exponent q describing the size distribution. If q & 3.5 for
bodies in the cascade then shallow exponents (q . 3.5) are
required for the more massive bodies responsible for gravita-
tional stirring. The exponent of bodies in the cascade must
be q & 3.3 otherwise they would have caused the disk to
be thicker than observed. For Fomalhaut if q ∼ 3.3 then
the bodies initiating the collisional cascade are sufficiently
massive to account for the thickness of the disk.

A number of simplifying assumptions went into estimat-
ing the properties of the top of the cascade. We assumed only
a single power law form for the size distribution, however,
the specific energy for dispersion is predicted to depend on
body size (Benz & Asphaug 1999) so a single power law is
not a good assumption (e.g., Krivov et al. 2006; Thebault
& Augereau 2007). The disks may not have been sufficiently
excited for efficient dust production during the entire life-
time of these systems (Dominik & Decin 2003). A shorter
collisional lifetime would lead to a lower surface density and
size estimated for the top of the cascade (see Equations 17,
16), though taking into account the dependence of the spe-
cific energy on size in the regime where self-gravity is im-
portant would increase the surface density of larger bodies
and might decrease the size at the top of the cascade. The
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sizes at the top of the cascade predicted here are nearing
the threshold for a destructive equal-mass collision at a ve-
locity estimated from the disk thickness, particularly in the
case of Fomalhaut that has a very thin disk but has a large
estimated atop.

Our estimate of the gravitational stirring rate neglected
the role of dynamical friction from smaller particles and the
sheer dominated regime. Both should be taken into account
to improve the estimate of size and number of the largest
bodies residing in these disks.

Better modeling of the dust distribution using multi-
wavelength observations and high angular resolution imag-
ing would significantly improve constraints on the small ra-
dius end of the size distribution. While we have found nor-
mal disk opacity measurements in a few wavelengths in the
literature, the different wavelength estimates, different as-
sumptions for the assumed size distributions and different
procedures for modeling the data make it difficult to con-
strain and compare the dust size distributions and normal
disk opacities among the disks.

We have discussed ways to improve the estimates in-
troduced here. We now discuss possible implications based
on these predictions. If the size distributions inferred here
are common then longer lifetimes would be predicted for
dust production because the larger bodies (inferred here),
entering the cascade later, contain a reservoir of mass avail-
able for dust production at later times. The distribution of
disk properties as a function of age can be used to place
constraints on planetesimal growth models as well as dust
production.

We have only considered opacities at particular radii
for these disks. For AU Mic and β-Pic we chose radii at
which there is a break (or change in slope) in the surface
brightness profile. If the disk aspect ratios do not strongly
vary with radius then Equation 23 implies that the product
of the mass times the surface density in the largest bod-
ies, Σm(as) ∝ r−1/2 is only weakly decaying with radius.
Compare this to Σ(atop) ∝ τ−2

d r−7/3 and atop ∝ τ−2
d r−14/3

predicted via Equations 16,17. Both Σ(atop) and atop must
drop rapidly with radius. If disks are not extremely thin at
larger radii then either there is another source of heating at
large radii accounting for the disk thickness, or dust parti-
cles detected at large radii originate from inner radii and are
either blown out or are on highly eccentric orbits (Augereau
& Beust 2006; Strubbe & Chiang 2006). A thin and sparse
disk will not efficiently produce dust as the collisions are not
destructive. Consequently multi-wavelength observations re-
solving disks as a function of radius should be able to test
the utility of the estimates explored here as well as better
probe planetesimal growth and evolution with radius.
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Table 1. Debris Disks with measured thicknesses

Stellar and Disk Properties
Row AU Mic β Pic Fomalhaut
1 M∗(M⊙) 0.59 1.75 2.0
2 Age (Myr) 12 12 200
3 r(AU) 30 100 133
4 h 0.019 0.05 0.013
5 τ̄(λ, r) 3 × 10−3 5 × 10−3 1.6 × 10−3

6 λ (µm) 1 10 24

Estimated Planetesimal Properties
7 atop(km) 4 180 68
8 Σ(atop) (g cm−2) 0.00005 0.005 0.002
9 Σm(atop) (g2 cm−2) 1014.5 1021.0 1018.8

10 Σm(as) (g2 cm−2) 1024.1 1026.2 1022.7

By Row. 1) References for the stellar masses: Houdebine & Doyle (1994); Crifo et al. (1997);
Song et al. (2001), respectively. 2) References for the ages: Barrado y Navascues et al. (1999);
Barrado y Navascues (1998). 3) The radii are chosen to be where there is a break in the
surface brightness profile as described by Krist et al. (2005); Golimowski et al. (2006); Kalas
et al. (2005), respectively. 4) The aspect ratio h = H/r for H the half width half max of the
disk at radius r. Aspect ratios are taken from the same references as the break radii listed in
row 3. 5,6) The normal disk opacity τ̄ at wavelength λ is given. References for normal disk
opacities: The normal disk opacity for AU Mic is estimated for 1µ sized particles from Fig.
6 by Augereau & Beust (2006) based on images in the optical and near infrared. That for
β-Pic is taken from Fig. 6 by Pantin et al. (1997) based on mid-infrared spectra. That for
Fomalhaut is from Table 1 by Marsh et al. (2005) predicted for a reference wavelength of
24µm based on 350, 160 and 70µm imaging. 7) The radius of objects initiating the collisional
cascade, atop is estimated using Equation 16. 8) The surface density Σ(atop) is estimated
using Equation 17. 9) The product of the surface density times the mass (Σm)(atop) is
estimated for bodies initiating the collisional cascade. 10) The product of the surface density
times the mass is estimated using Equation 18 for bodies responsible for thickening the disk.
Computed quantities listed in rows 7-10 have been done with parameter fτ = 4 (defined in
Equation 15).
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