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ABSTRACT
A wind passing over a surface may cause an instability in the surface, such as the Ñapping seen when

wind blows across a Ñag or waves when wind blows across water. We show that when a radially out-
Ñowing wind blows across a dense thin rotating disk, an initially Ñat disk is unstable to warping. When
the wind is subsonic, the growth rate is dependent on the lift generated by the wind and the phase lag
between the pressure perturbation and the vertical displacement in the disk caused by drag. When the
wind is supersonic, the growth rate is primarily dependent on the form drag caused by the surface. While
the radiative warping instability proposed by Pringle is promising for generating warps near luminous
accreting objects, we expect that the wind-driven instability introduced here would dominate in objects
that generate energetic outÑows.
Subject heading : accretion, accretion disks È hydrodynamics È instabilities

1. INTRODUCTION

For a wind blowing over a surface, the velocity and pres-
sure are related by BernoulliÏs equation ; is con-P ] 12ov2
served along streamlines. Because the velocity increases as
the wind passes over a protrusion of the surface, the pres-
sure must decrease. This causes a force pulling the higher
regions of the surface upward. This force also causes lift on
airplane wings. The Kelvin-Helmholtz instability occurs for
the same physical reason at the boundary of two Ñuids of
di†erent densities moving with respect to one another (e.g.,
Chandrasekhar 1961). A related instability exists for wind
passing over water or for wind passing over fabric (e.g.,
Thwaites 1961 ; Mahon & Williams 1999).

Near accreting compact objects such as active galactic
nuclei (AGNs), substantial amounts of kinetic energy can be
present in a wind that may pass near denser colder material
in the outer parts of an accretion disk. In this paper we
consider the possibility that a wind passing over a dense
disk can result in a warp instability similar to that caused
by radiative forces (Pringle 1996 ; Maloney, Begelman, &
Pringle 1996 ; Maloney, Begelman, & Nowak 1998). Pre-
vious work (Schandl & Meyer 1994 ; Porter 1998) has con-
sidered the torque on a disk that would be caused by ram
pressure or the reaction force from a wind but has not
explored the possibility that the wind/disk interaction could
lift the disk and so cause a warping instability.

2. PERTURBATIVE RESPONSE OF A RADIAL WIND TO A

CORRUGATED SURFACE

We divide the problem into two parts, a di†use out-
Ñowing wind and a dense inÐnitely thin disk. We Ðrst
compute the e†ect of a vertical perturbation or ripple in the
disk on the wind. The Ñow has a perturbation in the pres-
sure along the surface of the disk that pushes on the disk.
We then incorporate this force into the equations of motion
in the disk. This approach is similar to that used to investi-
gate wind/water-wave interactions or wind/fabric inter-
actions. We follow the perturbative approach of
Chandrasekhar (1961).

1 Steward Observatory, University of Arizona, Tucson, AZ 85721 ;
aquillen=as.arizona.edu.

We describe a warped surface by a displacement in the
direction normal to its undisturbed plane,

h(r, h, t) \ Re[Sei(mh~kr r~ut)] , (1)

where S > r. We assume a primarily radial Ñow with veloc-
ity where is a perturbation, Weu \ u0 eü

r
] ¿, ¿ o ¿ o> u0.constrain the velocity so the component normal to the

surface is zero ; This con-dh/dt \ [L/Lt] u0(L/Lr)]h \ v
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straint implies that on the surface
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The continuity equation, in cylin-Lo/Lt ] $ Æ o¿\ 0,
drical coordinates is
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where o is the density in the wind. When the wind is sub-
sonic, we search for a solution for the velocity and pressure
perturbations in the wind that decays exponentially with
increasing distance from the displaced surface. When the
wind is supersonic, we search for a solution for the velocity
and pressure perturbations that vary in phase with distance
from the displaced surface :

P1\ Re[p1 g(r, h, z, t)] ,

vh\ Re[vh,1 g(r, h, z, t)] ,

v
r
\ Re[v

r,1 g(r, h, z, t)] ,

v
z
\ Re[v

z,1 g(r, h, z, t)] , (4)

where

g(r, h, z, t) \ 4
5
6
0
0

ei(mh~krr~ut)~kz@z@ M \ 1 ,
ei(mh~krr~ut`kz@z@) M [ 1 ,

(5)

and the Mach number The pressureM 4 u0/cs. P\ P0and we adopt an equation of state PP o!] P1, P1>P0,with sound speed in the wind For the Kelvin-Helmholtzc
s
.

instability in an incompressible Ñuid, is directly related tok
zwhere the one Ñuid is moving with respect to the other ink

xthe x-direction. For incompressible potential Ñow solutions,
the vertical forms of the variables are solved exactly and
they decay exponentially with height when the Ñow is sub-
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sonic and vary in phase with height when the Ñow is super-
sonic (e.g., Shivamoggi 1998).

In the tight winding limit and to Ðrst order the(k
r
? 1/r)

continuity equation becomes
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(6)

EulerÏs equation to Ðrst order in the same coordinate
system is
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Again in the tight winding limit,
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From equations (6) and (8) we Ðnd that
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where the sign of the term is positive for M \ 1 andk
z
2

negative for M [ 1. Neglecting the m2/r2 term in the tight
winding limit,
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which relates the vertical exponential scale length or wave-
number to the radial wavenumber.

Using equations (2) and (8), we can see that
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When the wind is subsonic, the frequencies and wavevectors
are real, and then for z[ 0. Where thek

z
[ 0, p1\ 0

surface is high, above the surface the pressure is lower than
the mean and below the surface the pressure is higher. This
causes a destabilizing force, which we also call ““ lift ÏÏ in
analogy to the aerodynamics of wings. Because the sign of
the pressure perturbation is opposite on either side of the
disk (Psgn z), the pressure di†erential across the surface
exerts a force on the surface with magnitude twice in theP1direction normal to the surface (see Fig. 1). The pressure

FIG. 1.ÈAs a subsonic wind passes over corrugations, pressure changes
cause lift at the high points of the surface.

di†erential across the surface caused by the wind should
exert a force on the surface. An instability should exit when
m\ 0, which is a direct analogy for the Kelvin-Helmholtz
instability or for the instability of a wind passing over
fabric.

When the wind is supersonic, the pressure perturbations
are 90¡ out of phase with the surface perturbations. The
phase of the pressure perturbations should increase with
both r and o z o , which implies that the sign of is the samek

zas the sign of Because the sign of the pressure pertur-k
r
.

bation is opposite on either side of the disk, there is a drag
force on the surface that is not present when the Ñow is
subsonic and approximated as a potential Ñow solution.
Because shocks should form, we expect the actual Ñow to be
more complicated than given by the above equations (see
Fig. 2 for an illustration). When the shocks and expansion
waves lag the high points of the surface, we expect a vertical
force on the high points of the surface that pushes the
surface toward the midplane. When m\ 0, instead of a
destabilizing lift force, we expect a stabilizing vertical force.
But since there is drag, energy from the wind is transferred
to the surface, and the amplitude of the surface perturbation
should increase (e.g., Shivamoggi 1998, ° 5.5, on the Kelvin-
Helmholtz instability with a supersonic Ñow).

When m\ 1 for both subsonic and supersonic Ñows, we
must consider the torque on an annulus, which is the cross
product of the radial vector and the pressure di†erential,
integrated azimuthally about the ring.

FIG. 2.ÈWhen the wind is supersonic, the maxima of the pressure per-
turbations vary as a function of distance from the surface. Shocks cause
pressure increase, and expansion fans cause pressure decreases. The pres-
sure di†erences across the surface result in a drag on the surface. When the
expansion waves and shocks lag the high points of the surface, there is a
vertical force on the surface that pushes the high points toward the mid-
plane.
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3. THE TORQUE ON DISK ANNULI

To integrate the torque azimuthally we now shift nota-
tion and follow that used by Pringle (1996) to describe the
warped disk. The tilt vector for a ring at radius r

l ü\ (cos c sin b, sin c sin b, cos b) , (12)

where b(r, t) is the local angle of tilt of the disk with respect
to the z-axis and the descending node of the disk material is
at an angle c(r, t)[ n/2 to the x-axis. The unit vector
toward points on the surface

xü (r, /)\ (cos / sin c] sin / cos c cos b ,

] sin / sin c cos b [ cos / cos c,
[ sin / sin b) , (13)

where /\ 0 at the descending node and c and b are both
functions of r. The external coordinate system, xü \ (x, y, z),
which in cylindrical coordinates is (r, h, z) where
h \ tan~1 (y/x), can be related to that described by equa-
tion (13). When b > 1,

h \ /] c[ n/2 , (14)

and the vertical displacement of the surface or z-component
of xü

h(r, h, t)\ [br sin /\ [br cos (h [ c) . (15)

To relate this formalism to that used in the previous section,
we set m\ 1, and S \ [br so thatc\ k

r
r] ut,

h(r, h, t)\ [br cos (h [ k
r
r [ ut) , (16)

which is in the same form as equation (1).
Pringle (1996) deÐnes an elemental area vector dS \ s

rwhere and The normal toÂ sÕ dr d/, s
r
\ Lxü /Lr sÕ\ Lxü /L/.

the disk surface To Ðrst order in b,nü \ dS/ o dS o .

sÕ\ l üÂ xü \ [cos (/] c), sin (/] c),[ b cos /] , (17)

nü \ l ü[ xü (brc@ cos /[ rb@ sin /) (18)

(see Pringle 1996, eqs. [2.11] and [2.17]), where b@ and c@
refer to the derivatives of b and c with respect to r.

When the wind is subsonic, in the previous section we
found to Ðrst order that the pressure di†erential across the
surface was in phase with the corrugations of the surface.
However, the pressure in the region of laminar Ñow should
actually be somewhat lower on the leeward side of each
trough, and so there would be a lag between the pressure
and the surface variations (Je†reys 1924). Kendall (1970)
measured sinusoidal pressure variations in response to a
wind passing over a sinusoidally varying rubber surface and
showed that the pressure was indeed o†set in phase with the
surface. We assume that the pressure di†erence across the
disk surface can be described

*P\ 2p1 sin (/] d) for M \ 1 , (19)

where the phase lag between the pressure and the surface is
given by d. For we expect d [ 0, and d \ 0 fork

r
[ 0 k

r
\ 0.

When the wind is supersonic, shocks should cause an
e†ective phase shift in the pressure perturbation on the
surface. In this case

*P\ 2p1@ cos (/] d) for M [ 1 , (20)

where
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(see eq. [11]). The sign of depends on the sign of sincep1@ k
r
,

the sign of depends on the sign ofk
z

k
r
.

The pressure di†erential across the surface exerts a force
on the disk parallel to the normal to the surface, Thenü .
resulting torque per unit mass per unit mass for an annulus
is the integral

s
w

\ 1
2n
P
0
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rxü Â nü

*P
&

d/ , (22)

where & is the disk surface density (mass per unit area).
Using the previous four equations, we perform this integral
for small b and d :
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[[d(sin c,[ cos c, 0)

[ (cos c, sin c, 0) ] (0, 0, b)] M [ 1 .
(23)

To Ðrst order in b, the angular momentum axis of an
annulus is From comparing equa-l ü\ (b cos c, b sin c,1).
tion (23) to we can see that the Ðrst term in thisdl ü/dt,
equation causes the disk to precess and the second term
causes the tilt to increase or decrease. The tilt increases
when d \ 0 or for a subsonic wind, and whenk

r
\ 0, p1@ \ 0

or for a supersonic wind (see Figs. 3 and 4). The thirdk
r
\ 0

term corresponds to a rate of change in the total angular
momentum of the annulus that would cause a small amount
of outÑow in the disk.

3.1. Equation of Motion for the Annulus
The angular momentum per unit mass of an annulus of

radius r is Dr2) where ) is the angular rotation rate. When

FIG. 3.ÈThe lift on an annulus causes the annulus to precess. When the
Ñow is supersonic, the force on the high points of the surface is toward the
plane, and the annulus should precess in the opposite direction.
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FIG. 4.ÈThe drag on the surface causes a vertical force on the disk.
This results in a torque that can either increase or decrease the tilt. A ring is
shown tilted toward the line of sight. The slope of the warp with respect to
the wind depends on whether the warp is leading or trailing. Consequently,
the torque either increases or decreases the tilt depending on whether the
warp is leading or trailing.

radial motions in the disk are small,

r2) Ll ü
Lt

\ s
g
] sl ] s

w
, (24)

where is the torque from gravity (equal to zero when thes
gpotential is spherical) and is the torque due to viscousslforces. As done by Pringle (1996), we set W \ beic so that

Ignoring the z-component of thel ü\ [Re(W ), Im(W ),1].
torque and using equation (23), we Ðnd
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where we have ignored gravitation and viscous terms.
Using equations (10), (11), and (21) for andp1 p1@ ,
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where we have assumed slowly varying modes, u> u0 k
r
.

We deÐne a parameter Q that describes the ratio of the
kinetic energy in the wind to the rotational energy in the
disk, where is theQ4P0M2/&)2r Do

w
ru02/&v
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in a circular orbit. We can write

LW
Lt

B

4

5

6

0
0
[

Q! o k
r
r o)

J1 [ M2
(i] d)W M \ 1 ,

Q!k
r
r)

JM2[ 1
(1] id)W M [ 1 .

(27)

The precession rate
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r
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(28)

where to simplify the expression we have assumed M > 1 or
M ? 1 and ignored the dependence on the adiabatic index.

For a subsonic wind, growing modes occur when d \ 0.
We expect that the phase lag d \ 0 when so thatk

r
\ 0

growing modes will occur for c@\ 0. The growing mode will
have lines of nodes following a trailing spiral instead of a
leading spiral as was the case for the radiatively driven warp
instability (Pringle 1996). For a supersonic wind, growing
modes occur when and so will have a leading spiralk

r
[ 0

shape.
We expect the growing mode to grow as withb P et@tw
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In terms of the dynamical time, t
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When the wind is supersonic, the growth rate exceeds the
precession rate, and the amplitude of the perturbation can
grow quickly. We see that the precession and growth rates
depend on Q, the ratio of the kinetic energy in the wind and
the rotational energy in the disk. Though we have neglected
the viscous forces (in eq. [22]), we expect them to damp the
growth of unstable modes primarily for the short-
wavelength modes. We expect the disk self-gravity to a†ect
the precession frequency but not strongly a†ect the growth
rate of the mode.

Since we have followed the notation by Pringle (1996), we
can directly compare the importance of the torque caused
by the wind to that caused by the absorption of radiation
from a central source. Ignoring the viscous damping term,
the precession rate caused by the radiative torque is given
by (Pringle 1996, eqs. [3.6] and [3.8]).u

r
\ L k

r
/12n&R2)c

Comparing this to our equations (27) and (28), we Ðnd that
the wind-driven warping instability is likely to dominate
when

L
12nc

[ P0M2r2D o
w

u02 r2 . (31)

We can interpret this inequality in terms of the momentum
Ñux. When the momentum Ñux from the wind dominates
that from a central radiation source, a wind-driven insta-
bility may dominate. This suggests that accreting sources
that impart more energy into driving winds than into radi-
ation would be more likely to drive wind-driven instabilities
in their accretion disks.

4. THE PHASE LAG AND THE CRITICAL ANGLE FOR

BOUNDARY LAYER SEPARATION

The simplest description of subsonic wind Ñow near a
corrugated surface such as a Ñag or water wave is an irrota-
tional Ñow above the interface with wind velocity averaged
over one wavelength that is constant with height. This is a
““ potential Ñow ÏÏ (Lamb 1932), and since the pressure is
related to the wind velocity via BernoulliÏs equation, it is in
exact antiphase with the surface (as derived perturbatively
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above). So the energy Ñux between the wind and wave is
zero. For the wind to do work on the wave, the pressure
must be shifted in phase relative to the potential solution.
Je†reys (1924, 1925) suggested that the downwind side of
the wave is sheltered from the wind so that the pressure on
this slope is reduced there but increased on the upwind side.
This causes a drag force, and as a result, waves traveling
with the wind increase in amplitude, and those traveling
against the wind are damped. Scaling based on idealized
theory for this (Miles 1957 and subsequent work) unfor-
tunately does not predict the experimentally measured
growth rates very well (e.g., Kendall 1970 ; Riley, Donelan,
& Hui 1982 ; Donelan 1999).

In the theory outlined by Miles (1957), the phase lag is set
by numerical constants determined from turbulent mean
proÐles and does not depend upon the amplitude of the
surface variations. We can understand this by considering
the di†erence in the rate of growth of the turbulent bound-
ary layer between the leeward and windward sides of the
wavy surface. Because the growth rate of the boundary
layer depends on the pressure gradient along the direction
of Ñow outside the boundary layer, we expect a di†erence in
the boundary layer thickness on the leeward and windward
sides that is proportional to the pressure di†erence across
the wave, and this in turn is proportional to the amplitude
of the wave. However, the thickness of the boundary layer
may be set by a turbulent eddy viscosity and so should also
be proportional to the amplitude of the surface pertur-
bation. Thus, we predict that the phase angle will not
be strongly dependent on the amplitude of the surface
variations.

In most astrophysical situations, we expect high Rey-
nolds number Ñows and so can draw on the theory of aero-
dynamics. A laminar or viscous boundary layer next to a
surface is only stable when the pressure gradient along the
surface in the direction of Ñow is negative. However, this
condition is violated to the leeward of a corrugation. The
same situation occurs along airplane wings, and the bound-
ary layer becomes turbulent. Because of the Coanda e†ect,
turbulent boundary layers are less likely to separate from
the surface than viscous boundary layers. This allows the
boundary layer to remain near the surface along airplane
wings even though the pressure gradient in the laminar Ñow
region is not favorable. For most airplane wings, the
boundary layer does not separate from the surface until the
angle of attack from the wing is though this criticalZ15¡,
angle can increase to 45¡ for short thick wings. Past this
critical angle, little or no lift is generated and the wing
““ stalls.ÏÏ We expect a similar e†ect in our astrophysical disk.
When the amplitude of the corrugations reaches a critical
slope (a critical value for we expect that the bound-o Sk

r
o ),

ary layer will separate from the surface, the lift will decrease
causing the precession rate to drop, and the drag will
increase. At this point we expect the mode to saturate.

When the wind is supersonic, a smooth continuous Ñow
is unlikely (see Fig. 2). A full calculation would require
resolving shocks and expansion Ñows. However, the per-
turbative method we have used should allow us to at least
estimate the magnitude of the instability. We do expect a
major di†erence in the character of the wind Ñow near the
surface when the slope of the surface exceeds the Mach
angle or when Past this angle a turbu-o Sk

r
o[ arctan M~1.

lent boundary layer should develop, and the instability may
saturate. In this regime it may be possible to estimate the

torque on the disk using an approximation (that of Newto-
nian Ñow) that primarily considers ram pressure or reactive
force on the disk surface (e.g., Porter 1998 ; Schandl &
Meyer 1994).

5. DISCUSSION AND SUMMARY

In this paper we have outlined a possible instability that
could occur in accreting objects with energetic outÑows. A
wind passing over a rotating thin dense disk is likely to
cause a warping instability to grow in the disk. This insta-
bility could occur in situations where an energetic outÑow
driven by a compact object passes over a dense disk, such as
might happen in binary X-ray sources or active galactic
nuclei. In active galactic nuclei, at radii of order a parsec
from a black hole there is evidence for the existence of
dense, warped disks from maser observations (e.g., Herrn-
stein, Greenhill, & Moran 1996). Large-scale outÑows are
predicted for a variety of types of accretion Ñows and seem
to be an integral part of these Ñows. Observational evidence
for disk winds is fairly ubiquitous and seen in both X-ray
binaries (Brandt & Schulz 2000 ; Chiang 2001) and AGNs
(e.g., Murray & Chiang 1995).

When a subsonic wind passes over a corrugated dense
disk, the corrugations will cause pressure variations along
the surface of the disk. These pressure variations cause lift,
which cause the annuli in the disk to precess. Form drag
caused by the corrugated surface will cause pressure varia-
tions in the disk to lag the vertical displacement of the disk.
This causes a torque on the warped disk that can increase
the amplitude of the perturbation. We expect this instability
to saturate or cease growing at a critical slope when the lift
decreases because of boundary layer separation.

When a supersonic wind passes over a corrugated disk,
the disk primarily experiences form drag. The drag causes a
torque on the warped disk that can increase the amplitude
of the corrugations. When there is an e†ective lag between
the pressure and the vertical velocity of the surface, there
will be a vertical force on the disk that causes it to precess.
We expect a major change in the nature of the Ñow when
the slope of the corrugations exceeds the Mach angle. While
we primarily expect accreting astrophysical objects to drive
supersonic outÑows, if a thick outÑowing subsonic bound-
ary layer is created, the subsonic theory outlined here may
be appropriate inside this layer. The instability can domi-
nate the radiative induced warping instability in sources
where the energy released in an outÑow (either sub- or
supersonic) exceeds that emitted as radiation.

In this paper we have concentrated on a purely hydrody-
namic Ñow. However, we expect the magnetic Ðeld to be
dynamically important both in the disk and wind. If the
wind and disk are magnetized, Ñux freezing would make the
wind and disk act as mutually impenetrable bodies. The
wind would be less likely to cause hydrodynamical insta-
bilities that could destroy the disk. In this paper we have
focused on the a†ect of a radially outÑowing wind on the
planarity of a disk in the absence of radiation. Future inves-
tigations could develop a prediction for the phase lag angle
for subsonic wind Ñows (a historically difficult hydrody-
namics problem) and calculate the details of the shocks that
are likely to be present when the wind is supersonic. In this
paper we have restricted our study to radially outÑowing
winds ; however, astrophysical outÑows typically have a
nonzero, radius-dependent, azimuthal velocity. We have
also neglected the role of gravitational, magnetic, and
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viscous forces. Future work can consider the role of these
forces, include rotating winds, and explore the e†ects of
both radiation and winds on the planarity of the disk, par-
ticularly in the regime where the winds themselves are radi-
atively driven.

This work could not have been carried out without
helpful discussions with Eric Blackman, Bruce Bailey,

Wayne Hacker, and Daniel Proga. We thank the referee,
Norm Murray, for comments that signiÐcantly improved
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GO-07886.01-96A from the Space Telescope Institute,
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