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ABSTRACT

We consider the nature of orbits near the solar neighborhood that are perturbed by local spiral arms and
theMilkyWay bar. We present a simplified Hamiltonian model that includes resonant terms from both types
of perturbations and is similar to the forced pendulum. Via numerical integration of this model, we construct
Poincaré maps to illustrate the nature and stability of the phase space. We find that resonance overlap is most
likely to cause widespread chaos when the pattern of the spiral structure puts the solar neighborhood near
the 2 : 1 inner Lindblad resonance (ILR) in the case of a two-armed pattern, or near the 4 : 1 ILR in the case
of a four-armed pattern. When this happens, both the quasi-periodic orbits that support the spiral structure
and those that oscillate with the bar are disrupted near the bar’s 2 : 1 outer Lindblad resonance (OLR).
Consequently, the pattern speed of spiral structure that passes through the bar’s OLR must be faster than
�0.45 times the solar neighborhood angular rotation rate if it is two-armed, or faster than 0.75 times this
value if it is four-armed. Alternatively, the bar’s OLRmay form a boundary between spiral modes at different
pattern speeds. In all cases, we find that spiral structure is disrupted by the bar’s OLR over a narrow range of
radius, and that the extent of the orbits aligned perpendicular to the bar at the bar’s OLR is limited by the
spiral perturbations. We find that the boundary, at an azimuthal velocity component of 30 km s�1 below that
of the Sun, of the u-anomaly in the velocity distribution in the solar neighborhood is due to the abrupt
bifurcation of the orbit families associated with the OLR. The upper boundary at 60 km s�1 is truncated by
the spiral structure. The radial velocity width of the anomaly is probably bounded by chaotic regions that
surround the family of quasi-periodic orbits oriented perpendicular to the bar.
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1. INTRODUCTION

It has been established, beyond doubt, that the Milky
Way is barred, as are many nearby galaxies. Evidence for
the bar comes from asymmetry in the bulge surface photom-
etry, star counts, and interpretation of the gas kinematics
(for a recent review, see Gerhard 2002). The most common
values suggested from these observations are a co-rotation
radius of 3.5–5 kpc and a major-axis in-plane angle with
respect to the Galactic center of �bar � 15�–45�.

The solar neighborhood local velocity distribution is
expected to contain structure caused by large-scale, nearby
gravitational perturbations. While structure at velocities
near that of the Sun is likely to be affected by spiral structure
and disrupted stellar clusters (see, e.g., Skuljan, Hearnshaw,
& Cottrell 1999), the Hercules Stream, with tangential
velocity component 45 km s�1 below that of a star in a circu-
lar orbit at the Galactic radius of the Sun, is suspected to be
related to the 2 : 1 outer Lindblad resonance (OLR) with the
Galactic bar (Dehnen 1999; Fux 2001; Raboud et al. 1998).
This stream is also known as the u-anomaly. Because of the
older stars in it, the stream probably has a stable kinematic
origin (Raboud et al. 1998; Dehnen 1998). The local velocity
distribution as constructed from the Hipparcos Catalogue
most clearly shows this stream as a strong and separate fea-
ture (Dehnen 1998); in fact, there is a saddle point in the dis-
tribution between the stream and the bulk of the stars at
v � 30 km s�1 (see figures in Dehnen 1998 and Fux 2001).

Linear theory predicts that the orientation of orbits will
shift across the OLR, from oriented along the bar’s major
axis outside the OLR to perpendicular to the bar within it
(Binney & Tremaine 1987). Near the peak of the resonance,
both types of orbits can exist (Contopoulos 1975; Weinberg
1994). Dehnen (2000) showed, using a backward-integrat-
ing bar growth model, that stars were likely to be captured
into resonant regions associated with these two major orbit
families. He found that the resulting velocity distribution
was dependent upon the timescale over which the bar was
grown in the simulation, as well as the assumed initial veloc-
ity distribution. Fux (2001) considered the stability of orbits
and suggested that chaotic regions associated with resonan-
ces were likely to cause overdensities in some regions of
phase space and underdensities in others. He illustrated with
N-body simulations that the resulting stellar distribution
could correspond to that observed.

In some sense, it is surprising that the OLR with the bar
provides such a good explanation for the u-anomaly,
because locally both gaseous and stellar tracers primarily
show spiral structure near the solar circle (see, e.g., Vallée
1995; Drimmel & Spergel 2001). Previous works have not
considered the more complicated problem caused by the
forces due to local spiral structure in addition to those
caused by the bar.

In this paper, we consider the dynamics of stars that are
affected by perturbations from both spiral structure and the
Milky Way bar. We construct a simple Hamiltonian model
for the dynamics that contains resonant terms at both the
bar’s pattern speed and a slower pattern speed from local
spiral structure. We find that the Hamiltonian can exhibit
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resonance overlap and so wide-scale chaos. Consequently,
we address the issue of orbit stability by computing area-
preserving, or Poincaré, maps for different values of the
spiral pattern speed.

2. HAMILTONIAN FORMALISM FOR
THE KINEMATICS

As shown by Contopoulos (1975, 1988), the dynamics of
stars confined to the Galactic plane moving in a smooth
Galactic potential lacking nonaxisymmetric perturbations
is described by a Hamiltonian that can be written in a third-
order post-epicyclic approximation as

H0ðI1; �1; I2; �2Þ
¼ hþ !1I1 þ !2I2 þ aI21 þ 2bI1I2 þ cI22 þ � � � : ð1Þ

The high order of the expansion is required to exhibit the
bifurcation of the major resonances.2 The action variables
I1 = (2�)�1

Ð
_rr dr and I2 = J0 � Jc are integrals of the

motion when the Hamiltonian is unperturbed. The quantity
J0 is the particle’s angular momentum, and Jc is the angular
momentum of a particle in a circular orbit at a radius rc,
which is the radius of a circular orbit with value h. The fre-
quencies and constants in the above Hamiltonian are eval-
uated at this radius. We can choose to work in either a
frame rotating with a perturbation pattern or an inertial
one. Contopoulos (1975) worked in a frame rotating
at the bar or spiral pattern speed, �s, so h � 1

2J
2
c/r2c +

V0(rc) � �sJc and !2 = �c � �s, where �c is the angular
rotation rate of a circular orbit. Since we will consider more
than one perturbation and each perturbation will have a dif-
ferent pattern speed, in this paper we choose to work in
an inertial frame. Consequently, h � 1

2J
2
c/r2c + V0(rc) and

!2 = �c. In either frame, Jc = r2c�c is the angular momen-
tum and V0(r) is the axisymmetric component of the poten-
tial. The frequency !1 = �c, where �c is the epicyclic
frequency, which is evaluated at rc. Unfortunately, the value
of rc depends on �s, so transferring coordinate systems
between an inertial and a rotating one is not trivial.

The constants a, b, and c are given in Appendix A of Con-
topoulos (1975). When the rotation curve is flat, �c =

ffiffiffi
2

p
�c,

a = �0.92/r2c , b = �1/(
ffiffiffi
2

p
r2c), and c = �1/(2r2c).

The radius r, the angle h, and their time derivatives are
related to the action angle variables to first order in I1/2:

r� rc �
�
2I1
�c

�1=2

cos �1 ;
dr

dt
� �ð2I1�cÞ1=2 sin �1 ; ð2Þ

� � �2 �
2�c

rc�c

�
2I1
�c

�1=2

sin �1 ; r2
d�

dt
� I2 þ r2c�c ð3Þ

(from Appendix A of Contopoulos 1975), where h1 is the
epicyclic angle and h2 is the azimuth of the epicyclic center.
The quantities h1 and h2 are the angle variables conjugate to
I1 and I2.

To consider the effect of nonaxisymmetric perturbations
in the gravitational potential caused by a bar or spiral
structure, we must estimate the strength of these perturba-
tions in terms of the action angle variables described above.

We concentrate on the Lindblad resonances for a number of
reasons. They are first-order in the amplitude of the pertur-
bation and in I1/2 and, so, likely to be strong. The 2 : 1 OLR
from the Galactic bar is near the location of the solar neigh-
borhood. Stars on orbits influenced by the spiral’s inner
Lindblad resonances (ILRs) are required to self-consistently
support spiral structure (see, e.g., Contopoulos 1988).

2.1. Perturbation from theMilkyWay Bar

For a barlike perturbation, we assume that the nonaxi-
symmetric component of the gravitational potential
depends on radius and can be expanded in Fourier
components:

V1ðr; �Þ ¼
X
m

BmðrÞ cos ½mð�� �btÞ� ; ð4Þ

where �b is the angular rotation rate of the bar. In action
angle variables, we can write the potential perturbations
to first order in I

1=2
1 and the strength of the perturbation:

V1;mðI1; �1; I2; �2Þ ¼ ð2I1=�cÞ1=2�mfcos ½�1 þmð�2 � �btÞ�
þ cos ½�1 �mð�2 � �btÞ�g ð5Þ

(following expressions given by Contopoulos 1988), where
the first and second angular terms correspond to the m : 1
outer and inner Lindblad resonances, respectively. Here

�m ¼ 1

2
B0
m þm�c

rc�c
Bm ; ð6Þ

where Bm and B0
m = dBm/dr are evaluated at rc.

The solar neighborhood is well past the end of the Galac-
tic bar, so we can approximate the potential perturbation as
a quadrupolar term in the gravitational potential:

B2ðrÞ � �abðrb=rÞ3 ; ð7Þ

where rb is the radius at which the bar ends, rb � 0.45r0, as
found from infrared photometry (e.g., Dwek et al. 1995),
with r0 the radius of the solar circle from the Galactic center.
The pattern speed of the bar is constrained by to be about
1.85 times the solar neighborhood value of the angular rota-
tion rate, �0 (Dehnen 1999). Fux (2001) considered bars
about twice as strong as those considered by Dehnen (1999).

Dehnen (2000) estimates � = (3ab/v2c)(rb/rc)
3 � 0.01, so

at the solar circle ab/v2c � 0.036. From equation (6), and
assuming that the rotation curve is flat, we find
�2 � 0.086(ab/rc)(rb/rc)

3, so at the solar neighborhood we
estimate

�2 � 0:0003v2c=rc ; ð8Þ

where vc is the velocity of a star in a circular orbit.

2.2. Perturbation from Local Spiral Structure

For spiral structure, we assume that the radial variations
depend on angle and that the amplitude is nearly constant
with radius. The potential perturbation is

V1;mðr; �Þ ¼ Re

�X
m

Am exp fi½kmr�mð�� �stÞ þ �m�g
�

:

ð9Þ
2 The coordinates used in the above Hamiltonian are based on a post-

epicyclic approximation, not a canonical transformation.
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Herem refers to the number of arms,�s to the spiral pattern
speed, km to the wavenumber, and �m to an angular offset.

Contopoulos (1975) showed that to first order in I
1=2
1 , the

potential perturbation

V1;mðI1; �1; I2; �2Þ

¼ ð2I1=�cÞ1=2�mfcos ½�1 �mð�2 � �stþ �mþÞ�
þ cos ½�1 þmð�2 � �stþ �m�Þ�g ; ð10Þ

where

�m ¼ Amkm
2

�
1þ

�
2m�c

kmrc!1

�2�1=2
ð11Þ

for A0
m/(kAm)5 1. The angular offsets �m� depend on

�m and the wavenumber (see Contopoulos 1975 for
expressions).

Tracers of spiral structure in the solar neighborhood sug-
gest that the spiral structure is quite tightly wound (see, e.g.,
Vallée 1995). In theWKB approximation

Am � �2G�0Sm= kmj j ; ð12Þ

where Sm is the amplitude of the spiral surface density
variations divided by the mean surface density (Binney &
Tremaine 1987). For a tightly wound structure, we expect
that �m � Amkm/2 (taking the largest term in eq. [11]). The
mean surface density of disk mass in the solar neighborhood
is �0 � 50 M	 pc�2 (Holmberg & Flynn 2000), and we use
vc � 220 km s�1. A two-armed spiral is seen in the near-
infrared COBE DIRBE data with pitch angle in the range
p � 15=5–19� (Drimmel & Spergel 2001), yielding
kmr0 = m cot p in the range 5.8–7.2 for m = 2. The ampli-
tude of the spiral structure could be as large as Sm � 0.5–1
(Drimmel & Spergel 2001). We estimate for the solar
neighborhood

Am � � 0:011v2cSm

�
�0

50 M	 pc�2

��
vc

200 km s�1

��2



�

rc
8 kpc

��
7

kmrc

�
;

�m � � 0:036
v2c
rc
Sm

�
�0

50 M	 pc�2

��
vc

200 km s�1

��2



�

rc
8 kpc

�
: ð13Þ

The expression for �m is independent of km and primarily
depends on the amplitude of the spiral density variation.

3. HAMILTONIAN WITH PERTURBATIONS FROM
BOTH SPIRAL STRUCTURE AND THE

MILKY WAY BAR

We now take the perturbations due to the bar and spiral
arms and add them to the unperturbed Hamiltonian. We
have estimated the size of the coefficients � and � for these
perturbations in the previous section.

We expect that the 2 : 1 OLR with the Galactic bar and
the 2 : 1 or 4 : 1 ILR with local spiral structure will be the
strongest resonances near the solar neighborhood. To clar-
ify which pattern is associated with which resonance, we
refer to the ILRs with the spiral pattern as ILRS and the

OLR with the bar as OLRB. So, ignoring all other resonant
terms, we can simplify the problem to

H ¼ aI21 þ 2bI1I2 þ cI22 þ �I1 þ �I2

þ �2ð2I1=�Þ1=2 cos ½�1 þ 2ð�2 � �btÞ�

þ �mð2I1=�Þ1=2 cos ½�1 �mð�2 � �stÞ � �� þ � � � ; ð14Þ

wherem = 2 for the 2 : 1 ILRS andm = 4 for the 4 : 1 ILRS.
We perform a canonical transformation with generating

function

F2ðJ1; J2; �1; �2Þ ¼ J1½�1 þ 2ð�2 � �btÞ� þ J2�2 ; ð15Þ

obtaining a resonant angle and newmomenta

� ¼ �1 þ 2ð�2 � �btÞ ; I2 ¼ 2J1 þ J2 : ð16Þ

The quantities I1 = J1 and h2 remain unchanged. Our
Hamiltonian becomes

HðJ1; �; J2; �2Þ ¼ a0J2
1 þ 2b0J1J2 þ cJ2

2 þ 	J1

þ �J2 þ �2ð2J1=�Þ1=2 cos�

þ �mð2J1=�Þ1=2 cos ð�þ �� �Þ ; ð17Þ

where

a0 ¼ aþ 4bþ 4c ; b0 ¼ bþ 2c ; ð18Þ
	 ¼ �þ 2ð�� �bÞ ; ð19Þ

� ¼ ðm�s þ 2�bÞt� ðmþ 2Þ�2 : ð20Þ

When the rotation curve is flat, a0 = �5.7/r2c . We can
approximate h2 � �t, so that � � 
t, where


 ¼ m�s þ 2�b � ð2þmÞ� : ð21Þ

Note that J2 is a constant of the motion. Ignoring the terms
dependent upon J2, we rewrite our Hamiltonian in a simpler
form:

HðJ1; �Þ � a0J2
1 þ 	J1 þ �2ð2J1=�Þ1=2 cos�

þ �mð2J1=�Þ1=2 cos ð�þ 
t� �Þ : ð22Þ

We rescale lengths by rc and put time in units of ��1. Our
rescaled Hamiltonian is

hðj1; �Þ=v2c � a0r2c ½ j
2
1 þ �		j1 þ ���2 j

1=2
1 cos�

þ ���m j
1=2
1 cos ð�þ �

t0 � �Þ� ; ð23Þ

where J1 = r2c�j1. The unitless coefficients are

�		 ¼ �þ 2ð�� �bÞ
�a0r2c

; ��� ¼ �2rc=v2c
a0r2c

ffiffiffiffiffiffi
2�

�

r
; ð24Þ

��� ¼ �mrc=v2c
a0r2c

ffiffiffiffiffiffi
2�

�

r
; �

 ¼ m�s þ 2�b � ð2þmÞ�

�
: ð25Þ

If we included the effect of a nonzero value of J2, there
would be a shift in the value of �		 proportional to J2 from the
term 2b0J1J2 in equation (17).

If we set ��� = 0 so that there is a bar perturbation but no
spiral one, h = j21 +

�		j1 + ���j1/2 cos �. This Hamiltonian is
in the same form as the e-e resonances discussed in the
context of solar system orbital resonances (Murray &
Dermott 1999; Borderies & Goldreich 1984). As illustrated
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by Murray & Dermott (1999) and Borderies & Goldreich
(1984), the resonance bifurcates at a critical value of a
parameter that depends on �		 and ��� (see Fig. 1 below). The
resonance has three fixed points when

2
3
�		= ���
�� ��2=3< �1 : ð26Þ

One of the fixed points is unstable, and the other two corre-
spond to two resonant stable islands of libration at � = 0
and � = �. Only one fixed point exists when the above
inequality does not hold, and its location is determined by
the sign of ���. When ��� > 0, this fixed point is at � = 0, other-
wise it is at � = �.

When ��� = 0, so that there is a spiral perturbation and
no bar, the Hamiltonian can be put in the form h =
j21 + Dj1 + ���j1/2 cos �0 with a suitable canonical transforma-
tion, where D = �		 + �

/(a0r2c) = [� � m(� � �s)]/(�a0r2c).
In this case, the bifurcation happens when

2
3D= ���j j2=3< �1 : ð27Þ

The resonance can also be illustrated by Figure 1, but with ���
replacing ��� and D replacing �		 (see Fig. 1 of Contopoulos
1975).

The distinction between regions with two stable fixed
points and those with one fixed point is important when res-
onances overlap. For this type of Hamiltonian, a separatrix
exists only when there are two stable fixed points. Because
the period of the orbits becomes infinite at the separatrix,
additional perturbations are most likely to cause instability
and a chaotic region near the original location of the separa-
trix. When we have two resonant terms in the Hamiltonian
and the resonances overlap, large regions of phase space will
become strongly chaotic only when at least one of the reso-
nances contains a separatrix.

We now consider the orientations of the orbits and signs
of the individual terms. Fixed points in our simple one-
dimensional system correspond to closed or periodic orbits
in the full two-dimensional system. Assuming that �b is
about 1.85 times the angular rotation rate at the solar circle
(Dehnen 1999) and a flat rotation curve, we estimate
�		 � 0.05 at the solar circle. This drops to zero as we
approach the 2 : 1 OLRB, at a Galactocentric radius of
r � 0.9r0. Because a0 � �5.7/r2c , ��� � �0.2�2rc/v2c and
��� � �0.2�mrc/v2c . For radii outside the OLRB, �		 > 0 and we
expect only one fixed point or periodic orbit. Because ��� > 0,
the quasi-periodic orbits at the solar circle, outside the
OLRB, will be aligned with the bar. They are referred to as
the x1(1) orbits (see, e.g., Fux 2001; Dehnen 2000). Inside
the OLRB, the resonance bifurcates and two families of peri-
odic orbits (fixed points) exist, the x1(1) and x1(2) families.
The x1(2) family is aligned perpendicular to the bar and
found at � = �. We expect that large-scale chaos can occur
when there is a separatrix, �		 < 0, and inside the radius of the
OLRB.

The quantity �s is �0.3 times the angular rotation rate at
the solar circle when r0 is just outside the 2 : 1 ILRS, and 0.6
if r0 is just within the 4 : 1 ILRS. The quantity � is related to
the phase of the potential for the spiral pattern. For spiral
structure at our location in the solar neighborhood, we
should be outside the m : 1 ILRS of the pattern, so that
D < 0. If we are not outside the resonance, the stellar orbits
will not support the spiral structure and will negate it
instead (e.g., Contopoulos 1988). Inside the ILRS there is

only one periodic orbit or fixed point, and the reson-
ance bifurcates outside the ILRS (see Figs. 1 and 2 of
Contopoulos 1975). We expect ��� < 0, so that periodic orbits
with � = � would be in phase with the spiral arm. By ‘‘ in
phase,’’ we mean that the orbit will be aligned with radial
maxima on the same axis as the density maxima.

3.1. Generating Poincaré Maps

Previous works addressing the stability of orbits in the
solar neighborhood have computed Lyapunov exponents,
studiedN-body simulations (Fux 2001), or carried out back-
ward-integration schemes (Dehnen 2000). Here we adopt
the approach of Fux (2001) and strive to identify regions of
phase space that can keep stars for long periods of time.
However, as we explain below, we do this by determining
which regions of phase space are filled with area-filling, or
chaotic, orbits rather than computing Lyapunov exponents.

The Hamiltonian (eq. [23]) contains two main resonant
terms separated by a frequency �

. This is similar to the
forced pendulum. When the two resonances overlap, a cha-
otic region can be generated at the separatrix of one of the
resonances. For a fully overlapped system, this zone has a
Lyapunov time�2�/�

, corresponding to the separatrix pul-
sation period (Holman & Murray 1996). Outside the main
chaotic zone, we expect quasi-periodic islands. This picture
is qualitatively different from that explored by Fux (2001),
who illustrated narrow bands of unstable regions, each with
different Lyapunov timescales. We expect instead large
bands of chaos described by one Lyapunov time that are
surrounding stable islands. Consequently, we do not com-
pute Lyapunov times for a range of initial conditions but
instead map the structure of the phase space itself.

To investigate the stability of the system containing per-
turbations from both the bar and spiral structure, we
numerically integrate the equations of motion determined
from the Hamiltonian given by equation (23). This system is
time-dependent, so the Hamiltonian itself is not conserved.
However, if we plot points every time step P
 = 2�/�

, we
derive an area-preserving, or Poincaré, map. This procedure
generates maps that are like surfaces of section, and these
we can use to study the stability of the orbits. In such a map,
orbits are either area-filling or curves. We denote area-filling
orbits as chaotic (in the sense that orbits diverge exponen-
tially) and the curved orbits as quasi-periodic.

This procedure is excellent for addressing the question of
orbit stability and identifying the regions accessible to indi-
vidual orbits. But because we plot every P
, we cannot tell
whether an orbit is librating around � or around an angle
� + �

t. This makes it difficult to determine whether fixed
points are associated with (or supporting) the bar or the spi-
ral pattern. However, we can qualitatively deal with this
problem by changing the orientation of the spiral perturba-
tion. We do this by adjusting �, which determines the rela-
tive phase of the bar with respect to the spiral pattern at
time t = 0. To make our Poincaré maps, we plot points
every P
; however, we could choose our initial time to be
anywhere between 0 and P
 without changing the topology
of the map. This is equivalent to changing � as long as the
bar pattern speed is an irrational number times the spiral
pattern speed. We set � = �/2 so that orbits in phase with
the spiral pattern are located at an angle of � � �/2. Orbits
perpendicular to the spiral pattern are located at an angle of

788 QUILLEN Vol. 125



��/2. In comparison, orbits associated with the bar’s OLRB

librate about � = 0 or � = �.
As is commonly done, (e.g., Murray & Dermott 1999;

Borderies &Goldreich 1984), we plot all figures in this paper
in a coordinate system with

x ¼
ffiffiffiffiffiffi
2j1

p
cos� ; y ¼

ffiffiffiffiffiffi
2j1

p
sin� : ð28Þ

With respect to our action variable, j1 = s2/2, where s is the
radial distance on these plots. Since we defined J1 = j1�r2c ,
the epicyclic amplitude is approximately the same as s, the
radial distance in these plots. In other words, s gives the
maximum difference between the radial position of a par-
ticle and rc (see eq. [2]).

For each series of integrations (Figs. 2–4), we assume a
value for �s and �b (in units of the solar neighborhood
angular rotation rate �0) and ��� and ���, which are directly
estimated from the strengths of the spiral structure and bar
(see previous sections). We define the radial offset dr from
the radius of the Sun as

dr ¼ ðr0 � rcÞ=rc ; ð29Þ

so that �0/� = rc/r0 = 1 + dr. The values of �		 and �

 for
each integration are calculated from �s and �b, assuming a
flat rotation curve and for a range of dr. In the figures, the
different panels correspond to different values of dr.

Both the spiral and bar resonances have the topology
illustrated in Figure 1. Considering the bar only, as we vary
the radius, or dr and so �		, phase space changes in appear-
ance from that shown at the top of Figure 1 to that in the
bottom of this figure as we pass through the OLRB. Consid-
ering the spiral arms only, phase space from this resonance
should look like the bottom of Figure 1 but rotated by 90�,
since we chose � = �/2. Now we consider what happens
when both resonances are present. In this case, the bar
resonance (which could be any of the three panels shown in
Fig. 1) overlaps the spiral resonance (a panel looking like
the bottom of Fig. 1). When �		 < 0, the bar OLRB gains a
separatrix that is likely to become unstable when perturbed
by the spiral arms.

In Figure 2, we show the result of integrating equation
(23) for a two-armed pattern near the 4 : 1 ILRS of the spiral
pattern for moderate spiral and bar strength. For each of 30
particles chosen with different initial conditions, 200 time
steps are plotted with dt = 2�/
. For the panel on the top
left, corresponding to the Galactic radius of the Sun, the
orbits librate about � = �/2 and support the spiral struc-
ture. At dr � �0.10, orbits become are aligned with the bar
[x1(1)-type orbits] and librate about � = 0. At dr = �0.13,
the x1(2) orbits appear. These librate about � = �� and are
oriented perpendicular to the bar. As dr decreases further,
the orbits librate closer and closer to � = �/2 and so sup-
port the spiral structure and are no longer aligned perpen-
dicular to the bar.

Just past the OLRB (the center of the resonance is near
	 = 0, but a separatrix appears only for negative values of
	), we see in Figure 2 that the quasi-periodic regions are
bounded by thick bands of area-filling or chaotic orbits.
The spiral structure is disrupted (unsupported) between
dr = �0.11 and dr = �0.15. Past dr = �0.175, the x1(2)
orbits are limited by the influence of the spiral structure. In
short, the spiral structure limits the extent of the orbits per-
pendicular to the bar, and the bar’s OLRB disrupts the spiral
structure over a narrow range of radius.

3.2. On the (u, v)-Plane

To see whether our maps correspond to what is observed
in the local velocity distribution, we must consider what
values of our action angle variables correspond to the
(u, v)-velocities that are used to measure stars in the solar
neighborhood.

Fig. 1.—Level contours of the Hamiltonian H( j, �) = j2 + j�		 �
���j1/2 cos �. Dashed contours are negative. The axes (x, y) are defined by eq.
(28). The critical value for the resonance to bifurcate happens in the middle
panel, where 2

3
�		/| ���|2/3 = �1. The top panel contains a fixed point, which

would correspond to a closed or periodic orbit aligned with the bar, so that
� = 0. This is the situation outside the OLRB. Inside the OLRB the reso-
nance bifurcates, and both periodic orbit families are present. This
situation is shown in the bottom panel. The fixed points at � = �
correspond to periodic orbits oriented perpendicular to the bar. Only when
2
3
�		/| ���|2/3 < �1 is there a separatrix. Additional perturbations are most

likely to cause instability when there is a separatrix. Changing the sign of �
is equivalent to adding � to �. The Lindblad resonances associated with spi-
ral arms have the same structure, though outside the ILRS the resonance
looks like the bottom panel, and two classes of closed or periodic orbits
exist. Inside the ILRS the resonance looks like the top panel, and only one
class of periodic orbits exists.
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The solar neighborhood velocity distribution is typically
plotted with respect to the azimuthal velocity component v
and the radial velocity u, where u > 0 corresponds to veloc-
ities toward the Galactic center. We define v such that the
tangential component of the velocity, in the direction of
Galactic rotation, is equal to vc + v. An orbit at a lower v
should have a lower rc value and so should oscillate about a
Galactic radius that is smaller than r0, the radius of the solar
circle. We now estimate what values of dr correspond to the
center and boundary of the Hercules Stream, or u-anomaly.

If we assume a flat rotation curve, the Hamiltonian lack-
ing nonaxisymmetric perturbations is given by

H

v2c
¼ u2

2v2c
þ ðvc þ vÞ2

2v2c
þ ln

�
r

r0

�
: ð30Þ

For a circular orbit of radius rc, both u and v are zero and

H=v2c ¼ 1
2 þ ln ðrc=r0Þ : ð31Þ

We set r = r0 at the solar neighborhood, equate the two
expressions, and solve for rc as a function of the tangen-
tial velocity component v, finding ln (rc/r0) = (v/vc) +
1
2(u

2 + v2)/v2c . We expand ln (rc/r0) and obtain

dr � v

vc
þ v2 þ u2

2v2c
: ð32Þ

Note that we have not included the bar or spiral perturba-
tion in our estimate of dr. This dr is valid as long as the
above estimate is greater than �2/v2c and A2/v2c . We expect
these to be satisfied for moderate values of v, and for
velocities associated with the Hercules Stream (see eqs. [8]
and [13]).

Assuming u = 35 km s�1 at the center of the stream and
vc = 220 km s�1,

dr �
�0:13 ; for v � �30 km s�1 ;

�0:18 ; for v � �45 km s�1 ;

(
ð33Þ

where v � �45 km s�1 at the center of the Hercules Stream
or u-anomaly and v � �30 km s�1 at the edge or boundary
of the stream.

The stream itself is quite wide along the u-direction (over
100 km s�1 wide) and comparatively quite narrow in the
v-direction (40 km s�1 wide). In fact, the mean u-value of
the stream is much less than its u-width. If we use a width in
u of 35 � 50 km s�1, then we estimate a range of
�0.21 d dr d �0.07 in the stream.

In Figure 2, we have chosen the bar pattern speed so that
the x1(2) OLRB orbits appear near dr � �0.15, which is
approximately at the location of the Hercules Stream or u-
anomaly. We could adjust the pattern speed of the bar to
move the location of these orbits. Equation (26) could be
used to constrain the pattern speed and bar strength. How-
ever, before we do this we should consider the approxima-
tions made in our analysis. In the full Hamiltonian given in
equation (17), there is a term proportional to J1J2, which,
had we kept it in our analysis, would have caused an addi-
tional term (b0/a0)J2/(�cr2c) added to �		 in equation (23). In
dropping the extra terms in the Hamiltonian, we have
assumed that J2 is small. Because b0 is the same sign as a0, 	
should be larger than we have calculated. This would have
the effect of shifting the location of the resonance to more
negative dr, or larger distances from the solar neighbor-

Fig. 2.—Poincaré maps made by integrating the Hamiltonian of eq. (23)
with m = 2 and with a time step of 2�/�

. The panels are at different values
of dr. The top left panel has the smallest value of dr, corresponding to a
location near the solar neighborhood. The bottom right panel has the most
negative value of dr, corresponding to a radius closer to the Galactic center.
All panels have the same values of ��� (=�0.004), describing the strength of
spiral structure,�s (=0.60), the pattern speed of the spiral structure in units
of the solar neighborhood angular rotation rate (�0), ��� (=0.0006), describ-
ing the strength of the bar, and �b (=1.90), the pattern speed of the bar in
units of �0. Phase space, as illustrated by the structure in these maps, has
two types of orbits; curved linear structures, corresponding quasi-periodic
orbits, and area-filling orbits, corresponding to chaotic regions. The radial
distance on these plots is approximately the same as the radial epicyclic
amplitude in units of r0, or the distance the orbit reaches from rc. A dot is
placed at the origin for reference. The spiral pattern speed considered here
would result from a two-armed spiral pattern with the solar neighborhood
just within the 4 : 1 ILRS.
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hood. Note that if the rotation curve is not flat, then the
location of the resonance would also shift.

The maps shown in Figures 2–4 do show the likely mor-
phology of phase space near the OLRB. However, we should
not use them to constrain the bar pattern speed at a level
better than 25% unless we have taken into account this cor-
rection and quantified our uncertainties in the shape of the
rotation curve.

To find out whether stars in orbits associated with the
x1(2) family can reach the solar neighborhood, we also need
to estimate the size of our action variable for the u-anomaly.
If we assume that u � 0, then the epicyclic amplitude is set
by the condition that we are at r0. In other words, the maxi-
mum value in r � rc is approximately r0 dr. In terms of the
coordinate system of our Poincaré maps, a star that reaches
the solar neighborhood has s � dr.

In Figure 2, for dr � �0.15 the quasi-periodic regions are
of size s � 0.17, which exceeds the value of dr. This is large
enough that stars in these orbits would reach the solar
neighborhood. For dr d 0.125, no x1(2) orbits exist and no
stellar orbits aligned perpendicular to the bar will reach the
solar neighborhood. Because each value of dr is associated
with a v-value in the solar neighborhood velocity distribu-
tion, this implies that above a particular value of v no orbits
can be in the quasi-periodic orbit region surrounding the
x1(2) periodic orbits. Our model predicts that the u-anomaly
should have a sharp boundary in v in the solar neighbor-
hood velocity distribution, as observed. A model lacking
spiral structure would predict this sharp edge as well, since
it is determined by the value of 	 at which the resonance
bifurcates (see Fig. 1, the condition given in eq. [26]).

In Figure 2, we see that past a certain value of dr, corre-
sponding to a value of v, the quasi-periodic orbits are more
likely to be oscillating with the spiral structure than the bar.
This implies that there should be a smoother upper boun-
dary in v to the Hercules Stream or u-anomaly.

We see in Figure 2 that the quasi-periodic orbits oriented
perpendicular to the bar are bounded by chaotic regions.
This implies that there is a limit in the extent of the epicyclic
amplitude of stars associated with this quasi-periodic
region. In the solar neighborhood, this implies that there
would be a maximum value of u for orbits in the u-anomaly.
Since stars in the chaotic regions can rapidly achieve very
different epicyclic amplitudes, the boundaries of the u-
anomaly are probably set by the extent of the quasi-periodic
orbits associated with the x1(2) orbits.

3.3. Changing the Spiral Pattern Speed

According to Contopoulos (1988) and Patsis & Kauf-
mann (1999), two-armed spiral structure should only extend
between its 2 : 1 and 4 : 1 ILRS’s. These works showed that
two-armed spiral structure was not supported by the stellar
orbits past the 4 : 1 ILRS. At first we consider pattern speeds
that are faster and, so, with the solar neighborhood nearer
the 2 : 1 ILRS. The result of integrating equation (23) with a
faster pattern, �s = 0.45, in units of the solar angular rota-
tion rate �0, is shown in Figure 3. This pattern speed would
be consistent with a two-armed spiral pattern near its 2 : 1
ILRS.

In Figure 3, we see large-scale chaotic regions that com-
pletely disrupt the spiral structure and the orbits associated
with the OLRB. Because �

 is smaller in this integration than
that shown in Figure 2, the resonances are closer together

Fig. 3.—Similar to Fig. 2, but we have changed the pattern speed of the
spiral structure to �s = 0.45 (all panels have ��� = �0.004 and ��� = 0.0005).
This pattern speed could result from a two-armed spiral pattern with the
solar neighborhood fairly near the 2 : 1 ILRS. Since �

 is smaller, the
resonances are more fully overlapped than is the case in Fig. 2. Both the
spiral structure and resonant orbits at the OLRB are disrupted. A resonant
island of x1(2) orbits does not exist for �s d 0.5 for bar and spiral arm
strengths estimated from observations of the stellar density variations.
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and so more fully overlapped. The scale of the chaotic
regions can be reduced by decreasing the strength of the bar
and spiral perturbations, or the values of ��� and ���. However,
decreasing both ��� and ��� by a factor of 2 does not restore the
quasi-periodic island about the x1(2) family of periodic
orbits. The scale of the chaotic zone is more sensitive to the
extent the resonances overlap or to �

, which is set by the
spiral pattern speed, than to the size of the perturbations.
Since we have adopted realistic values for the bar and spiral
arm strength, we can use this sensitivity to place an approxi-
mate limit on the pattern speeds of spiral structure that
passes through the OLRB. We find that the x1(2) orbits are
completely disrupted for �s d 0.45, implying that two-
armed spiral structure passing through the OLRB is likely to
be rotating faster than this.

In Figure 4, we have integrated a spiral pattern at a faster
pattern speed of �s = 0.85 for m = 4. This would corre-
spond to a four-armed spiral pattern. The situation is simi-
lar to that seen in Figure 2. The OLRB disrupts the spiral
pattern on the outer side of the resonance. The x1(2) orbit
family appears abruptly at dr � �0.13, and the quasi-
periodic island oscillates with the bar until dr � �0.15,
where it is destroyed along with orbits that support the
spiral structure.

If we reduce the pattern speed of four-armed spiral
structure to �s < 0.75, phase space looks like that shown in
Figure 3. Both the x1(2) orbit family and quasi-periodic
orbits that support the spiral structure are destroyed. This
implies that four-armed spiral structure faster than
�s = 0.75 cannot pass through the OLRB.

4. SUMMARY AND DISCUSSION

In this paper, we have considered the dynamics of stars
that are affected by perturbations from both spiral structure
and the Milky Way bar. We constructed a simple one-
dimensional Hamiltonian model for the strongest resonan-
ces in the epicyclic action and angle variables.

This Hamiltonian is time-dependent because the bar and
spiral structure in general have different pattern speeds, and
it resembles a forced pendulum. To address the issue of orbit
stability and differentiate between areas of phase space filled
with quasi-periodic orbits and area-filling, or chaotic,
orbits, we numerically integrated this Hamiltonian. By
plotting points only at the period that separates the two
resonant perturbations, we construct Poincaré maps that
illustrate where in phase space there are area-filling or
chaotic orbits instead of quasi-periodic orbits.

The Lyapunov time in the chaotic regions is on the order
of the period that separates two resonances (Holman &
Murray 1996). Over much of the resonance, this timescale is
on the order of a few times the rotation period. Conse-
quently, stars that are located in chaotic regions can move
across the region. This implies that they can achieve large
epicyclic amplitudes and will not remain in any coherent,
small region in phase space. Streams seen in the local veloc-
ity distribution are unlikely to be located in large chaotic
regions. In contrast, particles that are located in quasi-
periodic regions should maintain their epicyclic amplitudes
for much longer times. Our model predicts that the chaotic
regions can form large bands. This is a qualitatively different
picture from the narrow regions spanning a range of
Lyapunov times illustrated by Fux (2001), who solely con-
sidered perturbations from the bar.

Fig. 4.—Similar to Fig. 2, but we have changed the pattern speed of the
spiral structure to �s = 0.85, with the solar neighborhood outside the 4 : 1
ILRS (all panels have ��� = �0.002). For this simulation m = 4, correspond-
ing to a weak four-armed spiral pattern. Quasi-periodic orbits exist near the
solar circle (dr small) associated with the spiral structure. Around
dr = 0.125, the x1(2) family of orbits oriented perpendicular to the bar
appears. Past dr = �0.20 no low-amplitude quasi-periodic orbits associ-
ated with either bar or spiral structure exist. The spiral structure is not
strong enough to disrupt the orbit families near the bar, but also not
strong enough to persist inside the OLRB. For faster pattern speeds, the
family of orbits perpendicular to the bar associated with the OLRB is
entirely disrupted.
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We note that the diffusion timescale in a chaotic region is
not the same as the Lyapunov time. The diffusion timescale
should depend on the size of the perturbations and should
be longer than the Lyapunov time (see, e.g., discussion in
Murray & Holman 1997). Further work would be required
to explore heating of the stellar disk resulting from pertur-
bations at different pattern speeds.

We find that faster spiral pattern speeds cause less overlap
in the two resonances and, so, smaller chaotic zones. Spiral
structure at a pattern speed that puts the solar circle near
the 2 : 1 ILRS produces extremely large bands of chaos near
the 2 : 1 OLRB with the bar. This disrupts the spiral pattern
and destroys orbits perpendicular to the bar near the OLRB.
It is unlikely that two-armed spiral structure at patterns
slower than �s = 0.5 extends into the OLRB. Likewise, it is
unlikely that a four-armed spiral slower than �s = 0.85
extends into the OLRB. It is possible that the OLRB forms a
boundary between spiral structures at different pattern
speeds.

Two-armed and four-armed spiral structures at faster
pattern speeds are much less disruptive. For a two-armed
pattern with �s = 0.6, chaotic regions appear near the
OLRB that disrupt the spiral pattern only across a narrow
region. Orbits oriented perpendicular to the bar appear at
tangential velocities and epicyclic amplitudes consistent
with the existence of quasi-periodic or stable orbits in the
local velocity distribution at the Hercules Stream, or u-
anomaly. The boundaries of the u-anomaly are set by the
extent of the quasi-periodic orbits associated with the family
of orbits perpendicular to the bar.

In this paper, we have considered the combined problem
of a resonance from spiral structure and from a Galactic
bar. Notably, the solar neighborhood contains a wealth of

structure at smaller velocities than the u-anomaly (Dehnen
1998). Much of this structure contains old stars and so is
likely to be caused by spiral structure. Since there is more
than one clump in the distribution, it is likely that the solar
neighborhood is influenced by spiral structure at more than
one pattern speed. Hence we expect complicated phenom-
ena such as that discussed here. In future work we will con-
centrate on the interplay between different modes of spiral
structure.

4.1. Caveats

Our simple Hamiltonian model assumes that the value of
rc is constant. There is no canonical transformation showing
us how to pick rc, a serious problem with our choice of
action angle variables. By working with the perturbative
approach of Contopoulos (1975), we have assumed that all
orbits oscillate about a given radius. We have also neglected
coupling between the two degrees of freedom (the term pro-
portional to J1J2 in eq. [17]). While our simplified model is
likely to qualitatively illustrate chaos caused by resonance
overlap when multiple resonances are present, it will not
illustrate other phenomena that would be present in the
entire two-dimensional system. For example, particles inte-
grated numerically in a system with both spiral structure
and a bar can drift in both angular momentum and energy,
so that a mean radius may not be preserved.

This work could not have been carried out without help-
ful discussions with Larry Helfer and DonGarnett. A. C. Q.
gratefully thanks the Technion for hospitality and support
during the fall of 2001.
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