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ABSTRACT

We propose that the eccentricity and sharpness of the edge of Fomalhaut’s disk are
due to a planet just interior to the ring edge. The collision timescale consistent with
the disk opacity is long enough that spiral density waves cannot be driven near the
planet. The ring edge is likely to be located at the boundary of a chaotic zone in the
corotation region of the planet. We find that this zone can open a gap in a particle disk
as long as the collision timescale exceeds the removal or ejection timescale in the zone.
We use the slope measured from the ring edge surface brightness profile to place an
upper limit on the planet mass. The removal timescale in the chaotic zone is used to
estimate a lower limit. The ring edge has eccentricity caused by secular perturbations
from the planet. These arguments imply that the planet has a mass between that of
Neptune and that of Saturn, a semi-major axis of approximately 119 AU and longitude
of periastron and eccentricity, 0.1, the same as that of the ring edge.
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1 INTRODUCTION

The nearby star Fomalhaut hosts a ring of circumstellar ma-
terial (Aumann 1985; Gillett 1985) residing between 120 and
160 AU from the star (Holland et al. 1998; Dent et al. 2000;
Holland et al. 2003). The ring is not axisymmetric. Spitzer
Space Telescope infrared observations of Fomalhaut reveal a
strong brightness asymmetry in the ring (Stapelfeldt et al.
2004; Marsh et al. 2005). Submillimeter observations are less
asymmetric in brightness but also imply that the ring is off-
set, with the southern side nearer the star than the opposite
side (Holland et al. 2003; Marsh et al. 2005). Recent Hubble
Space Telescope (HST) observations show that this ring has
both a steep and eccentric inner edge (Kalas et al. 2005). In
this paper we explore dynamical scenarios involving a planet
that can account for both the eccentricity of the ring edge
and its sharp or steep surface brightness edge profile.

Two classes of theoretical models exist for non-transient
eccentric rings that do not rely on dynamics induced by
radiation pressure. These are the pericenter glow model
(Wyatt et al. 1999) and the self-gravitating eccentric ring
models (e.g., Goldreich & Tremaine 1979; Tremaine 2001;
Papaloizou & Melita 2005). The self-gravitating ring mod-
els have primarily been used to explain eccentric planetary
rings. Though the structure of the ring edge can impact the
models (Chiang & Goldreich 2000), the ring edges are not
integral to the model, instead the rings are truncated by
torques driven by neighboring satellites.
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The pericenter glow model can account for eccentricity
in the disk surface brightness distribution of Fomalhaut’s
disk (Stapelfeldt et al. 2004; Marsh et al. 2005). Secular per-
turbations from a planet interior to the ring cause particle
eccentricities to be coupled with their longitudes of peri-
astron. The forced particle eccentricities cause an asymme-
try in the dust distribution such that the ring periastron is
aligned with the planet’s periastron. Previous studies have
not placed constraints on the location of the planet caus-
ing the forced eccentricity in Fomalhaut’s disk, consequently
constraints on the planet’s mass and eccentricity are lacking
(Wyatt et al. 1999; Marsh et al. 2005).

We briefly review the observed properties of Fomal-
haut’s disk. The recent HST observations have revealed that
the ring edge has eccentricity ecqqe = 0.11 £ 0.01, perias-
tron at PA = 170°, inclination 65.6°, and a semi-major axis
Gedge = 133 AU (Kalas et al. 2005). The surface brightness
at the edge drops by a factor of 2 within 10 AU (see Fig-
ure 3 by Kalas et al. 2005). This can be compared to the
resolution of HST, 0.1”, corresponding to only 0.75 AU at
the distance of Fomalhaut. The slope of the disk edge was
modeled with a disk scale height of 3.5AU corresponding to
an opening angle of 1.5° (Kalas et al. 2005). However, the
observed disk edge slope could either be due to the thickness
of the disk or a drop in the planar surface density profile.
Assuming an( expone)ntial dust density distribution in the
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form exp (— - - ‘hiz‘), the observed disk edge slope
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implies that either h,/r ~ 0.026 and 2h. < h, or the disk
aspect ratio h /r ~ 0.013 and 2h, > h,. The equation of hy-
drostatic equilibrium can be used to place a limit on the ve-
locity dispersion, u, of the dust particles, - < 0.013 where
n is the mean motion at a semi-major axis a.

The age of the star is 200+ 100 Myr (Barrado y Navas-
cues 1998). The mass of the star is 2Mg (Song et al. 2001),
so the rotation period at 130 AU is 1000 years. This or-
bital rotation period divided by the star’s age is 10°. The
optical depth (normal to the disk plane) just interior to the
ring edge at 24pum is 7 ~ 1.6 x 107® (Marsh et al. 2005).
The collision time in the ring , teor ~ (Tn)fl, is a million
years or 1000 orbits. Since this timescale is short, we can ex-
clude Poynting-Robertson driven resonance capture models
for the dust, as argued in detail by Wyatt (2005).

2 THE PERICENTER GLOW MODEL AND
AN ECCENTRIC EDGE IN FOMALHAUT’S
DISK

We follow the theory for secular perturbations induced by
a planet (e.g., Murray & Dermott 1999; Wyatt et al. 1999).
Secular perturbations in the plane can be described in terms
of the complex eccentricity variable, z = eexp (iw), where
e is the object’s eccentricity and w is its longitude of peri-
astron (e.g., Murray & Dermott 1999; Wyatt et al. 1999).
The time variation of z is

z= Zforced + Zproper (t) (1)
where
bg/z (a)
Zforced = 77 ;  Ep €XP (Zw ) (2)
b§/2 ()" !

(Murray & Dermott 1999; Wyatt et al. 1999). We denote
the planet’s semi-major axis, eccentricity and longitude of
periastron as ap, ep, and wp, respectively. Here oo = ap/a
if a, < a otherwise @ = a/ap. The functions, b!(a), are
Laplace coefficients (see Murray & Dermott 1999 for defini-
tions and numerical expressions). If the planet’s periastron
does not vary (as for the two body problem) then zforceq is
a constant of motion. In this case the forced complex eccen-
tricity depends only the planet’s semi-major axis and eccen-
tricity, and not on its mass.

The ratio of Laplace coefficients, bg/Q(oz)/bé/Q (a) < 1,50
the amplitude of the complex eccentricity variable, |zforced|,
cannot exceed the planet’s eccentricity. If the planet is
near the ring edge then « is near 1. Near the planet
lima—1 [bg/2 (oe)/b;,/2 (oz)] = 1 and |2Zforced|] = ep. If the
planet is near the ring edge then the forced eccentricity is
equal to that of the planet.

We now consider the density distribution from a dis-
tribution of particles. Particles with the same semi-major
axis, different mean anomalies and zero free or proper ec-
centricities would be located along a single ellipse. If the
free eccentricities are non zero then the density distribution
is smoother than the zero free eccentricity ellipse and has
a width twice the free eccentricity multiplied by the semi-
major axis. Consequently the observed steepness of the disk
edge limits the distribution of free eccentricities in the edge.
We denote the free eccentricity dispersion, u? = <ef,mper>.
The slope of Fomalhaut’s disk edge h./r < 0.026 so the free

eccentricities in the disk edge are u. < 0.026. If the planet is
responsible for truncating the disk and limiting the distribu-
tion of free eccentricities then we suspect that the planet is
located near the disk edge and « is almost 1. If the ring ec-
centricity is due to secular perturbations from a planet then
the hypothetical planet’s eccentricity e, is equal to that of
the edge or e, ~ 0.11.

Since they are inelastic, collisions damp the eccentrici-
ties and inclinations of an ensemble of particles. This damp-
ing leads to a distribution following nearly closed (non-self-
intersecting) orbits. Near a planet the only non-intersecting
closed orbits consist of those with zero free eccentricity and
with eccentricity equal to the forced eccentricity.

3 SPIRAL DENSITY WAVES AND THE
COLLISION TIMESCALE

In a high opacity, 7 ~ 1, disk spiral density waves are driven
by a planet or satellite near the planet. A gap opens if the
torque from the planet exceeds that from accretion and the
minimum gap width is twice the size of the planet’s Hill
sphere (e.g., Borderies et al. 1989).

As pointed out two hundred years ago by Poisson, some
form of interaction between particles is needed for secular
transport to occur. Satellites or planets do not exert a torque
on a collisionless disk. However, planetesimals in the coro-
tation region are efficiently pumped to high eccentricity and
ejected by the planet or other interior planets (e.g., David
et al. 2003; Mudryk & Wu 2006). In this case the width of a
gap opened near the planet would be given by Equation (5),
as is discussed further in section 4. For planet mass objects
the width of this chaotic zone exceeds that set by the Hill
radius because 2/7 is smaller than 1/3.

The separation between collisional and collisionless
disks is important as the opacity of the disk (setting the
collision timescale) is an observable. Franklin et al. (1980);
Goldreich & Tremaine (1980); Lissauer & Espresate (1998)
showed that spiral density waves were efficiently driven
at a Lindblad resonance by a satellite when the collision
timescale was above a critical one, tcrit, where terie o< u_2/3,
and u = E—i is the ratio of the planet mass divided by that
of the star. This has been confirmed numerically with sim-
ulations of low opacity collisional particle disks at individ-
ual Lindblad resonances (Franklin et al. 1980; Hanninen &
Salo 1992; Espresate & Lissauer 2001). Lissauer & Espre-
sate (1998) predicted this scaling by comparing the period
of excited epicyclic oscillations at a Lindblad resonance with
the collision timescale. Near a planet a series of resonances
is encountered. The j : 5 — 1 mean motion resonance (cor-
responding to the m = j — 1 Lindblad resonance) has a
period approximately equal to the renormalization factor in
Equation (7) by Quillen (2006) or
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with coefficients described by this work, and evaluated above
in the limit of large j. In the limit of small da, and setting
the critical timescale to this period, tcrit = pe,

2/3.-2 ,u_2/3da2. (4)

teragn ~ b 7]

We have recovered the scaling with planet mass predicted
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by previous works (Goldreich & Tremaine 1980; Franklin et
al. 1980; Lissauer & Espresate 1998) but have also included
a dependence on distance from the planet.

The above critical timescale, tcrit, (appropriate for
small da) increases with distance from the planet. For a disk
with a particular collision timescale, spiral density waves
would be driven past a particular distance from the planet.
Because the Hill sphere radius is proportional to the planet
mass to the 1/3 power, Equation (4) implies that tcrs is
of order 1 at the Hill sphere radius. Only collisional disks,
7 ~ 1, could have a disk edge extending to the planet’s Hill
sphere. Since the opacity of Fomalhaut’s disk is sufficiently
low that spiral density waves cannot be driven into the disk
by a nearby planet, the disk edge must be maintained by a
different dynamical process.

4 VELOCITY DISPERSION AT THE EDGE OF
THE CHAOS ZONE

There is an abrupt change in dynamics as a function of
semi-major axis at the boundary of the chaos zone in the
corotation region near a planet. The width of this zone has
been measured numerically and predicted theoretically for
a planet in a circular orbit by predicting the semi-major
axis at which the first order mean motion resonances over-
lap (Wisdom 1980; Duncan et al. 1989; Murray & Holman
1997; Mudryk & Wu 2006). The zone boundary is at

da. ~ 1.3%7 (5)

where da, is the difference between the zone edge semi-
major axis and that of the planet divided by the semi-major
axis of the planet.

In section 2 we found that the free or proper eccen-
tricities are likely to be limited by the observed disk edge
slope. A collision could convert a planar motion to a ver-
tical motion similar in size, suggesting that the disk veloc-
ity distribution is not highly anisotropic so we may assume
hz/r > Ue. A collision could also increase or decrease the
particle semi-major axis and eccentricity. Particle lifetime is
likely to be strongly dependent on semi-major axis, so we ex-
pect a sharp boundary in the semi-major axis distribution.
The slope in the disk edge is likely to be set by the verti-
cal scale height and velocity dispersion in the disk edge. We
estimate that h./r ~ ue ~ 0.013. Here the value of 0.013
is half the scale height measured by Kalas et al. (2005) (see
discussion at the end of section 2).

Outside the chaos zone, planetesimals still experience
perturbations from the planet. These perturbations have a
characteristic size set by size of perturbations in the nearest
mean-motion resonance that is not wide enough to overlap
others and so is not part of the chaotic zone. Since particles
in the edge reside outside the chaotic zone, the velocity dis-
persion does not increase with time. Via numerical integra-
tion we find a relation, shown in Figure 1, between the planet
mass and the proper eccentricity dispersion just outside the
chaos zone. The numerical integrations were carried out in
the plane, using massless and collisionless particles under
the gravitational influence of only the star and a massive
planet with eccentricity e, = 0.1. The initial particle ec-
centricities were set to the forced eccentricity and the and
longitudes of periastron were chosen to be identical to that
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of the planet. Initial mean anomalies were randomly chosen.
The free eccentricity distribution was measured after 10°
planetary orbits. However u. reached the steady state value
much earlier in the integrations, at a time less a hundred
planetary orbits and so shorter than the collision timescale.

The libration width for a j : j — 1 mean motion reso-
nance has e? ~ u2/3j2/3 (using the high j limit of equation
7 by Quillen 2006). Setting j ~ =27 corresponding to the
chaos zone boundary we estimate an eccentricity dispersion
Ue ~ ,u3/7 just outside the chaotic zone. This dependence on
w is shown as a solid line in Figure 1 and is a good match to
the numerically measured dispersion values in the disk edge.

Fomalhaut’s disk edge slope can be used to place a
limit on the planet mass if we assume that the disk edge
is bounded by the planet’s chaotic zone. We use the limit,
ue ~ 0.013, based on the disk edge slope, shown as a hori-
zontal line on Figure 1 to estimate the mass of the planet.
This horizontal line is consistent with the eccentricity dis-
persion at the edge of a chaos zone for a planet of mass
i~ 7 x 107°. As the mass of Fomalhaut is twice that of
the Sun this corresponds to a planet mass similar to that
of Neptune. For this simulation the distance between the
planet semi-major axis and disk edge has da ~ 0.13, ap-
proximately consistent with the 47 law and corresponding
to a planet’s semi-major axis of 119 AU.

If the velocity dispersion in the disk edge is due to per-
turbations from massive objects in the ring then it would
exceed that estimated from our integrations. In this case
the planet maintaining the disk edge could be lower, but
not higher, than that estimated above. The mass ratio
i = 7 x 107° can be regarded as an approximate upper
limit for the planet mass.

5 REMOVAL TIMESCALE FROM THE
COROTATION REGION

Since they are inelastic, collisions damp the eccentricities
and inclinations of an ensemble, unless they are rapidly
transported elsewhere. Since they change orbital parame-
ters, collisions cause diffusive spreading of the particle dis-
tribution in an initially sharp ring edge. A particle that is
knocked into an orbit with a semi-major axis within the
chaotic zone can be scattered by the planet and ejected from
the region. To maintain the low dust density within the ring
edge, we infer that the removal timescale within the ring
must be shorter than the rate that particles are placed in-
terior to the ring.

We can approximate the dynamics with a diffusion
equation where diffusion due to collisions in the disk edge
is balanced by the rapid removal of particles on a timescale
tremoval Inside the edge. In steady state the diffusion equa-
tion
L0~
a a tremoval
(Melrose 1980; Varvoglis & Anastasiadis 1996), where N(a)
is the number density of particles with semi-major axis a.
The diffusion coefficient, D, depends on the collision time
and the velocity dispersion, u, in the disk, D ~ % This
diffusion coefficient is similar to a viscosity and can be esti-
mated by considering the mean free path and particle veloc-
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ity differences set by the epicyclic amplitude. The removal
timescale tremoval 18 set by the dynamics within the chaos
zone and depends on the planet mass and eccentricity. The
above equation is satisfied when N(a) decays exponentially
with a scale length I, and 1? = Dt,emoval-

As the removal timescale depends on the planet mass
and eccentricity it is useful to write

t —2p— (LY
removal — / - E tcol (7)

In section 4 we argued that the velocity distribution is un-
likely to be extremely anisotropic near the disk edge and
that this dispersion is set by the planet and the distance
to the disk edge. Therefore we expect that [ ~ h,. Equa-
tion (7) implies that in order for a planet to open a gap in
a low opacity disk it must be massive and eccentric enough
that the removal timescale in the chaos zone exceeds the
collision timescale.

Previous works estimating ejection timescales in the
corotation region have primarily concentrated on more mas-
sive mass ratios than p = 10™* (David et al. 2003; Mudryk
& Wu 2006). Consequently we have estimated this timescale
from numerical integrations. 100 particles were integrated in
the plane with initial eccentricities and longitudes of perias-
tron identical to those of the planet, random mean anomalies
and differing initial semi-major axes. Particles were removed
from the integration when their eccentricity was larger than
0.5. Figure 2 shows this removal timescale as a function of
semi-major axis for planet mass ratios p = 1074, 2 x 107°
and eccentricity e, = 0.1. Figure 2 shows that the removal
timescale in the chaotic zone for y = 10™* is similar or below
to the estimated collision timescale for Fomalhaut, 10® or-
bits, whereas the removal timescale is longer than than this
time for g ~ 2 x 107°. In section 4 we estimated that the
planet mass must be lower than 7 x 107°. Here we find that
if the planet mass is below g ~ 2 x 107° then the chaotic
zone would not be able to open a gap in Fomalhaut’s particle
disk.

The diffusion equation (Equation 6) neglects any depen-
dence of the diffusion coefficient or removal time on particle
radius or eccentricity. We also have not considered the role
of a particle size distribution and destructive collisions. The
low scale height implied from the sharp edge implies that
fewer collisions are destructive than previously estimated
(e.g, by Wyatt & Dent 2002). A more sophisticated model
is needed to more accurately predict the edge profile as a
function of planet mass, eccentricity, collision timescale and
particle size.

6 SUMMARY AND DISCUSSION

We find that a planet accounting for both the eccentricity
and edge of Fomalhaut’s disk is likely to have eccentricity
similar to that of the disk edge or e, ~ 0.1. Here we have
assumed that the eccentricity of the ring is a forced eccen-
tricity due to the planet. The sharp disk edge limits the free
eccentricities in the ring edge, so the ring eccentricity equals
the forced eccentricity. For a planet close enough to truncate
the ring, the forced eccentricity is approximately the same
as the planet eccentricity.

For high opacity or collisional disks (7 ~ 1), a gap is

only formed if the planet driven spiral density waves can
overcome the torque from accretion. A planet just large
enough to open a gap will open one approximately twice the
size of its Hill radius. However, a collisionless disk can open
a larger gap, the size of the chaos zone in the planet’s coro-
tation region. We find that spiral density waves can only be
driven into a disk within a chaotic zone if the disk opacity is
of order 1. Fomalhaut’s disk opacity, 7 ~ 1.6 x 10™2 (Marsh
et al. 2005), is sufficiently low that spiral density waves can-
not be driven near the planet. For low opacity disks, 7 < 0.1,
a planet will open a gap to the chaos zone boundary only
if the collision timescale exceeds the timescale for removal
of particles within the chaos zone. We use this limit and
numerical integrations to infer that a mass of a planet suf-
ficiently large to account for the sharp edge in Fomalhaut’s
disk edge has mass ratio > 2 x 107°.

The planet mass can be estimated from the observed
slope in the disk edge by assuming that the ring edge is lo-
cated at the edge of the planet’s chaos zone and the velocity
dispersion at the ring edge is set by resonant perturbations
caused by the planet. If the velocity dispersion estimated at
the ring edge is due to perturbations caused by bodies in the
ring then the planet mass must be lower than this estimate.
This limits the planet mass ratio u < 7 X 1075.

Our exploration suggests that there is a planet located
just interior to Fomalhaut’s ring with semi-major axis ~
119AU, mass ratio 2 x 107° < < 7 x 107° (corresponding
to between a Neptune and Saturn mass), and and longitude
of periastron and eccentricity, e, ~ 0.1, the same as that
of the ring edge. Arguments similar to those explored here
could be used to estimate the masses of bodies residing in
and causing structure in other low opacity disks.

A Saturn mass at 119 AU may seem extreme compared
to the properties of our Solar system (Neptune at 30 AU).
It is desirable to place this predicted planet mass in context
with the estimated mass of Fomalhaut’s disk. The total mass
required to replenish the dust in the disk was estimated by
Wyatt & Dent (2002) to be 20 — 30Mg, however a larger
mass is probably required since the velocity dispersion as-
sumed by this study corresponded to h/r ~ 0.1 and this
value exceeds by a factor of eight that consistent with the
edge slope measured by Kalas et al. (2005); h/r ~ 0.013.
A power law size distribution with an upper cutoff of 500
km leads to an estimate of 50-100 Earth masses in the ring
(Kalas et al. 2005). These estimates suggest that there is
sufficient material currently present in Fomalhaut’s disk to
form another Saturn or Neptune sized object.

We thank B. Zuckerman, R. Edgar, P. Kalas and E.
Ford for interesting discussions. Support for this work was
in part provided by National Science Foundation grant AST-
0406823, and the National Aeronautics and Space Adminis-
tration under Grant No. NNG04GM12G issued through the
Origins of Solar Systems Program, and HST-AR-10972 to
the Space Telescope Science Institute.
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Figure 1. Eccentricity dispersion in the disk edge vs planet mass
for a planet with eccentricity e, = 0.1 (square points). The solid
line is ue = 0.8#3/7. The scaling with u3/7 is predicted for the
libration in the first order mean motion resonance just outside the
corotation region. The horizontal line shows the limit set from the
observed disk edge slope.
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Figure 2. Removal timescale as a function of initial semi-major
axis for a planet mass u = 10~4 (large points) and p = 2 x 10~
(small points). Particles were removed from the integration when
their eccentricity became larger than 0.5. Squares, triangles and
circles show the timescale when fewer than 75%, 50% and 25%
of the particles remained in the integration, respectively. For an
initial semi-major axis above or equal to 1.13, particles were not
removed in less than 10° orbital periods (shown as the arrow on
the upper right) for u = 10~% and for semi-major axis above or
equal to 1.09 in less than 2 x 10° orbital periods for p = 2 x 10~°
(shown as the arrow on the top middle). The horizontal line shows
the limit set from the collision timescale, 103 orbits, estimated
from Fomalhaut’s disk opacity. To account for the absence of dust
within the ring edge, particle lifetimes within the chaotic zone
must be shorter than the collision timescale.



