
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 22 September 2006 (MN LATEX style file v2.2)

Chaotic zone boundary for low free eccentricity particles

near an eccentric planet

Alice C. Quillen & Peter Faber
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627; aquillen@pas.rochester.edu; pfaber@mail.rochester.edu

22 September 2006

ABSTRACT
We consider particles with low free or proper eccentricity that are orbiting near plan-
ets on eccentric orbits. Via collisionless particle integration we numerically find the
location of the boundary of the chaotic zone in the planet’s corotation region. We
find that the distance in semi-major axis between the planet and boundary depends
on the planet mass to the 2/7 power and is independent of the planet eccentricity, at
least for planet eccentricities below 0.3. Our integrations reveal a similarity between
the dynamics of particles at zero eccentricity near a planet in a circular orbit and
with zero free eccentricity particles near an eccentric planet. The 2/7 law has been
previously explained by estimating the semi-major at which the first order mean mo-
tion resonances are large enough to overlap. Orbital dynamics near an eccentric planet
could differ due to first order corotation resonances that have strength proportional to
the planet’s eccentricity. However, we find the corotation resonance width at low free
eccentricity is small. Also the first order resonance width at zero free eccentricity is
the same as that for a zero eccentricity particle near a planet in a circular orbit. This
accounts for insensitivity of the chaotic zone width to planet eccentricity. Particles at
zero free eccentricity near an eccentric planet have similar dynamics to those at zero
eccentricity near a planet in a circular orbit.

Key words: celestial mechanics; planetary systems : protoplanetary disks

1 INTRODUCTION

Chaotic diffusion associated with the overlap of resonances
has been shown to be responsible for instabilities in the so-
lar system (e.g., see Holman & Wisdom 1993; Lecar et al.
2001, 1992; Tsiganis et al. 2005). For the restricted 3-body
problem Wisdom (1980) first showed that the width of the
chaotic zone near a planet could be explained by calculating
the location at which the first order mean motion resonances
are large enough to overlap. The zone width has been mea-
sured numerical and predicted theoretically (Wisdom 1980;
Duncan et al. 1989; Murray & Holman 1997) for a planet in
a circular orbit, though some work has extended the stabil-
ity analysis for bodies in orbits near circular and eccentric
binary stars (Holman & Wiegert 1999; Mudryk & Wu 2006).
The stability of bodies at low eccentricity residing in multi-
ple planet extrasolar systems have also been investigated nu-
merically (e.g., Rasio & Ford 1996; Lepage & Duncan 2004;
Barnes & Raymond 2004).

Recently Quillen (2006b) suggested that the edge of Fo-
malhaut’s eccentric ring could be due to truncation by a 0.1
eccentricity Neptune mass planet. The nearby star Fomal-
haut hosts a ring of circumstellar material (Aumann 1985;
Gillett 1985) residing between 120 and 160 AU from the

star (Holland et al. 1998; Dent et al. 2000; Holland et al.
2003). Spitzer Space Telescope infrared observations of Fo-
malhaut reveal a strong brightness asymmetry in the ring
(Stapelfeldt et al. 2004; Marsh et al. 2005). Recent Hubble

Space Telescope (HST) observations show that this ring has
both a steep and eccentric inner edge (Kalas et al. 2005).
The sharp disk edge suggested that the dust particles are
in orbits with low free or proper eccentricity, thus the ring
has eccentricity equal to the forced eccentricity caused by
secular perturbations from the proposed planet. Such a con-
figuration is possible if inelastic collisions in the disk damp
the eccentricities of particles, resulting in a particle distri-
bution that moves along nearly closed streamlines or closed
and non-self-intersecting orbits. Fomalhaut’s ring has a in-
termediate collision timescale of 103 orbits, estimated from
its normal disk opacity τ ∼ 1.6µm at 24µm (Marsh et al.
2005).

While previous theoretical and numerical studies have
considered orbit stability near the corotation region for plan-
ets on circular orbits, little work has been done considering
the stability of orbits near a planet on an eccentric orbit.
The dynamical problem of an object orbiting a planet in a
circular orbit has a conserved quantity, the Jacobi integral,
that is not conserved when the planet is on an eccentric or-
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2 Quillen & Faber

bit. Surfaces of section have been used to illustrate the types
of orbits (tori or area filling) for the restricted three-body
system (Wisdom 1985; Winter & Murray 1997). However,
when the planet is eccentric there is no extra integral of mo-
tion making it difficult to create surfaces of section. We are
motivated here to consider the role of the planet’s eccentric-
ity in setting the boundary of non-stochastic orbits in the
corotation region. We focus here on particle orbits that have
nearly zero free eccentricity and so have eccentricity set by
the forced eccentricity due to secular perturbations from the
planet.

2 NUMERICAL INTEGRATIONS

Numerical integrations were carried out in the plane, us-
ing massless and collisionless particles under the gravita-
tional influence of only the star and a massive planet with
eccentricity, ep, using a conventional Burlisch-Stoer numer-
ical scheme. A particle near a planet on an eccentric orbit
feels secular perturbations from the planet if it is located
away from low-order mean motion resonances. The parti-
cle’s eccentricity and longitude of periastron precess about
a point set by the distance to the planet, the planet’s eccen-
tricity longitude of periastron. The secular motion can be
described in terms of a free (or proper) and forced eccen-
tricity (e.g., Murray & Dermott 1999). Only a particle with
zero free eccentricity would have a fixed argument of perias-
tron and eccentricity. In our integrations the initial particle
eccentricities were set to the predicted forced eccentricity
due to secular perturbations from the planet and the and
longitudes of periastron were chosen to be identical to that
of the planet. Initial mean anomalies were randomly cho-
sen. Particles were removed from the integration when their
eccentricity was larger than emax = 0.9. We work in units
of the planet’s semi-major axis, ap, and orbital period. The
mass of the planet is described in terms of its mass ratio, µ,
the ratio of the planet mass to that of the central star.

2.1 Measurement of the width of the chaotic zone

As a function of initial semi-major axis we measured the
lifetimes of particles before removal from the integration.
The semi-major axis bins for each lifetime measurement had
width da = 0.01, and 100 particles were integrated for each
bin. An abrupt increase in the particle lifetime was seen in
the simulations as a function of initial semi-major axis (see
Figure 2 by Quillen 2006b). Inside the chaotic zone parti-
cles were scattered to high eccentricity and removed from
the simulation, but outside it, the lifetime of particles ex-
ceeded 104 orbits. For planet masses ratio between 10−3 and
10−5 and eccentricities between 0.05 and 0.2 we measured
the semi-major axis, az, at which this transition in lifetime
occurred. The distance da =

az−ap

ap

between this semi-major

axis and the planet’s divided by the planet’s semi-major axis
is plotted in Figure 1.

In Figure 1 we note that the chaotic zone boundaries
depend on the planet mass. The scaling is consistent with
that predicted from the 2/7 law or

da = 1.5µ2/7 (1)
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Figure 1. The distance between the planet semi-major axis and
that of the chaotic zone boundary is plotted as a function of
planet mass ratio, µ. Points are plotted at the semi-major axis
at which particles lifetime exceeded 104 orbits. Each point type
corresponds to different planet eccentricity. The points lie on top
of one another because the chaotic zone width is independent
of the planet eccentricity for orbits with zero free eccentricity.
Particles were initially placed in orbits with zero free eccentricity
and arguments of peri-astron the same as the planet. The solid
line corresponds to that predicted by equation 1.

(Wisdom 1980) where the constant 1.5 is taken from nu-
merical measurements by Duncan et al. (1989). The offset
between the line predicted by equation 1 is not significant as
we have measured the width from an ensemble of particles
and required them all to remain at least 104 orbits. This im-
plies that we have measured a location outside the last stable
orbit in a surface section or a closed orbit radius vs energy
bifurcation plot. The points shown in Figure 1 include those
integrated for a zero eccentricity planet. so the offset be-
tween that predicted by the 2/7th law is the same for the
higher planet eccentricities as for the zero planet eccentric-
ity. Using finer spacing in semi-major axis and by restricting
the initial orbital elements rather than choosing them ran-
domly, it is possible to find stable orbits somewhat closer
to the planet. The offset from the predicted line is caused
by the measurement procedure, rather than the planet ec-
centricity. We note an increased scatter in the chaotic zone
boundary at lower masses in Figure 1, however we find no
clear trend in the scatter as a function of planet eccentricity.
Since the particle lifetimes in the chaotic zone are longer
for the lower mass planets more particle trajectories may
need to be integrated to achieve the same precision in the
measurement of the chaotic zone boundary at lower planet
masses. The choice of initial random mean anomalies could
also contribute to the scatter at lower planet masses.

Figure 1 shows points corresponding to integrations
with different planet eccentricities. The points for integra-
tions near eccentric planets lie on top of those at low or zero
planet eccentricity. In other words the width of the chaotic
zone appears to be independent of the planet eccentricity.
We find that there exists a long lived low free eccentricity
region near moderately eccentric planets (in the planar prob-
lem). This region has da < ep for the more highly eccentric
planets and so is nearer the planet’s major axis than the
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Figure 2. Eccentricity dispersion, ue, in the disk edge as a func-
tion of planet mass. The line shown is ue = 6.2µ3/7 and consistent
with that predicted with equation 17 for particles near a planet
in a circular orbit. Each point type corresponds to integrations
containing a planet with a different eccentricity. The eccentricity
dispersion is not strongly dependent on the planet eccentricity.

planet’s periastron. In other words, these orbits pass closer
to the star than the periastron of the planet, but because
they are apsidally aligned with the orbit of the planet they
do not cross the planet’s orbit.

A disk with a low collision rate, could evolve to a dis-
tribution with nearly closed orbits fixed about the forced
eccentricity and apsidally aligned with a planet. Our planar
numerical integrations show that this region is stable over
long timescales (greater than 104 orbits) and so could host
a long lived planetesimal distribution.

2.2 Dispersion and lifetimes

We have also measured the eccentricity distribution after 104

planetary orbits in the disk edge. These are shown in Figure
2. Each point shown on this figure correspond to measure-
ments based on integration of 100 particles. The corotation
chaotic region arises from resonance overlap. However out-
side the chaotic zone mean motion resonances exist that af-
fect the particles, though because they do not overlap other
mean motion resonances the particles do not vary their or-
bital parameters stochastically or do vary stochastically but
on much longer timescales. Figure 2 shows that the veloc-
ity dispersion in the stable boundary is likely to depend on
planet mass and not eccentricity.

To characterize the lifetime of particles in the chaotic
zone we consider particles within initial semi-major axis at
2/3 the distance in semi-major axis to the zone edge. The
timescale for removal of 25%, 50% and 75% of the particles
is plotted as a function planet mass for planet eccentricities,
ep = 0.05 and 0.2 in Figure 3. Again particles are initial
started in orbits with zero free eccentricity. From comparing
Figure 3, we see no significant difference in the particle life-
times at the two planet eccentricities. Particles placed into
the chaotic zone at zero free eccentricity, would have the a
similar resident lifetime as those placed at zero eccentricity
near a planet of zero eccentricity.

For orbits with eccentricity equal to the forced eccen-
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Figure 3. Particle lifetime in planetary orbits as a function
of planet mass for particles with initial semi-major axis 2/3 of
the way between the planet’s semi-major axis and the chaotic
zone boundary. Large and small points are for planet eccentricity
ep = 0.05 and 0.2, respectively. The circles, crosses and triangles
correspond to times when 75%, 50% and 25% of the particles re-
main in the simulation, respectively. The line shown has lifetime
equal to 0.23µ−0.84. Particles have initial angle of pericenter iden-
tical to that of the planet and zero free eccentricity. The lifetimes
are not strongly dependent on the planet eccentricity.

tricity we find that there is a long lived or stable region in
close proximity to eccentric planets. Inside this region par-
ticles are pumped to high eccentricity and scattered by the
planet on a timescale orders of magnitude faster than out-
side this region. We have found that the width of this chaotic
zone, in semi-major axis is independent of the planet eccen-
tricity. The eccentricity dispersion in the disk edge and the
lifetime of particles within the zone is also nearly indepen-
dent of planet eccentricity. These results suggest there is a
similarity in the dynamics of particles at zero free eccentric-
ity and those at zero eccentricity near a planet in a circular
orbit. In the following section we explore a Hamiltonian for-
mulation that shows that this is in fact the case.

3 HAMILTONIAN FORMULATION

In this section we reconsider the theory of mean motion res-
onance overlap. We consider the role of first order secular
perturbations from the planet and the two angular perturba-
tions that are associated with each first order mean motion
resonance. We follow the notation by Quillen (2006a). We
employ the Poincaré coordinates

λ = M +̟, γ = −̟

and their associated momenta

L =
√
GM∗a, Γ =

√
GM∗a(1 −

√

1 − e2)

where M∗ is the mass of the star, λ is the mean longitude,
M is the mean anomaly, ̟ is the longitude of pericenter, a is
the semimajor axis, and e is the eccentricity. These variables
are those describing the orbit of a particle or planetesimal in
a plane. The Hamiltonian for the Keplerian system in these
coordinates restricted to a plane is
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4 Quillen & Faber

H(L, λ; Γ, γ) = −GM∗

2L2
−R

where R is the disturbing function, proportional to the
planet mass, that depends on the coordinates of the particle
and on the coordinates of the planet. The planet’s semi-
major axis and mass are denoted ap and mp, respectively.
The planet’s other coordinates are subscripted in the same
way. The mean motion of the particle n = λ̇ where λ̇ is the
derivative with respect to time of λ.

Hereafter we adopt a unit convention with distances
in units of the planet’s semi-major axis, ap. Time is put

in units of
√

a3
p/GM∗. We define µ to be the mass ratio

µ ≡ mp/M∗. At low eccentricity, Γ/L ≈ e2/2, relating the
momentum Γ to the particle eccentricity. We often give the
particle semimajor axis in terms of the variable α ≡ ap

a
if

a > ap (external to the planet) and α ≡ a
ap

for a < ap

(internal to the planet).
The unperturbed Hamiltonian or that lacking the dis-

turbing function

H0(L, λ; Γ, γ) = − 1

2L2

We consider the the j : j−k exterior mean motion resonance
(planet is an interior perturber). We perform a canonical
transformation using the mixed variable generating function

F2 = I(jλ− (j − k)λp)

where λp = npt, leading to new variables1

I = L/j, ψ = jλ− (j − k)λp

and new Hamiltonian

H ′

0(I, ψ; Γ, γ) =
−1

2j2I2
− (j − k)Inp.

We now expand around a particular value for I . Let

Λ ≡ I − I0. (2)

In terms of the particles mean motion I0 = n−1/3/j. Since
we have adopted units np = 1, we find I0 = α−1/2/j where
α =

ap

a
. Our Hamiltonian now reads

K0(Λ, ψ; Γ, γ) = constant + (jn− (j − k)np)Λ − 3Λ2

2j2I4
0

.

We can write the unperturbed Hamiltonian as

K0(Λ, ψ; Γ, γ) = a′Λ2 + b′Λ + constant

with coefficients

a′ = −3

2
j2α2 (3)

b′ = nj − (j − k)np = α3/2j − (j − k)np,

similar to Equation 2 by Quillen (2006a). Exactly on reso-

nance α =
(

j−k
j

)2/3

and b′ = 0. The primes here are given

to differentiate a′ from the semi-major axis a.
We now recover the disturbing function that is is tra-

ditionally expanded as a cosine series of angles in orders of
planet and particle eccentricity. We keep the terms inducing
precession of the longitude of periapse and first order (in

1 There is an error in the I variable definition by (Quillen 2006a).

eccentricity) or k = 1 terms containing ψ and ̟. The full
Hamiltonian

K(Λ, ψ; Γ, γ) = a′Λ2 + b′Λ + c′Γ (4)

+d′Γ1/2Γ1/2

p cos(̟ −̟p)

+g0Γ
1/2 cos (ψ −̟)

+g1Γ
1/2

p cos (ψ −̟p)

where Γp ≡ e2

p
L

2
and with the following coefficients 2

c′ = −µ
4
α5/2b13/2

d′ =
µ

2
α5/2b23/2

g0 = −µ
√

2α5/4f31

g1 = −µ
√

2α5/4f27. (5)

The coefficients f31 and f27 are given in Table B.7 by
(Murray & Dermott 1999). The functions b1

3/2
and b2

3/2
are

Laplace coefficients and are functions of α. The approximate
asymptotic limits for large j and α → 1 are f31 → j and
f27 → −j. We have used the approximation e2 ∼ 2Γα1/2.
The term proportional to cos(ψ − ̟) is often called the e-
resonance since Γ1/2 ∝ e. The other term can be called an
e′-resonance or a corotation resonance since it does not de-
pend on the particle’s longitude of perihelion or ̟.

We first consider secular perturbations only, ignoring
the g0, g1 terms and considering the following

K(Γ, γ) = c′Γ + d′Γ1/2Γ1/2

p cos(̟ −̟p). (6)

We find a fixed point at

−γ = ̟ = ̟p

Γ
1/2

f =
b2
3/2

b1
3/2

Γ1/2

p (7)

where Γf ≈ e2forcedL/2. This fixed point is equivalent to a
closed orbit with eccentricity equal to the forced eccentricity

eforced =
b2
3/2

b1
3/2

ep

and zero free eccentricity. The coefficient c′ sets the secular
precession rate.

We can perform canonical transformations to new vari-
ables

x =
√

2Γ cos̟ −
√

2Γf cos̟p

y =
√

2Γ sin̟ −
√

2Γf sin̟p

I =
x2 + y2

2

θ = tan−1(y/x). (8)

These variables were also used by Murray & Holman (1997).
Here the momentum variable I is related to the particle’s
free or proper eccentricity rather than the particle’s eccen-
tricity.

Recovering the Hamiltonian (equation 4) in the new
variables

K(Λ, ψ; I, θ) = a′Λ2 + b′Λ + c′I (9)

2 Eqn 4 by Quillen (2006a) for c should have had a factor of α3/2.
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Eccentric particles near an eccentric planet 5

+ constant

+ g0I
1/2 cos (ψ − θ)

+ (g0Γ
1/2

f + g1Γ
1/2

p ) cos (ψ −̟p).

The expansion about the fixed point associated with the
forced eccentricity does not change the form of the term
normally associated with the first order mean motion res-
onance, that proportional to cos(ψ − θ). Consequently the
resonance libration time and width are unchanged. The pre-
dicted semi-major axis where resonance overlap occurs based
on these resonance widths would be identical to that for a
planet in a circular orbit (see below).

However the width of the corotation resonance differs
from that predicted using equation (4). The coefficient de-
scribing the strength of this resonance (∝ cos (ψ −̟p) in
equation 9), can be rewritten as

µ
√

2α5/4(f31eforced + f27ep) cos (ψ −̟p),

using the coefficients listed in equations (5). Since f27 and
f31 have opposite signs the forced eccentricity term will tend
to cancel the other term. In the high j limit the forced ec-
centricity equals the planet’s eccentricity and f27 ≈ −f31 so
these two terms cancel. The µ2/7 law is only valid for the
high j limit. Consequently the corotation resonance com-
pletely cancels near the planet for orbits with zero free ec-
centricity. This implies that the dynamics of particles at low
eccentricity near a planet in a circular orbit is similar to the
dynamics of particles at low free eccentricity near a planet
in an eccentric orbit.

We note that our expansion above is valid only to first
order in the particle and planet eccentricity. At high particle
and planet eccentricity, additional resonance terms become
important, and the low eccentricity expansion is no longer
valid. The above Hamiltonian (equation 9) is not restricted
to zero free eccentricity but to low values of the free eccen-
tricity due to the low degree of the expansion.

3.1 Rederiving the 2/7th law and the eccentricity
dispersion in the disk edge

In section 2 we numerically measured the eccentricity dis-
persion in the disk edge, finding that it too does not signif-
icantly depend upon planet eccentricity. Outside the chaos
zone, planetesimals still experience perturbations from the
planet. These perturbations have a characteristic size set by
size of perturbations in the nearest mean-motion resonance
that is not wide enough to overlap others and so is not part
of the chaotic zone. Since particles in the edge reside outside
the chaotic zone, the velocity dispersion does not increase
with time. In this subsection we check that our formulation
can correctly predict the location of resonance overlap. We
then predict eccentricity variations that would be predicted
by considering the role of the last resonance that is not part
of the chaotic zone.

The width of the resonance can be thought of as the
range of semi-major axis over which the resonance has a
large effect. To estimate the first order resonance width we
rescale the momentum and put the Hamiltonian in a unitless
form (e.g., as done by Murray & Dermott 1999 in section
8.8 or by Quillen 2006a in section 3). The factors used to
rescale the Hamiltonian set the resonance width. We per-

form a canonical transformation of the Hamiltonian given
in equation (9) lacking the corotation term or

K(Λ, ψ; I, θ) = a′Λ2 + b′Λ + c′I

+ g0I
1/2 cos (ψ − θ)

with generating function

F2 = J1(θ − ψ) + J2ψ

leading to new variables

J2 − J1 = Λ, φ = θ − ψ

J1 = I, ψ = ψ

and new Hamiltonian

K′(I, φ; J2, ψ) = a′
(

I2 + J2

2

)

+
(

c′ − 2a′J2 − b′
)

I

+b′J2 + g0I
1/2 cosφ (10)

Note that J2 is conserved and is small for initial conditions
near resonance with small initial free eccentricity (or I).
Dropping constant terms and setting

B = c′ − 2a′J2 − b′, (11)

the Hamiltonian in Equation (10) becomes

K′(I, φ) = a′I2 +BI + g0I
k/2 cosφ.

Here the coefficient B determines the distance from reso-
nance. By rescaling momentum and time

Ī =
∣

∣

∣

g0
a′

∣

∣

∣

−2/3

I

τ = |g0|2/3
∣

∣a′
∣

∣

1/3

t, (12)

we can write this as

K̄(Ī, φ) = Ī2 + b̄Ī − Ī1/2 cosφ (13)

where

b̄ = B|g0|−2/3
∣

∣a′
∣

∣

−1/3

(14)

sets the distance from exactly on resonance. The resonance
is only strong over a range ∆b̄ ∼ 1 (e.g., see Figure 8.10
by Murray & Dermott 1999) corresponding to a range of
particle mean motions. Assuming slow secular precession
and neglecting the term ∝ J2, the variation ∆B ∼ −∆b′

(equation 11). Equation 4 allows us to relate ∆b′ to the
range of mean motions over which the resonance is strong
∆b′ ∼ j∆n. Equation 14 then implies that the resonance is
strong over a range of mean motions of size

∆n ∼ j−1 |g0|2/3
∣

∣a′
∣

∣

1/3

.

For resonances near the planet we can use the asymptotic
limit (α → 1, j large) that gives g0 → µj. Subbing in for
g0 and considering the range of semi-major axis rather than
mean motion, the resonance width is

∆a ∼ µ2/3j1/3

where we have used ∆n ∼ 3/2∆a. Using a spacing between
j : j−1 resonances of ∆a ∼ 2

3
j−2 we find that the resonances

overlap at the resonance with

j ∼ µ−2/7.

The semi-major axis corresponding to the j : j−1 resonance
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6 Quillen & Faber

at the chaotic zone boundary is set by the above j. The
j : j − 1 mean motion resonance located at a semi-major
axis of a = (1 − 1/j)−2/3 ∼ 1 + 2

3j
for large j. The distance

between the planet and chaotic zone boundary, δaz, in semi-
major axis, i.e., chaotic zone width, is then

δaz ∼ µ2/7, (15)

recovering the 2/7 law (Wisdom 1980; Duncan et al. 1989;
Murray & Holman 1997; Mudryk & Wu 2006).

The eccentricity change or libration width in the reso-
nance just outside the boundary would have size

I ∼
∣

∣

∣

g0
a′

∣

∣

∣

2/3

(16)

where we have used the libration width (given by the scaling
factor for Ī in Equation 12) or

I ∼ µ2/3j−2/3.

Subbing in j ∼ µ−2/7 at the chaotic zone boundary gives
I ∼ µ6/7 and an eccentricity dispersion of

ue ∼ µ3/7 (17)

just outside the chaos zone. This dispersion could set the
slope of the density distribution in the disk edge (e.g, Quillen
2006b) . The scaling predicted by Equation 17 is shown com-
pared to numerical measurements of the eccentricity disper-
sion in the disk edge in Figure 2. It provides a good fit to
the measurements and is independent of planet eccentricity
as predicted by considering equation 9 for orbits with low
free eccentricity.

4 SUMMARY AND DISCUSSION

In this paper we have investigated the dynamics of low free
eccentricity collisionless massless particles in the plane near
a planet on a eccentric orbit. By determining the semi-major
axis at which the particle lifetime increases, we measure the
width of the chaotic zone near the planet. For eccentricity
ep < 0.3 we find that the chaotic zone width is indepen-
dent of the planet’s eccentricity and matches that predicted
by the 2/7 law. The eccentricity dispersion in the disk edge
and the lifetime of particles within the chaotic zone is also
nearly independent of planet eccentricity. These results sug-
gest there is a similarity in the dynamics of particles at zero
free eccentricity and those at zero eccentricity near a planet
in a circular orbit.

To account for our numerical results we have explored
the dynamics of a Hamiltonian system that takes into ac-
count first order secular perturbations and the two terms
that comprise each first order mean motion resonance. With
a coordinate transformation we have rewritten the Hamil-
tonian in terms of an action variable that depends on the
free eccentricity rather than the eccentricity. At low free ec-
centricity we find that the new Hamiltonian resembles the
Hamiltonian of a low eccentricity particle near a planet in
a circular orbit. This accounts for the lack of sensitivity of
the particle dynamics on planet eccentricity.

For orbits with eccentricity equal to the forced eccen-
tricity there is a region in the plane with longer lived orbits
(compared to the planet orbital period) in close proximity

to eccentric planets. Three dimensional simulations that in-
corporate collisions are needed to see if these orbits tend to
be populated by long lived particles, as proposed for Foma-
lhaut’s eccentric ring (Quillen 2006b).
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