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ABSTRACT

A migrating planet can capture planetesimals into mean motion resonances. However, resonant
trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple
Hamiltonian system for first and second order resonances, we explore how the capture probability
depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling
factors as a function of the planet mass and resonance strength to estimate the planetary migration
rate above which the capture probability drops to less than 1/2. Applying our framework to multiple
extra solar planetary systems that have two planets locked in resonance, we estimate lower limits for
the outer planet’s migration rate allowing resonance capture of the inner planet.

Mean motion resonances are comprised of multiple resonant subterms. We find that the corotation
subterm can reduce the probability of capture when the planet eccentricity is above a critical value. We
present factors that can be used to estimate this critical planet eccentricity. Applying our framework
to the migration of Neptune, we find that Neptune’s eccentricity is near the critical value that would
make its 2:1 resonance fail to capture twotinos. The capture probability is affected by the separation
between resonant subterms and so is also a function of the precession rates of the longitudes of periapse
of both planet and particle near resonance.

Subject headings: celestial mechanics

1. INTRODUCTION

Resonances can capture particles in slowly varying dy-
namical systems. For example, a planet migrating out-
ward can trap planetesimals in resonances exterior to it;
as Neptune trapped the Plutinos in the Kuiper belt (e.g.,
Fernandez & Ip 1984; Malhotra 1995; Hahn & Malhotra
1999; Ida et al. 2000; Chiang & Jordan 2002; Zhou et al.
2002; Levison & Morbidelli 2003; Wyatt 2003). A planet
migrating inward can trap planetesimals or planets in
resonances interior to it (e.g., Quillen & Holman 2000;
Kley et al. 2004). Dust spiraling inward under dissipa-
tional forces can become trapped in exterior mean mo-
tion resonances with a planet (e.g., Sicardy et al. 1993;
Dermott et al. 1994; Marzari & Vanzini 1994; Liou &
Zook 1997, 1999; Ozernoy et al. 2000; Wilner et al. 2002;
Moro-Martin et al. 2005; Deller & Maddison 2005).

An elegant and predictive theory of resonant capture
has been developed for adiabatically varying non-chaotic
integrable resonant systems (Yoder 1979; Henrard 1982;
Henrard & Lemaitre 1983; Malhotra 1990), and for the
same systems but varying with weak nonconservative
forces (Gomes 1997). This theory was first applied to
systems of tidally locked satellites (Borderies & Gol-
dreich 1984; Peale 1986; Dermott et al. 1988; Malho-
tra 1990). However this theory does not apply to sys-
tems that are near or in the non-adiabatic regime, or
are chaotic. Numerical explorations of drifting and mi-
grating systems have revealed differences between mea-
sured capture probabilities and those predicted by the
adiabatic theory. For dust drifting under dissipational
forces, small particles can be drifting sufficiently fast that
they are in the non-adiabatic regime. In this case, the
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capture probability is reduced (e.g., Gomes 1995; Liou
& Zook 1999). Numerical simulations of Neptune’s mi-
gration show that if Neptune migrates rapidly, the cap-
ture probability of resonances is reduced (Ida et al. 2000;
Friedland 2001; Chiang & Jordan 2002).

In dynamical systems chaotic motion can arise from the
overlap of resonances (e.g., Wisdom 1980). Mean motion
resonances associated with perturbations by a planet are
made up of more than one resonant perturbative term.
Holman & Murray (1996) showed how to predict the Lya-
punov times of asteroids from the overlap of these reso-
nant terms. The complex behavior of chaotic resonances
could influence the way they capture particles when they
are varying (e.g., Dermott et al. 1988; Tittemore & Wis-
dom 1990; Sicardy et al. 1993; Marzari & Vanzini 1994;
Quillen 2001). For example, Tittemore & Wisdom (1990)
found that the drifting chaotic resonances of the Uranian
satellites exhibited different behavior than non-chaotic
resonances.

In this paper we strive to develop a general framework
that will allow us to better predict the capture proba-
bility of resonances. We would like to know when they
are likely to capture and how the capture probability de-
pends on the drift or migration rate, resonance order and
strength, initial particle orbital elements, and size and
separation of subresonances. Some of these parameters
depend on the planetary properties and others depend on
the particle properties. We would like a flexible frame-
work that could be used to place constraints on migrating
planetary extrasolar systems and the properties of the
planets and planetesimals residing within them. Previ-
ous works have shown how to predict the capture prob-
ability as a function of initial particle eccentricity in the
adiabatic limit (e.g., Henrard 1982; Borderies & Goldre-
ich 1984; Malhotra 1990; Murray & Dermott 1999). Here
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we strive to understand two regimes that have not been
well explored for mean motion resonances. We probe
the nonadiabatic regime in which the drift rate is so fast
that the resonance can fail to capture. We also explore
resonances comprised of multiple resonant subterms.

Our approach is to understand the simplest Hamil-
tonian model that can illustrate the dynamics of reso-
nance capture. In section 2 we formulate the problem
in terms of an idealized Hamiltonian with multiple res-
onant terms. By rescaling, this simple model allows dif-
ferent resonant systems to be treated in a similar way.
In section 3 we consider the system with one resonant
term and measure the capture probability as a function
of drift rate and initial particle momentum. We extend
previous analytical work by Friedland (2001) for the first
order resonances and find general expressions that ac-
count for trends exhibited by previous simulations (e.g.,
Wyatt 2003). In section 4 we measure capture proba-
bilities for first and second order resonances containing
multiple resonant terms. In section 5 we illustrate how
our framework can be applied to planetary systems. A
summary and conclusion follows. The appendix lists co-
efficients for common resonances so that drift rates can
be predicted and compared to numerical studies.

2. HAMILTONIAN FORMULATION

We employ the Poincaré coordinates

λ = M +$, γ = −$
and their associated momenta

L =
√

GM∗a, Γ =
√

GM∗a(1 −
√

1 − e2)

whereM∗ is the mass of the star, λ is the mean longitude,
M is the mean anomaly, $ is the longitude of pericenter,
a is the semimajor axis, and e is the eccentricity. These
variables are those describing the orbit of a particle or
planetesimal in a plane. The Hamiltonian for the Kep-
lerian system in these coordinates restricted to a plane
is

H(L, λ; Γ, γ) = −GM∗

2L2
−R

where R is the disturbing function that depends on the
coordinates of the particle and on the coordinates of the
planet. The planet’s semimajor axis and mass are de-
noted ap and mp, respectively. The planet’s other co-
ordinates are subscripted in the same way. The mean
motion of the particle n = λ̇ where λ̇ is the derivative
with respect to time of λ.

Hereafter we adopt a unit convention with distances
in units of the planet’s semi-major axis, ap, at a time

t0. Time is put in units of
√

a3
p/GM∗. We define µ

to be the mass ratio µ ≡ mp/M∗. At low eccentricity,
Γ/L ≈ e2/2, relating the momentum Γ to the particle
eccentricity. We often give the particle semimajor axis
in terms of the variable α ≡ ap

a if a > ap (external to the
planet) and α ≡ a

ap
for a < ap (internal to the planet).

The unperturbed Hamiltonian or that lacking the dis-
turbing function

H0(L, λ; Γ, γ) = − 1

2L2

We consider the the j : j − k exterior mean motion res-
onance (planet is an interior perturber). We perform a

canonical transformation using the mixed variable gen-
erating function

F2 = I(jλ− (j − k)λp)

leading to new variables

I = jL, ψ = jλ− (j − k)λp

and new Hamiltonian

H ′

0(I, ψ; Γ, γ) =
−1

2j2I2
− (j − k)Inp.

We now expand around the resonance. Let

Λ ≡ I − I0 (1)

and
1

j2I3
0

= (j − k)np(t0).

Since we have adopted units np(t0) = 1, we find I0 =

α−1/2/j where α =
ap

a =
(

j−k
j

)2/3

on resonance, as

expected. Our Hamiltonian now reads

K0(Λ, ψ; Γ, γ) = constant − (j − k)(np − 1)Λ − 3Λ2

2j2I4
0

.

We can write the unperturbed Hamiltonian as

K0(Λ, ψ; Γ, γ) = aΛ2 + bΛ + constant

with coefficients

a=−3

2
j2α2

b=−(j − k)(np − 1). (2)

We now recover the disturbing function that is is tra-
ditionally expanded as a cosine series of angles in or-
ders of planet and particle eccentricity. We keep the
terms inducing precession of the longitude of periapse
and low order terms (in eccentricity) containing ψ. The
full Hamiltonian

K(Λ, ψ; Γ, γ)=aΛ2 + bΛ + cΓ (3)

+
k

∑

p=0

δk,pΓ
(k−p)/2 cos (ψ − (k − p)$ − p$p)

with coefficient
c = −µ2f2α

1/2. (4)

We have used the approximation e2 ∼ 2Γ/L ∼ 2Γα1/2.
Here the perturbation strengths, δk,p, are functions of α,
j and Laplace coefficients (see Murray & Dermott 1999).
The c term describes secular precession of the longitude
of periapse and depends on the function f2 given in the
appendix by Murray & Dermott (1999) and is evaluated
at α with index j = 0. As have previous studies, we
have neglected the dependence of α on time as the planet
migrates, and cosine terms from the disturbing function
expansion which are expected to average to zero near
resonance (e.g., Borderies & Goldreich 1984; Peale 1986;
Holman & Murray 1996; Murray & Dermott 1999). The
perturbation strengths depend on the planet mass and
eccentricity as δk,p ∝ µep

p. More detailed expressions are
listed in the appendix.

The above canonical transformations are similar to
those of Holman & Murray (1996) except we have focused
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on resonances exterior to a planet rather than those in-
terior to it. We have also explicitly kept the bΛ term.
A system with a migrating planet would be described
by a time dependent b coefficient. This allows us to ex-
plore the dynamical behavior as particles pass through
resonances.

Holman & Murray (1996) showed that the above
Hamiltonian is similar to a periodically forced pendu-
lum and that the overlap of the different resonant terms
of Equation (3) can induce largescale chaotic behavior.
However most previous explorations of resonant capture
have only considered one dominant resonant term. When
the migration rate is slow, the adiabatic theory developed
by (Yoder 1979; Henrard 1982; Borderies & Goldreich
1984; Malhotra 1990; Murray & Dermott 1999) applies.
In the next section we explore this simpler situation, but
allow the migration rate to be fast or non-adiabatic.

3. PROBABILITY OF CAPTURE IN A SINGLE
RESONANCE

In this section we explore the simpler Hamiltonian con-
taining only one dominant resonant term. This situation
would be appropriate if the planet’s eccentricity is very
small in which case the δk,0 term dominates. The Hamil-
tonian (Equation 3) including only this term

K(Λ, ψ; Γ, γ)=aΛ2 + bΛ + cΓ (5)

+δk,0Γ
k/2 cos (ψ − k$)

It is convenient to perform a canonical transformation
with generating function

F2 = J1

(

ψ

k
−$

)

+ J2ψ

leading to new variables

J1

k
+ J2 =Λ, φ =

ψ

k
−$

J1 =Γ, θ = ψ

and new Hamiltonian

K ′(Γ, φ; J2, ψ)=a

(

Γ2

k2
+ J2

2

)

+

(

2aJ2

k
+
b

k
+ c

)

Γ + bJ2

+δk,0Γ
k/2 cos(kφ) (6)

Note that J2 is conserved and is small for initial con-
ditions near resonance with small initial eccentricity (or
Γ).

Dropping constant terms and setting b′ = (2aJ2 + b)+
kc, the Hamiltonian in Equation (6)

K ′(Γ, φ) =
a

k2
Γ2 +

b′

k
Γ

+δk,0Γ
k/2 cos (kφ).

By rescaling momentum and time

Γ̄=

∣

∣

∣

∣

δk,0k
2

a

∣

∣

∣

∣

−2/(4−k)

Γ

τ = |δk,0|2/(4−k)
∣

∣

∣

a

k2

∣

∣

∣

(2−k)/(4−k)

t, (7)

we can write this as

K̄(Γ̄, φ) = Γ̄2 + b̄Γ̄ + (−1)kΓ̄k/2 cos(kφ) (8)

where

b̄ = b′|δk,0|−2/(4−k)
∣

∣

∣

a

k2

∣

∣

∣

(k−2)/(4−k)

sign(a). (9)

We relate the drift rate ḃ from the migrating planet to
that of our scale-free system

∣

∣

∣

∣

db̄

dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ḃ

k

∣

∣

∣

∣

∣

|δk,0|−4/(4−k)
∣

∣

∣

a

k2

∣

∣

∣

2(k−2)/(4−k)

. (10)

The form of the Hamiltonian in Equation (8) is (except-

ing for factors of
√

2)1 identical to that used to explore
capture in the adiabatic limit (e.g., Henrard 1982; Bor-
deries & Goldreich 1984; Malhotra 1990; Murray & Der-
mott 1999).

3.1. Capture probability as a function of drift rate and
initial momentum for first and second order

resonances

We ask the following question: Above what drift rate

( db̄
dτ ) does the resonance fail to capture? The system be-

haves adiabatically when it takes longer than an oscilla-
tion period for the system to pass through the resonance.
For low initial momentum, the width of the resonance is
∼ 1, and the period of oscillation is ∼ 1. Consequently
we expect the system would evolve adiabatically when
∣

∣

∣

db̄
dτ

∣

∣

∣
� 1. To go beyond this limit and estimate the

probability of capture as a function of drift rate in the
non-adiabatic regime, we would need to find solutions to
Hamilton’s equation. It is non-trivial to find solutions
to the equations of motion for Equation (8) when b̄ is
a function of time and the system is not varying adia-
batically (e.g., Friedland 2001). Consequently we have
integrated Hamilton’s equations of motion numerically
to explore the non-adiabatic regime. Once we numeri-
cally understand the behavior of the scale-free Hamilto-
nian (Equation 8), we can make predictions for systems
in the same form using the factors of Equation (7).

Our procedure for numerical integration is as follows.
Hamilton’s equations for Equation (8) are integrated us-
ing a conventional Burlisch-Stoer numerical scheme. The
initial angle is chosen randomly. We assume that b̄ is pro-

portional to time so that only one parameter db̄
dτ specifies

the time dependence of the system. To ensure that the
particles were initially outside of resonance we require
the initial value of |b̄| to exceed 1. The parameter b̄ was
initially chosen to be ∼ −15, well outside the resonance.
The system passes through resonance when b̄ ∼ 0 so the
timescale until capture is tcapture ∼ binit(

db
dτ )−1. The sys-

tem is integrated at least twice the capture time. Two
sample integrations are shown in Figure 1. Figure 1a
shows an integration illustrating a particle that is cap-
tured into resonance and Figure 1b shows one where no
capture takes place.

In the adiabatic limit, the capture probability is 1 when
the initial particle eccentricity is smaller than a limit-
ing value, elim, that depends on the order and width of

1 By rescaling our momentum by a factor of 2k+2/(4−k), the
Hamiltonian becomes Γ̄2 + b̄Γ + (−1)k2(k+2)/2Γ̄k/2 cos(kφ) as by
Murray & Dermott (1999).
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the resonance (e.g., Henrard 1982; Borderies & Goldreich
1984; Malhotra 1990; Murray & Dermott 1999). However
when the drift is not adiabatic, the capture probability
could depend on the initial particle eccentricity (or mo-
mentum Γ̄) even when it is below this limiting value.
Consequently we measured capture probability as a func-

tion of both drift rate ( db̄
dτ ) and initial particle momen-

tum. For each value of drift rate and initial momentum,
we integrated the system 100 times (each time with a
different randomly chosen angle) to measure a capture
probability.

After the system captures, the momentum increases
with time (see Figure 1a) and the resonant angle φ li-
brates about a fixed value (0 or π) rather than circulat-
ing. If no capture takes place, the momentum jumps as
the system pass through resonance (see Fig. 1b). When
the momentum increases to a value exceeding the reso-
nance width (approximately 1 as we have rescaled the
Hamiltonian) we identify the system as having captured
into resonance. We used a limiting value of Γ = 5 to
identify captures. In resonance the angle librates around
a fixed value. The condition φ̇ ∼ 0 implies that ∂K

∂Γ̄
∼ 0,

and Γ̄ ∼ −b̄/2 in resonance. We use this condition
to ensure that we integrate Hamilton’s equations long
enough that the momentum crosses our limiting momen-
tum value when the resonance captures.

Figure 2 and 3 show capture probabilities that we have
measured numerically for first and second order reso-
nances (k = 1 and 2). In the adiabatic limit for Γ̄(t0)
below 3/2 for k = 1, or 1/8 for k = 2, the capture prob-
ability is one.2 Above these limiting initial momentum
values the capture probability is less than 1 in the adia-
batic limit. For Γ̄(t0) = 2.3, shown as stars in Figure 2,
above the limiting value of Γ̄0,lim = 1.5, we see that the
capture probability never reaches 1. At lower drift rates
the capture probability approaches a constant value for
this initial condition, consistent with the prediction in
the adiabatic limit. The same behavior is seen for k = 2
with initial momentum Γ̄(t0) = 1 (shown as stars in Fig-
ure 3). This momentum is eight times the limiting value
which ensures capture in the adiabatic limit.

To quantify the width of the probability function, we
have fit a function to the capture probability p(u) =

0.5
(

1 − tanh
(

u−u1/2

w

))

as a function of u = log10

∣

∣

db
dτ

∣

∣.

Here u1/2 is the log of the drift rate at which the cap-
ture probability is 1/2, and w describes the width of the
drop. For large w, the slope is shallow, for small w the
drop is a steep function of the drift rate. The drift rates
at which the capture probability is half and a quarter,
and the widths of the probability functions are shown
as a function of initial momentum in Figures 4 and 5
for first and second order resonances, respectively. For
initial momentum sufficiently low, (e.g., 10−2 for k = 1
and 10−6 for k = 2) the drift rate at which the proba-
bility is half approaches a limiting value. The steepness
of the transition between 100% capture and 0% capture

2 Our momentum is half or 1/4 times that of Murray & Dermott
(1999) for k = 1 and k = 2 respectively. Murray & Dermott (1999)
list critical momentum values of 3 and 1/2. These critical values
are used to find the maximum particle eccentricity, elim, that en-
sures capture in the adiabatic limit (Henrard 1982; Borderies &
Goldreich 1984; Malhotra 1990).

is narrower in its range of drift rates at lower values of
initial momentum. The lower the initial momentum, the
sharper the transition between a capture probability of 1
and zero. A sharp transition is reached at a lower initial
momentum for k = 2 than in the k = 1 case. For initial
momentum near Γ̄0,lim, the limiting value ensuring cap-
ture in the adiabatic limit, there is a regime or a range of
drift rates where the capture probability is intermediate.
In other words, for Γ̄(t0) ∼ 1 the widths w ∼ 1.

We now consider the situation where the transition be-
tween a probability of 1 and 0 is sharp. This is true for
initial momentum Γ̄(t0) . 10−2 and 10−6 for k = 1 and
for k = 2 respectively. For these initial momenta we
measure the critical drift rate where the transition takes
place. From our numerical integrations, the dynamical
system fails to capture for drift rates faster than

∣

∣

∣

∣

db̄

dτ

∣

∣

∣

∣

crit

∼ 2.0 for k = 1

∼0.25 for k = 2. (11)

For first order resonances the drift rate for a capture
probability of 1/2 is not strongly dependent on the ini-
tial momentum as long as this lies below Γ̄0,lim. However
for second order resonances when the initial momentum
Γ̄(t0) ∼ 1, the capture probability of half occurs at a
drift rate that is about 10 times that at low initial mo-
mentum. We have approximated the dependence of the
half probability drift rate on the initial momentum with
the following function (shown as a dotted line in Figure
5)

∣

∣

∣

∣

db̄

dτ

∣

∣

∣

∣

1/2

∼ 0.25

(

1 +
Γ̄(t0)

3 × 10−5

)0.25

. (12)

The power, 0.25, is not necessarily theoretically meaning-
ful. This function is a reasonable match to the measured
points of Figure 5 for initial momentum Γ̄(t0) . 1. For
higher initial momentum, Γ̄(t0) & 4, the probability of
capture never exceeds 1/2. This initial momentum (4)
exceeds Γ̄0,lim by a factor of 32.

In the adiabatic limit, the probability of capture drops
as a function of increasing momentum (or eccentricity)
when the initial momentum is above Γ̄0,lim. However the
probability drops faster for first order resonances than
for second order resonances (Hahn & Malhotra 1999). In
the adiabatic limit, the probability of capture for a first
order resonance drops to 1/2 for Γ̄(t0) ∼ 2.3 (less than
twice the limiting value of 1.5), whereas for second order
resonances the probability of capture drops to 1/2 for
Γ̄(t0) ∼ 4 or 32 times the limiting value.

Using the critical drift rates for db̄
dτ (equation 11) we

can invert Equation (10) to determine which resonances
can capture at a particular drift rate. We find that reso-
nances are likely to capture for ḃ slower than the critical
rates

|ḃcrit| ∼2|δ1,0|4/3|a|2/3 for k = 1

∼ 0.5δ22,0 for k = 2. (13)

Using Equation (2) to replace ḃ with the planet’s mean
motion

|ṅp,crit| ∼2(j − 1)|δ1,0|4/3|a|2/3 for k = 1

∼ 0.5(j − 2)δ22,0 for k = 2. (14)
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For second order resonances, the rate given above can
be modified by the function given in Equation (12) to
estimate the rate at which the probability is 1/2 as a
function of initial momentum;

|ṅp,1/2| ∼ 0.5(j − 2)δ22,0

(

1 +
α−1/2e20a

2.4× 10−4δ2,0

)0.25

(15)

where e0 is the initial particle eccentricity. This is ex-
pression is valid for initial particle eccentricities smaller
than e0 . 10elim where elim is the eccentricity limit en-
suring capture in the adiabatic limit. An expression for
elim is given in the appendix. The factor of 10 comes
from the range covered by the function shown in Equa-
tion (12). The curve shown in Figure 5 is a reasonable
match up to Γ(t0) ∼ 1 which is approximately 10Γ̄0,lim.

The above relations (Equations 14 and 15) allow us to
estimate the likelihood of resonance capture in different
astronomical settings. The strength of the perturbative
cosine terms (δk,p) are proportional to the planet’s mass

or µ, however the critical drift speed depends on µ4/3 for
k = 1 and on µ2 for k = 2. We see that the critical drift
rates for capture are strong functions of the planet mass
and this is particularly true for the second order reso-
nances. Slower drift rates are required to allow resonant
capture for lower mass planets.

The dependence of critical drift rate on planet mass
provides a qualitative explanation for some features of
numerical simulations which start with particles in ini-
tially low eccentricity orbits. The above relation pre-
dicts that only more slowly drifting particles will be able
to capture into higher order resonances. We can under-
stand why the 5:3 resonance requires slower migration
rates than the 2:1 and 3:2 resonances to capture in the
simulations of Wyatt (2003). Although we have inte-
grated a time dependent Hamiltonian system, we can
expect similarities between this system and the slowly
drifting non-conservative systems. Simulations of dust
drifting inward via dissipative forces tend to show that
large dust particles are captured into higher order res-
onances than smaller particles (e.g., Marzari & Vanzini
1994; Liou & Zook 1999). This follows since small par-
ticles drift faster than larger ones and the higher order
resonances require slower drift rates to capture.

Based on results of simulations of Neptune’s migration
Ida et al. (2000) proposed that the critical drift rate de-
pended on planet mass to the 4/3 power. They restricted
their study to k = 1 resonances so their prediction is con-
sistent with our previous equation. This power depen-
dence was confirmed with analytical work by Friedland
(2001), also for the k = 1 resonance, and numerical work
by Wyatt (2003). We confirm the steeper dependence
on planet mass of the 5:3 resonance capture probability
measured numerically by Wyatt (2003) and specifically
predict that the critical drift rate is ∝ µ2 for second or-
der resonances. The relation for the critical drift rate
(Equation 14) is both consistent with and more general
than the scaling found by these previous studies. Be-
cause we have related the critical drift rate (via scaling)
to the resonance strengths, the formulation given here
can be applied to any first or second order mean motion
resonance.

Here we have also found that the probability of capture
when the drift is not adiabatic is a non-trivial function

of initial particle eccentricity. The transition between
a probability of 1 and 0 becomes smoother (covering
a larger range of drift rates) as the initial momentum
approaches the minimum value ensuring capture in the
adiabatic limit (see Figures 2, 3, 4, and 5). For first or-
der resonances, the midpoint drift rate (corresponding
to a probability of capture of 1/2) does not significantly
depend on the initial particle eccentricity. However for
second order resonances the midpoint is at a higher drift
rate when the initial momentum or particle eccentricity
is higher. The increase in drift rate with initial particle
eccentricity allowing capture for second order resonances
was described previously by Hahn & Malhotra (2005).
However we do not predict the same dependence on res-
onance width and planet mass. This is because we have
restricted our study to initial particle eccentricity near
or below elim, and Hahn & Malhotra (2005) considered
initial particle eccentricity exceeding elim.

Our estimate for the critical drift rate above (Equation
14) is appropriate for a wide range of initial particle ec-
centricities for first order resonances (as long as they are
below the limiting value, elim). The half probability drift
rate’s dependence on the initial particle eccentricity can
be estimated for second order resonances using Equation
(15) when the initial particle eccentricity is lower than
∼ 10 times elim. The framework we provide here can we
used to estimate the half probability drift rate for any
second order resonance.

Numerical studies report intermediate probabilities for
capture into first order resonances from simulations (Ida
et al. 2000; Quillen & Holman 2000; Chiang & Jordan
2002; Wyatt 2003). By intermediate, we mean not close
to zero or 1, or at a ∼ 50% level. Here we have found
that the dynamical system described by Equation (8) for
k = 1 with only a single resonance term has a limited
range of drift rates where the capture probability is in-
termediate, unless the initial particle momentum Γ̄ is of
order 1. This regime corresponds to an initial particle
eccentricity within a factor of a few of elim, the limiting
value ensuring capture in the adiabatic limit. The limit-
ing eccentricity depends on the resonance strength, and
planet mass to the power k/(4−k) (using the square root
of the scale-free momentum in Equation (7); (Malhotra
1990; Murray & Dermott 1999). For weaker resonances,
the initial particle eccentricity limit is more restrictive.
It is possible that some of the numerical simulations are
effectively in the regime of intermediate capture for cer-
tain resonances due to their initial particle eccentricity
distribution. We return to this issue in later sections as
we identify other regimes of intermediate capture prob-
ability for first order resonances.

Though the limiting eccentricity is smaller for second
order resonances, the probability of capture drops more
slowly in the adiabatic limit as a function of initial parti-
cle eccentricity at values above elim. Furthermore since
the half probability drift rate increases with initial parti-
cle eccentricity (Equation 15), higher eccentricity parti-
cles can be captured at higher drift rates than lower ec-
centricity particles (as pointed out by Hahn & Malhotra
2005). This also implies that the second order resonances
have a larger regime in both range of initial eccentricity
and drift rate where the probability of capture is inter-
mediate.
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4. THE ROLE OF AN ADDITIONAL RESONANCE TERM

We now consider the differences in the dynamics of
capture caused by the addition of a secondary resonant
term for a first order resonance. We rescale the momenta
and time for Hamiltonian given in Equation (A1) for k =
1 according to the Equations(7). This gives us unitless
momenta and time

K̄1(Λ̄, ψ; Γ̄, γ)= Λ̄2 + b̄Λ̄ + c̄Γ̄ (16)

−Γ̄1/2 cos(ψ −$) + ε̄ cos(ψ −$p)

where

ε̄= |δ1,1||δ1,0|−4/3|a|1/3

c̄= c|δ1,0|−2/3|a|−1/3sign(a). (17)

The coefficients that can be adjusted are the width of
the second resonance compared to the first (set by ε̄)
and the separation between the two resonances (set by
c̄). Variation in $̇p can be absorbed into our coefficient
c̄. The term proportional to cos(ψ − $) is often called
the e-resonance since Γ1/2 ∝ e. The other term can be
called an e′-resonance or a corotation resonance since it
does not depend on the particle’s longitude of perihelion
or $.

Because the corotation resonance does not depend on
Γ̄, it does not grow in volume as the planet migrates.
Had we allowed α to depend upon time, the resonance
width would grow slightly but not significantly as the
planet migrates. Because the resonance volume in phase
space does not grow as the planet migrates, this reso-
nance should not capture particles (Yoder 1979). How-
ever when this resonance overlaps the other, the sys-
tem can exhibit large scale chaotic behavior (Holman &
Murray 1996). Hence the coupling of the two resonant
terms may influence the probability of capture into the
e-resonance.

We now ask: what is the capture probability of the

above Hamiltonian as a function of drift rate, db̄
dτ , and

secondary perturbation strength, ε̄? To answer this ques-
tion we numerically integrate Equation (16), for different

parameters db̄
dτ , and ε̄. In this section we work in the limit

of low initial particle momentum. This ensures that the
probability of capture is 1 in the adiabatic limit and that
the transition between capture and no capture would be
a sharp transition of drift rate in the case of a single
resonance.

Our procedure for numerical integration is the same as
described in the previous section. Initial angles are ran-
domly chosen. Initial momenta (Λ̄, Γ̄) are set to small
values to ensure a sharp transition when ε̄ = 0 and the
initial momentum are small. The parameter b̄ is ini-

tially chosen to be ∼ −15. For each value of db̄
dτ and ε̄

we integrated the system 100 times to estimate a reso-
nant capture probability. After the system captures, the
momenta variables increase with time and the resonant
angle φ = ψ −$ librates about a fixed value. If no cap-
ture takes place, the momenta jump as the system pass
through resonance.

The coupled two dimensional system exhibits different
dynamics than the one-dimensional system considered
in the previous section. For example, the resonance can
capture for a short period of time, a trajectory we refer
to as a temporary capture. An example of a simulation

that illustrates a temporary capture is shown in Figure
6. We find that temporary captures tend to occur for
larger values of ε̄ and drift rate. Quillen (2001) previ-
ously showed that temporary capture was exhibited by
overlapped resonances using a similar drifting Hamilto-
nian model.

During a temporary capture, the momenta increase.
This also happens if the particle is captured. As in the
previous section, we identify a capture if the momentum
at the end of the integration exceeds a value of 5. How-
ever we then reclassify the integration as a temporary
capture if the momenta lie below that expected from a
particle still in resonance. These two situations can be
differentiated because a particle in resonance has mo-
mentum proportional to the time since capture. Tem-
porary captures are excluded when we calculate the cap-
ture probability. However, had we integrated the systems
longer, it is possible that a particle identified on a short
timescale as captured would later drop out of resonance.
In other words the precise fraction of captures is depen-
dent on the timescale over which we have integrated these
systems and the value of momentum that we have used
as a limit to identify captures. This makes our capture
probability numerical measurements uncertain primarily

at high values of drift rate | db̄
dτ | & 1, and large secondary

perturbation strength ε̄ & 1, the regime where we have
found temporary captures to be more common.

In Fig. 7 we show a contour plot of the resonant cap-
ture probability for k = 1, initial Γ̄(t0) = 10−4 and res-
onance separation c̄ = 0. For high values of the drift
rate and low values of the secondary perturbation, ε̄, (on
lower right in these contour plots) the transition between
capture and no capture is sharp and happens at the crit-
ical drift rate measured in the previous section. However
for lower drift rates and higher values of ε̄ the resonance
fails to capture for ε̄ & 1. For low drift rates, the tran-
sition between capture and no capture is also sharp, but
is a function of ε̄ instead of drift rate. There are two
regimes, that where the drift is so fast that it fails to
capture, and that where the corotation resonance is so
large that it prevents capture.

For first order resonances we consider the possibility
that ε̄ could be of order 1. Since ε̄ ∝ |δ1,0|−4/3, |δ1,0| ∝
µ and |δ1,0| ∝ µep, the coefficient ε̄ ∝ µ−1/3ep. For
small planet mass µ we see that the rescaled secondary
perturbation strength could be high even at moderate
planet eccentricity ep. The coefficient ε̄ could be of order
1 particularly if the planet eccentricity is moderate.

Why is it that for ε̄ & 1 the e-resonance fails to capture
particles? A possible explanation is that an increase in Γ̄
caused by the corotation reduces the capture probability,
in the same way that an increase in the initial momen-
tum value does. We would expect that an increase of
initial momentum of size ∼ 1 caused by the corotation
resonance when ε̄ ∼ 1 would strongly reduce the capture
probability. This is consistent with the limiting value
of ε̄ . 1 for capture. This qualitative explanation is
also consistent with the lack of dependence of the criti-
cal value of ε̄ on drift rate (see Figure 7) at drift rates
∣

∣

∣

db̄
dτ

∣

∣

∣
< 1. We suspect that the corotation resonance pre-

vents capture into the e-resonance because the corota-
tion resonance raises the particle eccentricity during the
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resonance encounter. If this were true, then we would
expect that the capture probability would be influenced
by the resonance separation. Up to this point we have
only considered resonances with separation c̄ = 0.

4.0.1. Separated first order resonances

To further explore the role of multiple resonant terms,
we consider the situation when the resonance separation
is non zero (c̄ not small). The order that the subreso-
nances are encountered as the system drifts can be deter-
mined by considering the two resonant angles ψ−$ and
ψ−$p. The time derivative ψ̇− $̇ = jn− (j−1)np− $̇.
As the planet migrates outward np drops. For $̇ > $̇p

the time derivative of the corotation resonant angle
crosses zero first. For c̄ > 0 (corresponding to c < 0
and a positive precession rate for the longitude of peri-
apse), the corotation resonance is encountered first by a
particle exterior to a planet as the planet migrates out-
ward. This is what is expected for external resonances
in a single planet system where the precession rate of the
planet’s longitude of periapse $̇p = 0 and $̇ > 0 due to
secular precession induced by the planet.

We consider which resonance is encountered first for
other drifting systems. Dust particles migrating inward
and exterior to a planet would encounter the resonances
in the same order, corotation resonance first as long as
$̇ > $̇p. Here n is increasing, whereas for the planet
migrating outward np was decreasing. A particle located
internal to a planet that is migrating inward would also
encounter the resonances in the same order when $̇ >
$̇p; (in this case one considers (j + 1)np − jn − $̇ and
(j + 1)np − jn− $̇p with np increasing).

We can compare the width of the corotation resonance
to the separation between them. For the e-resonance, the
libration width in Λ̄ depends on the particle eccentricity
or Γ̄. However since the corotation term does not depend
on Γ̄, the corotation resonance width can more easily be
estimated as ∆Λ̄ ∼

√
ε̄. For

|c̄| .
√
ε̄,

the two resonances must overlap. Since c̄ ∝ µ and√
ε̄ ∝ e

1/2
p µ−1/6, strong resonances are likely to over-

lap for small planet masses unless the planet eccentricity
is extremely small. Because the two resonant terms dif-
fer in sign, they have fixed points at different angles, and
they are expected to interfere when overlapped even only
slightly separated.

We have found that a nonzero value of c̄ does change
the probability of capture. Figure 8 shows numeri-
cal measurements similar to that of Figure 7 but for
c̄ = ±0.1. For c̄ < 0 (Figure 8a) the corotation reso-
nance is encountered after the e-resonance. The onset
of the corotation resonance can knock the particle out
of resonance, following capture into the e-resonance. For
c̄ > 0 the corotation resonance is encountered first as the
planet migrates (Figure 8b). The capture probabilities
are primarily modified at low drift rates where higher val-
ues of ε̄ are required to reduce the probability of capture.
It is not obvious why this is the case. From individual
integrations we note that the frequency c̄ sets an oscilla-
tion period that is longer for smaller values of c̄. Holman
& Murray (1996) found that c̄ sets the Lyapunov time
of the resonance. So for an overlapped system we might

expect more highly chaotic behavior for larger values of
c̄, particularly at low drift rates. Oddly higher values of
c̄ at low drift rates seem to stabilize the system, requir-
ing higher values of the corotation resonance strength to
kick the particle out of the e-resonance.

For c̄ < 0 (as shown in Figure 8b) the corotation
resonance is encountered after the e-resonance, conse-
quently the corotation resonance is encountered after the
e-resonance captures a particle. If the corotation reso-
nance is strong it can knock the particle out of resonance.
For larger separations, c̄ ∼ 1, temporary captures are fre-
quent at large ε̄. The extended low probability contours
on the top end of Figure 8b are in part due to temporary
captures.

4.1. Second order resonances

When the resonance is second order it contains three
subterms (see Equation 3). The first term ∝ Γ cos(ψ −
2$) and can be called (e.g., Murray & Dermott 1999)
the e2-resonance since Γ ∝ e2 at low eccentricity. The
second term ∝ epΓ

1/2 cos(ψ−$−$p) and can be called
an ee′-resonance. The third term ∝ e2p cos(ψ − 2$p) can

be called a corotation or e′2 resonance. Since the coro-
tation term does not depend on Γ, its volume in phase
space does not grow as the planet drifts and it should
not be able to capture particles. However, as was true
for the first order resonance, this resonant term can pre-
vent the other resonant terms from capturing particles.
When the corotation term is not large, both the e2- and
ee′-resonances can capture particles. Since it is ∝ Γ1/2,
the ee′ term behaves like a first order resonant term,
whereas the e2 term, ∝ Γ, is a second order term. In
the previous section we found that first order resonances
captured at a somewhat higher drift rate than the second
order term and did not require as low initial momenta to
exhibit a sharp transition between capture and no cap-
ture. The critical drift rate for first order terms is ∝ µ4/3

and for second order terms ∝ µ2, a much steeper function
of planet mass. Consequently it is possible that the ee′

resonant term will capture particles and the e2-resonance
will not capture particles even when the planet eccentric-
ity is low.

We first consider the situation where the e2-resonance
is dominant. Taking k = 2 terms from Equation (3), we
rescale the Hamiltonian as follows,

K̄ξΛ̄, ψ; Γ̄, γ)= Λ̄2 + b̄ξΛ̄ + c̄ξΓ̄ + Γ̄ cos(ψ − 2$) (18)

−ξ̄Γ̄1/2 cos(ψ −$ −$p) + ε̄ξ cos(ψ − 2$p)

where

Γ̄=

∣

∣

∣

∣

δ2,0

a

∣

∣

∣

∣

−1

Γ

τ = |δ2,0|t
c̄ξ = c|δ2,0|−1sign(a)

b̄ξ = b|δ2,0|−1sign(a)

ξ̄= |δ2,1||δ2,0|−3/2|a|1/2

ε̄ξ = |δ2,2||δ2,0|−2|a|.
The coefficients that can be adjusted are the strength

of the ee′-resonance (set by ξ̄), the strength of the coro-
tation resonance (set by ε̄ξ), and the separation between
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the resonances (set by c̄ξ). Since the precession rate
c ∝ µ and the perturbation strength δ2,0 ∝ µ we find
that the resonance separation (c̄) does not depend on
the planet mass. This implies that the subterms could
be well separated. This is different than the first order
resonances that have c̄ ∝ µ1/3, which implies that the
resonance subterms are often overlapped.

The ee′-resonance strength ξ̄ ∝ µ−1/2ep. Since this
depends on a negative power of µ, at low planet masses
and at high planet eccentricities it is possible that ξ̄ > 1.
In this case the ee′-resonance could be dominant, and we
would rescale momentum and time as we did for a first
order resonance. In this case we could work with the
Hamiltonian (equivalent to the previous one except for
the rescaling)

K̄χ(Λ̄, ψ; Γ̄, γ)= Λ̄2 + b̄χΛ̄ + c̄χΓ̄ (19)

+Γ̄1/2 cos(ψ −$ −$p)

−χ̄Γ̄ cos(ψ − 2$) + ε̄χ cos(ψ − 2$p)

where

Γ̄=

∣

∣

∣

∣

δ2,1

a

∣

∣

∣

∣

−2/3

Γ

τ = |δ2,1|2/3|a|1/3t

b̄χ = b|δ2,1|−2/3|a|−1/3sign(a)

c̄χ = c|δ2,1|−2/3|a|−1/3sign(a)

χ̄= |δ2,0||δ2,1|−2/3|a|−1/3

ε̄χ = |δ2,2||δ2,1|−4/3|a|1/3. (20)

A comparison between Equation (19) and Equation
(20) shows that

ξ̄2 = χ̄−3 (21)

We suspect that the e2-resonance is more likely to cap-
ture when ξ̄ reaches a transitional value that we denote
ξ̄trans. The ee′-resonance may be more important when

χ̄ . ξ̄
−2/3
trans. If ξ̄ . ξ̄trans then we expect second order

behavior (ṅp,crit ∝ µ2) otherwise we expect first order

behavior (ṅp,crit ∝ µ4/3). We note that the order the
resonances are encountered is also important. Here we
numerically measure a capture probability that does not
specify which resonance captures. If the drift rate is suf-
ficiently slow that the e2-resonance captures and this res-
onance is reached first then this resonance will dominate
the capture probability.

As we did for the k = 1 resonances we have measured
the capture probability for a range of coefficients and
drift rates. Figure 9a shows the capture probability for
the Hamiltonian of Equation (18) with varying drift rate,
and ee′-resonance perturbation strength, ξ̄, and with no
corotation term; ε̄ξ = 0. The resonances are not sepa-
rated; c̄ξ = 0. On the lower left side of this plot, for
weak ξ̄ we see capture behavior consistent with the pure
second order (k = 2) system discussed in the last sec-
tion with only one resonant term. With the variables
defined in this section (which differ by a factor of k = 2

from those defined in Equation 7)
∣

∣

∣

db̄
dτ

∣

∣

∣

crit
= 0.5. The

capture probability ceases to depend on ξ̄ for ξ̄ . 10−2.
Consequently we can estimate a transition value

ξ̄trans ∼ 10−2 (22)

valid for low initial particle momentum. For ξ̄ & ξtrans,
the transition between capture and no capture occurs at
faster drift rates and the transition drift rate is a function
of ξ̄. For ξ̄ > ξ̄trans the system behaves like a first order
system, and since the perturbation strength depends on
ξ̄ we expect the transition drift rate to depend on ξ̄4/3.
This is consistent with the trend shown on the upper
right in Figure 9a. For large ξ̄ and at high drift rates
the system can fail to capture into the e2-resonance but
can be captured into the ee′-resonance. In short, for
ξ̄ . ξ̄trans the system behaves like a second order system
and tends to capture into the e2-resonance, however for
ξ̄ & ξ̄trans the highly overlapped system behaves like
a first order system and tends to capture into the ee′-
resonance.

Figure 9b shows the capture probability for the Hamil-
tonian of Equation (19) with varying drift rate, varying
e2-resonance perturbation strength, χ̄ and with no coro-
tation term; ε̄χ = 0. The resonances are not separated;
c̄χ = 0. This figure extends Figure 9a to ξ̄ > 1 because

χ̄ = ξ̄−2/3. At small χ̄ the system critical drift rate is
independent of χ̄ and consistent with that measured in

section 3 for a first order resonance with
∣

∣

∣

db̄
dτ

∣

∣

∣

crit
= 2.

At this limit the system behaves like a first order reso-
nance. The second order regime is not fully reached until
ξ̄ ∼ ξ̄trans which would correspond to χ̄ > 20. However,
for large values of ξ̄ we see that the critical drift rate does
begin to increases, consistent with a dependence of crit-
ical drift rate on χ̄ (the second order term dominates).
In Figure 9b where χ̄ ∼ 0.5 we see an extended region
of drift rates corresponding to a regime of intermediate
capture probability. We have inspected individual inte-
grations from this region and seen temporary captures
and widely varying or chaotic trajectories. The inter-
mediate capture probability measured is probably due
to interference between the two similarly sized and over-
lapped e2- and ee′-resonances.

Figures 9 shows integrations done for low initial parti-
cle eccentricity (low Γ̄(t0)). We discuss what we expect
would happen for higher initial particle momentum. The
second order resonance is more strongly affected by the
initial particle momentum. For larger Γ̄(t0) the drop in
probability at the bottom right on Figure 9a would occur
at a faster drift rate and the drop would be smoother.
The contours would broaden and shift to the right, pri-
marily on the bottom of Figure 9a. The resonance be-
haves like a second order resonance at the top right of
Figure 9b. So we expect a similar broadening and shift-
ing to the right of the contours at the top of Figure 9b.

We now investigate the role of the corotation or e′2

resonance term. When the e2 term is not important (as
we have found ξ̄ & ξ̄trans), the system is identical to
that studied in the previous section for k = 1 with two
terms (Equation 16). However we can also study the sys-
tem for Equation 18 as a function of ε̄ξ and with ξ̄ = 0
so the corotation term is strong but the ee′-resonance is
weak. Figure 10 shows the capture probability for the

Hamiltonian of 18 with varying ε̄ξ drift rate, db̄
dτ , and

with ξ̄ = c̄ξ = 0. We find here that even moderate values
of the corotation resonance strength ε̄ ∼ 0.1 can signif-
icantly reduce the capture probability. The corotation
resonance can reduce the probability of capture for both
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first and second order resonances.

4.1.1. Separated second order resonances

As was true for the first order resonances we expect the
capture probability to depend on the resonant term sep-
arations and order that the resonances are encountered.
Figure 11 shows the effect of changing the resonance sep-
aration c̄ξ when the e2-resonance dominates. Figure 11a
shows the case with widely separated resonances when
the e2-resonance is encountered first. We see that the
transition value of ξtrans is higher than when there is no
separation (c̄ = 0). When the e2-resonance is encoun-
tered afterward the transition value of ξtrans is lower.
The ee′-resonance interferes with the capture into the e2-
resonance to a higher degree when this resonance is en-
countered earlier. Figure 12 shows the effect of changing
the resonance separation c̄χ when the ee′-resonance dom-
inates. We find that the region of intermediate capture
probability at χ̄ ∼ 0.5 is smaller when the resonances are
separated than when c̄ = 0 (Figure 9b).

5. APPLICATIONS

In this section we apply what we have learned above
to two systems involving capture into the 2:1 resonance.
When the 2:1 resonance is exterior (and capture particles
as a planet migrates outward) the e-resonance strength
is reduced because of the indirect term. This reduces the
critical migration rate compared to that for other first or-
der resonances. Because the corotation resonance is not
affected by the indirect term, it is comparably strong.
Consequently even a small planet eccentricity can reduce
the capture probability. When the 2:1 resonance is in-
terior (and can capture for a planet migrating inward)
the indirect term reduces the strength of the corotation
resonance instead of the e-resonance. In this case the 2:1
resonance is strong and can capture at fairly high mi-
gration rates. We consider two situations, the capture
of twotinos into the 2:1 resonance by Neptune migrating
outward, and the capture of an inner extra solar planet
into the 2:1 or 3:1 resonance by an inward migrating
planet exterior to it.

5.1. The capture of twotinos in the Kuiper Belt via
Neptune’s migration

In this section we consider the capture of Kuiper belt
objects into the 2:1 resonance by an outward migrating
Neptune. We see from Table 1 that the 2:1 external
resonance has exceptionally large values of ε̄ compared
to the 3:2 and 4:3 resonances. This is because δ1,0 is
small due to the addition of the indirect term.

We first consider the critical migration rate allowing
capture and compare the one we predict here with that
found from numerical studies. Migration rates are often
given in terms of the time it takes to cross the range
of radius covered during the entire migration. This is
typically a few AU for Neptune’s migration (Ida et al.
2000; Chiang & Jordan 2002). To compare migration
rates to the critical one estimated above, we must first
convert rates into our system of units. For GM� = 1
and radii in units of Neptune’s semi-major axis, aN , we
multiply timescales by

√

a3
N/GM� = 26.1 years. A mi-

gration rate of a few AU in 107 years corresponds to

ȧp ∼ 2.6 × 10−7
(

107yr
tmigrate

)

. Since np ∝ a
−3/2
p this corre-

sponds to ṅp ∼ 3.9×10−7
(

107yr
tmigrate

)

. The critical planet

migration rate (listed in Table 1) for Neptune’s 2:1 reso-
nance is ṅp,crit ≈ 0.54µ4/3 ≈ 1.0 × 10−6. We find that

ṅp

ṅp,crit
≈ 0.4

(

107yr

tmigrate

)

. (23)

Chiang & Jordan (2002) found that 2:1 resonance cap-
tured at the 50% level for tmigrate = 107 years but was
much less efficient, capturing only 15% of particles at
faster migration rates of tmigrate ∼ 106 years. The same
rise in capture probability at tmigrate ∼ 107 years was
seen by Ida et al. (2000). The sharp drop in capture
probability is consistent with our predicted limit for the
critical migration rate. We find that we can account
for the trends seen in the numerical studies of Ida et al.
(2000); Chiang & Jordan (2002) and confirm the theoret-
ical explanation of Friedland (2001). We note that the
transition from a probability of 50% to 15% occurs over a
fairly large range of drift rates. In our toy model we could
account for such a smooth transition with initial parti-
cle eccentricity near elim. However because the capture
probability drops steeply for e0 > elim this explanation
would require fine tuning of the initial particle eccentric-
ity distribution. We note that it is impossible to zero the
eccentricity of a particle in a simulation because of other
perturbations. Also, because we have dropped most co-
sine terms in Equation (3), We have neglected these other
perturbations in our Hamiltonian model. Consequently
it is difficult for us to compare the initial eccentricity
distribution of a simulation to the distribution in our
momentum Γ̄.

We now consider the role of the corotation resonance.
From table 1 we find ε̄ = 6.6µ−1/3ep. For Neptune
µ = 5.1×10−5 and we find that ε̄ ≈ 180ep. For Neptune’s
current eccentricity ep ∼ 0.008 this places ε̄ ∼ 1.4. This
is somewhat above the critical corotation strength value
allowing capture into the 2:1 resonance according to fig-
ure 7 when the resonances are on top of each other. We
need to consider the separation between the resonances;
c̄ = 1.18µ1/3 = 0.04. However this is the separation
only if Neptune’s longitude of perihelion does not pre-
cess. Neptune’s precession frequency is largely due to
the solar system’s eighth eigenvector that dominates this
planet’s secular motions (Nobili et al. 1986; Applegate et
al. 1986). Neptune’s precession rate due to other planets
is a few times larger than that it induces on objects in its
2:1 resonance. Consequently c̄ could be larger a factor
of a few and either positive or negative depending upon
the secular motion of the planet when the migration took
place. Smaller values of planet eccentricity would allow
the 2:1 to capture whereas larger values would tend to
make it more difficult. Negative values of c̄ would al-
low the resonance to be in the temporary capture regime
shown in Figure 8a whereas positive values of c̄ would al-
low capture at Neptune’s current eccentricity, provided
the migration was slow (Figure 8b). It is interesting to
find that Neptune’s eccentricity is very near the criti-
cal value that would make this resonance fail to capture.
This large value of ε̄ could contribute to the intermediate
capture probability seen in simulations and the moder-
ate range of drift rates where this intermediate capture
occurs.
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5.2. Capture into the 2:1 and 3:1 Resonances of
Multiple Extrasolar Planet systems

Three extrasolar multi-planet systems have two plan-
ets locked in the 2:1 resonance, GL876, HD 82943, and
HD128311 (Marcy et al. 2005). In each case the outer
planet is more massive than the inner one. The masses
of the outer planet are 1.9, 1.6 and 3.2 2 MJ (Jupiter
masses), respectively. We assume that an outer planet
has migrated inward and captured the interior and lower
mass planet into the 2:1 resonance (e.g., as explored pre-
viously by Kley et al. 2004, 2005; Moorhead & Adams
2005). The coefficients for this situation are listed in the
appendix and in Table 1. For an internal 2:1 mean mo-
tion resonance ṅp,crit = 22.7µ4/3. We relate the critical
mean motion drift rate to a critical semi-major axis drift
rate (with a factor of 2/3) and restore the units. To cap-
ture an internal planet into the 2:1 resonance a planet
must have a migration rate slower than

ȧp . 15µ4/3

(

GM∗

ap

)

. (24)

Using the period of the planet’s orbit, P = 2π

√

a3
p

GM∗

,

we can relate the critical migration rate to a timescale,
τ = ap/ȧp, finding

τ2:1 & 0.4µ−4/3P (25)

for the 2:1 resonance For a 2MJ mass planet, we find a
migration timescale of longer than 1600 orbital periods
is required for the 2:1 resonance to capture. This limit
is consistent with the timescales adopted for migration
in the simulations by Kley et al. (2004). We can con-
sider the eccentricity limit (taking the value from Table
1) elim ∼ 1.5µ1/3 = 0.2. This implies that the initial ec-
centricity of the inner planet (as long as it was below 0.2)
would probably not limit the capture probability into the
2:1 resonance.

We now consider capture into the 3:1 resonance. The
55 CnC system has two planets locked in the 3:1 res-
onance with outer planet 0.2MJ and inner planet with
0.8MJ . Even though the inner planet is more massive
we consider capture into an internal resonance because
the 3:1 internal resonance is stronger than the external
one. This is a result of the contributions from the indi-
rect terms. Using values given in the appendix in Table
2 for an internal 3:1 resonance we find ṅp,crit = 0.6µ2 for

the e2 resonance and ṅp,crit = 41µ4/3e
4/3
p for the ee′ res-

onance, in both cases for low initial particle eccentricity.
This corresponds to a migration timescale

τ3:1,e2 & 15µ−2P (26)

for the e2 resonance and

τ3:1,ee′ & 0.2µ−4/3e−4/3
p P (27)

for the ee′ resonance. However the migration rate is
less restrictive for the e2 resonance if the inner planet
has a moderate eccentricity. The limiting eccentricity is
elim ∼ 0.2µ1/2. For µ = 0.002, we find elim = 0.003.
Consequently the inner planet is likely to have e > elim.
In this case the migration timescale must be modified
by the factor given in Equation (15) and the limiting
migration timescale would be ∼ 10 times smaller or

τ3:1,ee′ & 0.02µ−4/3e−4/3
p P. (28)

For µ = 0.0002 to capture we find the migration
timescale must be longer than a few times 107 orbits

for the e2 resonance and 20000e
−4/3
p orbits for the ee′

resonance. For a moderate planet eccentricity of 0.2 this
corresponds to a timescale of 2 × 105 orbits.

We have found here that capture into the 2:1 resonance
by the multiple planet extra solar systems does not re-
quire a slow migration rate but capture into the 3:1 res-
onance does. For the 3:1 resonance faster migrations are
allowed for the ee′ resonance than the e2 resonance. The
limiting timescale is decreased if the planet eccentricities
are not low prior to resonance capture.

6. SUMMARY AND DISCUSSION

In this paper we have explored the problem of res-
onance capture for mean motion resonances at fast or
non-adiabatic drift rates. We first studied the first and
second order time dependent Hamiltonian system with
one resonant term. We find that for sufficiently low ini-
tial particle momentum (or eccentricity), the transition
between resonance capture and no capture is sharp, oc-
curring over a narrow range in drift rate. We give an ex-
pression (Equation 14) which makes it possible to predict
the critical planetary migration rate (above which there
is no capture) for first and second order mean motion res-
onances in the general restricted three body problem in
the limit of low initial particle eccentricity. Expressions
are given in the appendix for coefficients which allow one
to estimate the critical drift rate for any first or second
order mean motion resonance. Coefficients are evaluated
for strong resonances and listed in Tables 1 and 2. This
generalizes upon previous analytical work by Friedland
(2001) and provides a theoretical explanation for critical
drift rates measured numerically and their dependence
on planet mass (e.g., Ida et al. 2000; Wyatt 2003).

We have numerically measured the probability of cap-
ture as a function of initial particle eccentricity. We find
that the transition between resonance capture and no
capture is smoother, occurring over a larger range in drift
rate, for initial particle eccentricity of order the limit-
ing value ensuring capture in the adiabatic limit, elim.
The drift rate at which the capture probability is half is
not strongly dependent on the initial particle eccentricity
for first order resonances, and the probability of capture
drops rapidly for initial particle eccentricities exceeding
the limiting value, elim. For second order resonances, we
find that the drift rate at which the capture probabil-
ity is half is higher when the initial particle eccentricity
is higher. Equation (15) can be used to estimate the
half probability drift rate for initial eccentricities below
10elim. At e0 & 30elim the capture probability drops
below 1/2 at all drift rates.

In the limit of low initial particle eccentricity, we have
considered the case of resonances containing multiple
subterms. A first order resonance fails to capture when
the corotation resonance has unitless strength ε̄ & 1. As
this coefficient depends on planet eccentricity, migrat-
ing, eccentric, low mass planets could have first order
resonances that fail to capture particles for this reason.
A regime of intermediate capture probability also ex-
ists at high drift rates and large corotation perturbation
strength. We have found that the resonance separation,
and order of encounter, affects the capture probability,
primarily when the corotation resonance is strong. This
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implies that the capture probability is dependent upon
the precession rates of the longitude of periapse of both
particle and planet.

Second order resonances contain three subterms. As
was true for the first order resonances, the corotation
resonance fails to capture particles but can prevent the
other resonant terms from capturing particles if scale free
parameters ε̄ξ & 1 or ε̄χ & 1. This implies that above a
certain planet eccentricity, second order resonances fail
to capture particles. Below this planet eccentricity the
e2- and ee′-resonances can capture particles. When our
coefficient ξ̄ . 10−2 the e2-resonance will capture parti-
cles (providing the drift rate is sufficiently slow) and the
capture behavior is second order. For χ̄ < 0.1 the ee′-
resonance will capture particles and the behavior is first
order. For nonzero planet eccentricity, the ee′ subreso-
nance (which behaves like a first order resonance) may
more easily capture particles at faster drift rates than
the e2 resonance. For χ̄ or ξ̄ of order 1, a regime of in-
termediate capture probability exists at high drift rates.
For second order resonances the subresonance separation,
and order of encounter also affects the capture probabil-
ity.

A number of effects have been proposed to account
for reduction in capture probabilities compared to those
predicted via adiabatic theory, e.g., Zhou et al. (2002)
showed that stochastic or jumpy migration would allow
particles to escape resonances. Here we have shown that
rich dynamics in the non-adiabatic limit allows particles
to escape resonance capture. We have shown that corota-
tion terms can reduce the capture probability. For second
order resonances, resonant subterms can interfere, again
producing a regime of intermediate capture probability.
For first order resonances, the half probability drift rates
are not strongly dependent on the initial particle eccen-
tricity, and the probability of capture drops rapidly above
a limiting initial eccentricity. However for second order
resonances the half probability drift rate is higher for
initial particle eccentricity near the limiting value. Con-
sequently we expect that second order resonances should
have larger regimes of intermediate capture probability
in range of drift rate and initial particle eccentricity.

We have applied our understanding to the problem of
capturing twotinos via Neptune’s migration. We find
that the eccentricity of Neptune is sufficiently high that
the 2:1 resonance could fail to capture particles. Cer-

tainly if Neptune’s eccentricity were any higher during
migration its 2:1 resonance would not have captured par-
ticles efficiently. It is interesting to find that Neptune’s
eccentricity is very near the critical value that would
make this resonance fail to capture particles.

We have applied our framework toward predicting min-
inum migration timescales allowing extra solar multiple
planet systems to capture into the 2:1 or 3:1 resonances.
We find that a migration timescale of greater than a few
thousand orbital periods is required to allow capture into
the 2:1 resonance for three systems. However a much
longer timescale, ∼ 107, orbital periods is required to
allow capture into the 3:1 resonance for the 55 Cnc plan-
etary system. The migration timescale can be somewhat
reduced if the planets are on moderately eccentric orbits
subsequent to migration.

In this work we have extended the theory of resonant
capture for drifting Hamiltonian systems to the non-
adiabatic limit and to systems with multiple resonant
subterms. We have provided a theoretical framework
to predict resonance capture probabilities. However this
framework is based on numerical integration of a sim-
plistic two-dimensional Hamiltonian model and so may
not accurately represent the full complex dynamical sys-
tems. Direct numerical integration of these systems must
be carried out to test the validity and accuracy of the
expressions given in this paper. The exploration done
here could also in future be extended via numerical study
of modified quasi Hamiltonian toy models (e.g., Gomes
(1997)) to better cover systems with drift induced by
non-conservative forces such as gas drag or Poynting-
Robertson drag. This work could also be extended to
cover motions out of the plane and high eccentricity sys-
tems.
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der Grant No. NNG04GM12G issued through the Origins
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the National Science Foundation to the Kavli Institute
for Theoretical Physics under Grant No. PHY99-07949.

APPENDIX

COEFFICIENTS FOR INTERNAL AND EXTERNAL RESONANCES

External resonances

For external first order resonances,

K(Λ, ψ; Γ, γ)=aΛ2 + bΛ + cΓ (A1)

+δ1,0Γ
1/2 cos (ψ −$) + δ1,1 cos (ψ −$p)

with

δ1,0 =−µ
√

2α5/4f31
δ1,1 =−µepαf27. (A2)

Coefficients a, b, and c are given in Equations (2) and (4). The fi are functions of the Laplace coefficients and are
evaluated at α with index j using expressions from the appendix by Murray & Dermott (1999).

The above expressions only include direct terms. For the 2:1 resonance the indirect term contributes and

δ1,0(2 : 1) = −µ
√

2α1/4

(

αf31 −
1

2α

)

(A3)
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The near cancellation of the direct and indirect terms makes second order terms important for the 2:1 resonance
(Friedland 2001; Murray-Clay & Chiang 2005). It may be useful to recall the maximum initial particle momentum or
initial eccentricity, elim ensuring capture in the adiabatic limit. This corresponds to

elim =
√

2Γ̄0,limα
1/4

∣

∣

∣

∣

δ1,0

a

∣

∣

∣

∣

1/3

(A4)

where Γ̄0,lim = 3/2.
For external second order resonances or k = 2,

K(Λ, ψ; Γ, γ)=aΛ2 + bΛ + cΓ (A5)

+δ2,0Γ cos (ψ − 2$)

+δ2,1Γ
1/2 cos (ψ −$ −$p)

+δ2,2 cos (ψ − 2$p)

where

δ2,0 =−µ2α3/2f53

δ2,1 =−µep

√
2α5/4f49

δ2,2 =−µe2pαf45. (A6)

Coefficients a, b and c are given in Equations (2) and (4). For the 3:1 resonance the indirect term contributes and

δ2,0(3 : 1) = −µ2α1/2

(

αf53 −
3

8α

)

. (A7)

For second order resonances capturing into the e2 subterm

elim,ξ =
√

2Γ̄0,limα
1/4

∣

∣

∣

∣

δ2,0

a

∣

∣

∣

∣

1/2

(A8)

where the critical scale free momentum Γ̄0,lim = 1/8. For those capturing into the ee′ subterm

elim,χ =
√

2Γ̄0,limα
1/4

∣

∣

∣

∣

δ2,1

a

∣

∣

∣

∣

1/3

(A9)

where the critical scale free momentum Γ̄0,lim = 3/2.

Internal resonances

To make our theory appropriate for internal resonances (external perturber) we would consider j : j + k resonances
and change the coefficients to

a=−3

2
j2α−2

b=−(j + k)(np − 1)

c=−µ2f2α
−1/2

δ1,0 =−µ
√

2α−1/4f27
δ1,1 =−µepf31

δ2,0 =−µ2α−1/2f45

δ2,1 =−µep

√
2α−1/4f49

δ2,2 =−µe2pf53 (A10)

where α ≡ a/ap and we have used the approximation e2 ∼ 2Γ/L ∼ 2Γα−1/2. The c term describes secular precession
of the longitude of periapse and depends on the function f2 given in the appendix by Murray & Dermott (1999) and
is evaluated at α with index j = 0. For internal resonances the other fi functions are evaluated at α with index j + k
using expressions from the appendix by Murray & Dermott (1999). For the 2:1 and 3:1 resonances the indirect terms
contribute and

δ1,1(2 : 1) = −µep (f31 − 2α) (A11)

δ2,2(3 : 1) = −µe2p
(

f53 −
27

8
α

)

. (A12)
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The maximum initial particle eccentricity ensuring capture in the adiabatic limit for first order resonances

elim =
√

2Γ̄0,limα
−1/4

∣

∣

∣

∣

δ1,0

a

∣

∣

∣

∣

1/3

(A13)

where Γ̄0,lim = 3/2. For second order resonances capturing into the e2 subterm

elim,ξ =
√

2Γ̄0,limα
−1/4

∣

∣

∣

∣

δ2,0

a

∣

∣

∣

∣

1/2

(A14)

where the critical scale free momentum Γ̄0,lim = 1/8. For those capturing into the ee′ subterm

elim,χ =
√

2Γ̄0,limα
−1/4

∣

∣

∣

∣

δ2,1

a

∣

∣

∣

∣

1/3

(A15)

where the critical scale free momentum Γ̄0,lim = 3/2. The drift rate for a capture probability of 1/2 given in Equation
(15) must be modified for second order internal resonances;

|ṅp,1/2| ∼ 0.5(j − 2)δ22,0

(

1 +
α1/2e20a

2.4 × 10−4δ2,0

)0.25

. (A16)

This expression is valid for initial particle eccentricity e0 . 10elim,ξ.
The coefficients for strong internal and external resonances are listed in Tables 1 and 2.

MIGRATION OF DUST VIA POYNTING-ROBERTSON DRAG

In this paper we have considered an varying Hamiltonian system. However there may be some similarities between
this system and the slowly drifting dissipative systems. We add relations that allow the reader to approximately predict
the critical drift rates for dust spiraling inward under Poynting-Robertson drag. In the case of Poynting Robertson
drag dust particles in a circular orbit decay on a timescale proportional β−1 where β is the ratio of radiation to
gravitational (from the star) forces. It is convenient to write

β ∼ 0.2

sµm

(

L∗

L�

) (

M∗

M�

)−1

(B1)

where sµm is the radius of the particle in µm and L∗ is the luminosity of the star (Sicardy et al. 1993). The drag force
leads to a slow increase in the mean motion

ṅ ∼ 3α1/2β

cl
(B2)

where cl is the speed of light in units of the planet’s velocity or divided by
√

GM∗/ap. The value of our coefficient b is

not important, as long as it passes through zero on resonance. However, its drift rate or ḃ is important. At resonance
jn = (j − k)np and we can relate the drift rate of the particle spiraling inward to a system of a planet migrating
outward considered in the previous sections. We replace ṅp with ṅ, finding an effective drift coefficient

ḃ =
3jα1/2β

cl
. (B3)

The rescaled speed of light

cl ≈ 104

(

M∗

M�

)−1/2
( ap

1AU

)1/2

. (B4)

Consequently we can write

ḃ = 0.6 × 10−4jα1/2s−1
µm

(

L∗

L�

) (

M∗

M�

)−1/2
( ap

1AU

)−1/2

. (B5)

The above relation can be used to approximately determine the minimum size particles that can be captured into
resonances using the formulation presented in previous sections of this paper.
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Fig. 2.— Capture probabilities for a Hamiltonian system Equation (8) with one first order (k = 1) resonant term as a function of drift

rate
˛

˛

˛

db̄
dτ

˛

˛

˛
and initial momentum Γ̄(t0). Note that low Γ̄(t0) corresponds to low initial eccentricity. The thick and thin solid lines shows

the capture probability for Γ̄(t0) = 10−4 and 10−1 respectively. The squares and stars show the capture probability for Γ̄(t0) = 1 and 2.3
respectively. In the adiabatic limit for Γ̄(t0) < 1.5 the capture probability is 1. For Γ̄(t0) = 2.3 the capture probability is intermediate for
low drift rates and approaches a constant value as the system becomes more adiabatic. For initial momentum low (10−4) the transition
between 100% capture and 0% capture is extremely sharp. We find that if the initial momentum is ∼ 1 then there is a regime or a range
of drift rates where the capture probability is intermediate. With a change of scale, all first order resonances can be put in the form of
Equation (8). Consequently the probabilities shown here can be used to estimate the capture probability in the non-adiabatic limit for any
migrating first order resonance.
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lines show the capture probability for Γ̄(t0) = 10−6, 10−4 and 10−2 respectively. The squares and stars show the capture probability for
Γ̄(t0) = 0.1 and 1.0 respectively. Capture is ensured in the adiabatic limit for Γ̄(t0) < 1/8. As was true for the first order resonances the
transition between capture and no capture is steeper (covering a narrower range in drift rate) for low initial momentum. For second order
resonances the drift rate for a capture probability of 0.5 depends on the initial momentum.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0  0.5

u(
p=

0.
5,

0.
25

)

log Γ (t0)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

w

Γ (t0)

Fig. 4.— a) The drift rate at which the probability of capture is 1/2 (stars) and 1/4 (squares) as a function of initial momentum (Γ̄(t0)

) for first order resonances (k = 1). The x-axis shows log10 Γ̄(t0). The y-axis shows log10

˛

˛

˛

db̄
dτ

˛

˛

˛
. b) Width of the drop in probability as a

function of initial momentum.



17

-0.5

 0

 0.5

 1

 1.5

-6 -5 -4 -3 -2 -1  0

u(
p=

0.
5,

0.
25

)

log Γ (t0)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-6 -5 -4 -3 -2 -1  0

w

Γ (t0)

Fig. 5.— a) The drift rate at which the probability of capture is 1/2 (stars) and 1/4 (squares) as a function of initial momentum for

second order resonances (k = 2). The x-axis shows log10 Γ̄(t0). The y-axis shows log10

˛

˛

˛

db̄
dτ

˛

˛

˛
. The dotted line shows the function given in

Equation (12). b) Width of the drop in probability as a function of initial momentum.

-10
 0

 10
 20
 30
 40
 50
 60

 0  50  100  150  200  250  300

Λ
,Γ

τ

 0
 1
 2
 3
 4
 5
 6

φ
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Near the critical drift rate the additional resonant perturbation can cause a moderately large region with an intermediate probability of
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Fig. 8.— a) Same as Fig 7 except the resonance separation c̄ = −0.1. The frequency of the corotation term is shifted so that this
resonance is encountered after the e-resonance. The onset of the corotation resonance can kick the particle out of resonance. b) Same as
Fig 7 except the resonance separation c̄ = 0.1. The frequency of the corotation term is shifted so that this resonance is encountered first.
At lower drift rates larger ε̄ is required to prevent captures. These figures show that the subresonance separation can influence the capture
probability. The subresonance separation is set by the difference between the planet and particle’s precession rate of longitude of periapse.
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Fig. 9.— a) The capture probability for a second order resonance (k = 2) as a function of drift rate and ee′-resonance strength. This
figure is similar to Fig. 7. The Equation (18) was numerically integrated with resonance separation c̄ξ = 0, no corotation term, ε̄ξ = 0, and

initial momentum Γ̄(t0) = 10−6. Drift rate and ξ̄ were varied. The x-axis is log10 |
db̄ξ

dτ
| and the y-axis is log10(ξ̄). For low ee′-resonance

strength or ξ̄ . 10−3 , the capture probability drops at a drift rate consistent with the critical value measured in section 3 for a single
second order resonance (Equation 11). For larger values of ee′ resonant term, ξ̄, the critical drift rate increases, depending upon ξ̄. In this
case the system fails to capture into the second order e2-resonance and instead captures into ee′-resonance which behaves like a first order
resonance. b) The Equation (19) was numerically integrated with c̄χ = 0, ε̄χ = 0, and initial momentum Γ̄(t0) = 10−6. Drift rate and χ̄

were varied. The x-axis is log10 |
db̄χ

dτ
| and the y-axis is log10(χ̄). Because χ = ξ−2/3 this figure covers large values of ξ, extending past the

top of a). For low e2-resonance strength or ξ̄ . 10−1, the capture probability drops at a drift rate consistent with that predicted in section
3 for a single first order resonance; (Equation 11). For χ̄ ∼ 0.5 there is a regime of drift rates with intermediate capture probability.
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Fig. 10.— The capture probability for a second order resonance (k = 2) as a function of drift rate and corotation resonance strength.
This figure is similar to Fig. 7. The Equation (18) was numerically integrated with c̄ξ = 0, ξ̄ = 0, and initial momentum Γ̄(t0) = 10−6.

Drift rate and ε̄ξ were varied. The x-axis is log10 |
db̄ξ

dτ
| and the y-axis is log10(ε̄ξ). At low values of ε̄ξ the capture probability drops at

a value consistent with that predicted in section 3 for a single second order resonance; Equation (11). At ε̄ξ ∼ 1 the corotation terms

prevents capture into the e2-resonance.
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Fig. 11.— Separated second order resonances. a) This Figure is similar to Figure 9a except c̄ξ = −1. The ee′-resonance is encountered

after the e2-resonance. b) This Figure is similar to Figure 9a except c̄ξ = 1. The ee′-resonance is encountered before the e2-resonance.
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Fig. 12.— Separated second order resonances. a) This Figure is similar to Figure 9b except c̄χ = −0.5. The ee′-resonance is encountered
before the e2-resonance. b) This Figure is similar to Figure 9b except c̄χ = 0.5. The ee′-resonance is encountered after the e2-resonance.
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TABLE 1
Coefficients for k = 1 resonances

Exterior resonances Interior resonances

j : k 4:3 3:2 2:1 4:3 3:2 2:1

α 0.825 0.763 0.630 0.825 0.763 0.630
a −16.35 −7.86 −2.38 −19.81 −10.30 −3.78
c/µ −4.14 −2.01 −0.61 −5.02 −2.64 −0.98
δ1,0/µ −3.41 −2.31 −0.24 −4.21 −3.06 −1.89
δ1,1/(µep) 2.35 1.55 0.75 3.07 2.29 0.31
ṅp,crit/µ4/3 198.5 48.4 0.54 398.7 126.4 22.7
ε̄/(µ−1/3ep) 1.16 1.00 6.59 1.22 1.21 0.21
c̄/µ1/3 0.72 0.58 1.18 0.71 0.58 0.41
elim/µ1/3 0.98 1.08 0.72 1.08 1.24 1.54

Note. — Equations (2) and (4) were used to calculate the coef-
ficients a and c (for external resonances). Equations (A2) and (A3)
were used to estimate the perturbation strengths for the 4:3 and 3:2
resonances and the 2:1 resonance, respectively, for external resonances.
Coefficients for the internal resonances are given in the appendix. The
critical drift rate is calculated from Equation (14). The coefficients ε̄
and c̄ are calculated from Equation (17). We have calculated c using
only the secular term from one planet and assumed that $̇p = 0. The
critical eccentricity ensuring capture in the adiabatic limit is calculated
using Equation (A4).

TABLE 2
Coefficients for k = 2 resonances

Exterior resonances Interior resonances

j : k 3:1 5:3 3:1 5:3

α 0.481 0.711 0.481 0.711
a −3.12 −18.98 −6.49 −26.68
c/µ −0.20 −1.22 −0.41 −1.72
δ2,0/µ 0.24 6.82 0.63 3.47
δ2,1/(µep) −1.25 −8.00 −3.76 −13.33
δ2,2/(µe2

p) 0.10 1.04 0.36 5.69

ξ̄/(µ−1/2ep) 18.56 1.95 19.11 10.61
ε̄ξ/(µ−1e2

p) 5.59 0.43 5.93 12.56
c̄ξ/µ0 0.81 0.18 0.65 0.50
ṅp,crit,ξ/µ2 0.029 69.86 0.60 30.19
elim,ξ/µ1/2 0.40 0.95 0.19 0.20

ε̄χ/(µ−1/3e
2/3
p ) 0.114 0.174 0.116 0.538

c̄χ/(µ1/3e
−2/3
p ) 0.12 0.11 0.09 0.10

ṅp,crit,χ/(µ4/3e
4/3
p ) 5.77 683 40.66 1694

elim,χ/(µ1/3e
1/3
p ) 1.06 1.19 1.73 1.50

Note. — Equations (2) and (4) were used to calculate a and c.
The critical drift rates ṅp,crit,ξ and ṅp,crit,χ are those calculated

for low ξ̄ and χ̄ respectively. ṅp,crit,ξ is given in the limit of low
initial particle eccentricity. For particle initial eccentricity near the
limit ensuring capture in the adiabatic limit, the values given here
for np,crit,ξ should be multiplied by 10. The coefficients ε̄ξ, and
c̄ξ are calculated from Equation (19). The coefficients ε̄χ, and c̄χ

are calculated from Equation (20). Expressions from the appendix
were used to calculate the δ coefficients and critical eccentricities.
We have calculated c using only the secular term from one planet
and assumed that $̇p = 0.


