
PROBLEM SET #3 AST570

Problem 1. First order canonical transformations

a) Consider a Hamiltonian with a time dependent perturbation

H(I, θ, t) = Iω + εI1/2 cos(Ωpt)

Find new variables J, φ such that the Hamiltonian becomes

K(J, φ) = Jω

and so is in action angle variables.

Hint: Try a generating function in the form

S2(θ, J) = θJ + f(J)g(Ωpt)

with functions f() and g() to be determined.

b) Consider a Hamiltonian with a small perturbation term

H(I, θ) = g(I) + εh(I) cos θ

where ε is small. Using a generating function in the form

S2(θ, J) = θJ + εf(θ, J)

to show that the Hamiltonian can be put via canonical transformation into a formK(J, φ) =
g(J) +O(ε2)... that is to first order in action angle variables.

Problem 2. Fixed points for a First order Mean Motion resonance

Consider the Hamiltonian for a first order resonance

H(Γ, φ) = aΓ2 + δΓ + εΓ1/2 cosφ

see Murray and Dermott section 8.8.
a) Perform a canonical transformation to new variables (x, y)

x =
√

2Γ cosφ

y =
√

2Γ sinφ

b) Using Hamilton’s equations set to zero

∂H

∂x
=
∂H

∂y
= 0

find relations satisfied by the fixed points.
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c) Why are these fixed points called periodic orbits?
d) For what value of δ are there 3 fixed points instead of 1? How does the sign of ε and

a affect your answer?
e) If the Hamiltonian has units of (L/T )2 (square of length/time) what units do the

coefficients have?
f) Construct a parameter with units of frequency using the coefficients a and ε.

Problem 3. First order resonances in the limit of high j

First order mean motion resonances depend on coefficients f j27 and f j31 according to
Table B.4 in M+D where

f j27(α) =
1

2
[−2j − αD] bj1/2(α)

f j31(α) =
1

2
[−1 + 2j + αD] bj−1

1/2 (α)

Consider α = j−1
j = 1− j−1.

Estimate how f27(1 − j−1) and f31(1 − j−1) depend on j for large j. You can use
asymptotic limits estimated in the previous problem set.

Problem 4. Chaotic Zone Width and 2/7-th Law

Consider a planet in a circular orbit with semi major axis ap = 1. Let GM∗ = 1 and the
ratio of the planet to stellar mass µ = mp/M∗.

a) Estimate the width of a j : j+1 mean motion resonance with the planet as a function
of j and µ the reduced planet mass.

A Hamiltonian model for a first order mean motion resonance is

H(J, φ) = aJ2 + bJ + εJ1/2 cosφ

with a ∼ j2, and b ∼ jdn where dn is the distance to resonance in terms of the mean motion.
The perturbation strength ε ∼ µj in the high j limit. The derivation of the Hamiltonian
model (and coefficients) can be seen in a number of works (also Quillen 2006).

Here the coefficient b sets the distance to resonance. You can think of this as the range
of mean motions over which the resonance is important.

b) To first order estimate the distance between resonance centers as a function of j.

Consider a resonant condition j
j+1 = a

ap

3
2 . How far apart in a is the j : j + 1 resonance

compared to the j + 1 : j + 2 resonance as a function of j in the limit of high j?
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c) Show that the resonances overlap at a distance da ∼ µ2/7ap from the planet.

The original work on the 2/7 law was by Jack Wisdom (1980).

Problem 5. Canonical Transformation to a Rotating Coordinate System

Consider the following Hamiltonian that has been used to represent a fourth order
epicyclic approximation near a Lindblad resonance

H(I1, θ1; I2, θ2; t) = ΩI2 + κI1 + aI21 + bI22 + cI1I2 + εI
1/2
1 cos(θ1 −m(θ2 − Ωpt))

where m is an integer and Ωp a pattern speed. Here Ω and κ are the angular rotation rate
and epicyclic frequency.

Consider the following generating function

F2 = [θ1 −m(θ2 − Ωpt)]J1 + θ2J2

a) Show that I2 +mI1 is a conserved quantity.
b) Find the form of the Hamiltonian in new coordinates.
c) Explain how [(c − 2bm)(I2 + mI1) + κ −m(Ω − Ωp)] can be considered the distance

to the resonance.

Problem 6. Eccentricity increase caused by a jump across a mean motion
resonance

Assume a planetesimal is in a circular orbit exterior to a planet that is slowly migrating
inwards. The planet has a mass ratio (with the star) of µ. The planetesimal crosses the
3:2 mean motion resonance with the planet. Assume that the planetesimal initially has a
zero eccentricity.

a)Show that the change δe2 ∝ µ2/3 so that the final eccentricity e ∝ µ1/3.

b) How large a perturbation is required to remove the planetesimal from resonance?

Coefficients can be found in the paper Reducing the probability of Capture into Resonance
by Quillen 2006 or Mustill & Wyatt 2011, 2011, MNRAS, 413, 554; http://arxiv.org/abs/1012.3079

Problem 7. Phase Lag in a drifting system captured into resonance

Consider the Hamiltonian

H(p, φ) = ap2 + bp+ εp1/2 cosφ

that is often used to describe a first order mean motion resonance or Lindblad resonance.
Consider an adiabatically drifting system with distance to resonance, b(t), slowly variation.
Above consider coefficients a, ε as constants.
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Assume that the system captures into resonance. In resonance φ remains nearly constant,
librating about either φo = 0 or π depending upon the signs of a and ε.

a) Using Hamilton’s equation for ∂H
∂p and assuming that φ̇ averages to zero, show that

as p grows that

p ∼ − b

2a
and ṗ ∼ − ḃ

2a

This is relevant to how eccentricity can increase for a particle or object captured into
resonance.

b) Show that there is a phase lag

δφ ∼ −ḃ
ε
√
−2ab

cosφo

This is relevant to an asymmetry in the Earth’s resonant dust ring that was detected by
observations from infrared satellites such as COBE.

Problem 8. Periods for Conjunctions

a) Consider a mean motion resonance jn ∼ (j + k)np where n and np are the mean
motions of object and planet, respectively and j, k are positive integers and k < j. Assume
both are on circular orbits. What is the time period between conjunctions? Write your
answer in terms of the planet’s rotation period.

b) Consider a Laplace resonance with argument φ = pλ1−(p+q)λ2+qλ3 where λ1, λ2, λ3
are longitudes of three different bodies, φ̇ ∼ 0 and q, p are positive integers. The mean
motions of the three bodies are n1, n2, n3 with n1 > n2 > n3 interior to exterior. What is
the time period between identical configurations? Assume that p and q contain no common
factors greater than unity.

c) Find p, q for the 1:2:4 Laplace resonance between the Galilean moons Io, Europa and
Ganymede. What is the time period between identical configurations for this system?

Problem 9. Planets migrating in disks

Consider two planets embedded in a gas disk and trapped into a j : j + k mean motion
resonance. Let the outer one be migrating inwards because it is driving spiral density
waves into the outer disk. Let the innermost planet be more massive than the outer one.
Let the dissipation forces act only on the outer planet with eccentricity damping timescale
τe = eo/ėo and τa = ao/ȧo with eo, ao the eccentricity and semi-major axis of the outer
planet.
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The Tisserand relation

C =
1

2α
+
√
α(1− e2 cos I

is approximately conserved in resonance. Here α = ai/ao is the ratio of the two planet’s
semi-major axes with ao is the outer and ai is the inner planet’s semi-major axis. However
the dissipation forces do not conserve the Tisserand relation.

In resonance α = ai/ao = [j/(j + k)]2/3 depends only on the integer ratios for the
resonance. In resonance α must remain fixed even when the system is drifting.

a) What rate do you expect the eccentricity of the outer planet to increase as a function
of migration rate?

As the resonance approximately conserves the Tisserand relation we can write

Ċ =
∂C

∂ao
ȧo,dis +

∂C

∂eo
ėo,disp

which we can write

Ċ =
∂C

∂ao

ao
τa

+
∂C

∂eo

eo
τe

b) Compute the limiting eccentricity elim where Ċ = 0. Show that if τe is long (weak
eccentricity damping) the limiting eccentricity is larger, than if τe is small.


