
PROBLEM SET SOLUTIONS #1 AST570

Problem 1. On Hyperbolic orbits

a) Finding semi-major axis a:
Total energy must take into account the center of mass motion.

E =
GMm

2a
+

(M +m)V 2
com

2

The mass m starts with velocity v∞, the other one with zero velocity. This means

E =
mv2∞

2

and

(m+M)Vcom = mv∞

Putting together our relations for Energy and subbing in for Vcom we can solve for a

a =
G(M +m)

v2∞

Finding eccentricity e:
Using the equation of motion we found that the orbit is described by

(1) r =
p

1 + e cos f

with

p =
h2

G(M +m)

and angular momentum h = bv∞. The parameter p and the orbit equation also imply that

p = a(e2 − 1)

Using our expression for a, h and p we can solve for e2 finding

e2 = 1 +
b2v4∞

G2(M +m)2

Finding pericenter q:
The orbit equation implies that the closest approach has

q = a(e− 1) =
G(M +m)

v2∞

[(
1 +

b2v4∞
G2(M +m)2

)1/2

− 1

]
b) Showing the relation for e:

1
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Using q = a(e− 1) and p = a(e2 − 1) and v0 =
√

2G(M +m)/q we find that

e+ 1 =
p

q
=

pv20
2G(M +m)

=
b2v20v

2
∞

2G2(M +m)2

and then

(2) e− 1 =
p

a(e+ 1)
=

2v2∞
v20

and so
e = 1 + 2v2∞/v

2
0

where v0 is the escape velocity at q.
c) Using the equation describing the orbit (equation 1) we find that r →∞ when

sec f0 = −e
where f0 is the true anomaly for infinite r. Relating deflection angle, ψ to this true anomaly
gives

ψ = 2f0 − π f0 = (ψ + π)/2

Subbing into our relation for f0 we find

cos

(
π

2
+
ψ

2

)
= −e−1

equivalent to

sin

(
ψ

2

)
= e−1

d) Jupiter, with mass Mp = 1898.6 × 1024kg, and radius R = 71, 398 km. The escape
velocity at the surface v0 = 60 km/s. Plugging in v∞ = 10 km/s I find an eccentricity of
e = 1.06 and a maximum grazing deflection angle of about 141 degrees.

Problem 2. Impulse approximation and velocity kick due to a passing planet

Consider a particle in a planetary ring with semi-major axis a that is in a circular orbit
about a planet. There is a nearby moon, also in a circular orbit. The ratio of the moon to
planet mass is µ. The difference between moon and particle semi-major axes is da.

a) The close passage would give a velocity kick towards the object. This would give
a radial velocity vr. We need to know the difference in velocity between the moon and
particle. This depends on the difference in angular rotation rate (if they have the same
angular rotation rate then they are fixed with respect to one another). Let n be the
mean motion of the moon with mass m and semi-major axis a from the planet of mass
M . The mean motion of the ring particle would be nr = n + dn

dada. The mean motion

n(a) = (GM)1/2a−3/2 so dn/da = −3
2
n
a . This means that nr = n

(
1− 3

2
da
a

)
. The relative

velocity between planet and ring particle is then vt = −3
2n da.
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We can how use the impulse approximation giving a radial velocity

dv = vr ∼
2Gm

vtda
∼ Gm

nda2

Let us divide this by the velocity of the moon or
√
GM/a = na finding

vr
na
∼ µ

( a
da

)2
where µ = m/M .

b) After the close approach the orbit has its highest vr which from the orbit we would
expect has a value e times the circular velocity. Thus the above expression also gives the
eccentricity following the encounter. The above expression is consistent with that estimated
by Murray and Dermott.

c) The impulse approximation is not expected to be very good since the velocity differ-
ence between objects is not high.

d) Using our formulas for a hyperbolic orbit

∆vM,⊥ =
2mbV 3

0

G(M +m)

1

C

∆vM,‖ =
2mV0

G(M +m)

1

C

C = 1 +
b2V 4

0

G2(M +m)2

The impulse approximation is okay when C > 1 or when

b2V 4
0

G2(M +m)
> 1

This condition can be rewritten as
V0
vb

> 1

where vb =
√
G(M +m)/b is approximately the escape velocity at b.

Above considers an encounter between m and M where we are considering an encounter
between a massless particle and a moon of mass m.

Using our expression for vt ∼ n da for V0 and impact parameter b = da and vb ∼√
Gm/da the condition becomes

vt
vb
∼
(
M

m

)1/2(da
a

)3/2

> 1

As long as this condition is satisfied the impulse approximation is okay.
Another way to rewrite the condition in a more physically meaningful way is to compare

the timescale of the close approach with the orbital timescale. The timescale of the close
approach is (da)3/2/(Gm)1/2 and the orbital timescale is a3/2/(GM)1/2 and the ratio the
same as the ratio of vt/vb given above.
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Problem 3. Tidal forces

Problem 4. Estimates of Gravitational Heating Rates

a) Assume we are in a dispersion dominated regime and consider the diffusion coefficient
from perpendicular velocity perturbations.

First let us estimate the Coulomb log, ln Λ

Λ =
bmaxV

3
0

G(M +m)

For the maximum impact parameter, the galactocentric radius is an upper limit. The
important mass in the problem is that of molecular clouds or 106M�. The relevant velocity
probably the velocity dispersion or 10km/s. Altogether this gives ln Λ ∼ 19.

Now onto the diffusion coefficient

D(∆v2⊥) ∼ 4
√

2πG2ρma ln Λ

σ

(
erf(X)−G(X)

X

)
Assume that the function of X = v/σ is of order 1. Here σ is the velocity dispersion. Here
ρ = nama is the mass density of molecular clouds.

Assume the molecular gas has a thickness of 100 pc. The mass surface density of molec-
ular clouds is of order Σ ∼ 1M� pc−2. The number density (numbers of clouds per unit
volume) is then approximately na ∼ Σ/h/ma where h = 100pc and ma is a million solar
masses. This gives a number density of na ∼ 10−8 pc−3 ∼ 3.7 × 10−64cm−3. Inserting all
values into our expression for D(∆v2⊥) I estimate 0.002 in cgs. So what are the units of
this? It’s a diffusion coefficient in velocity so it is in units of v2/t or cm2/s3. Let us check
that this is correct. It is. Let us convert the units to that it is in km/s per Myr. This
corresponds to multiplying by 3× 1013 (for the Myr) and dividing by 1010 for the (km/s)2

or altogether multiply by 300. This gives a diffusion coefficient of order 1 (km/s)2 Myr−1.

b)

c)

Problem 5. Disruption of Binary Planetesimals by a close approach to a planet

Many massive Kuiper Belt objects are nearly equal mass binaries. For example, Pluto
and Charon are separated by about 2× 109 cm. Their masses are 13 and 2 ×1024g. Their
densities are about 1.8 g/cm3.
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a) The Hill radius of Pluto, but at 5 AU where Jupiter is located, is rH ∼ 0.003 AU or
0.5 million km. At a location of Neptune the Hill radius is rH ∼ 0.02 AU or 3 million km.
Objects can remain bound to Pluto as long as they are within this separation.

b) Expanding the potential about the larger body we estimate that the the smaller body
is no longer bound to the larger one when

r . d

(
Mp

MPluto

)1/3

where d is the separation of the binary and r the distance to the planet. Inserting distance
an mass we estimate a distance of 2 million km.

c) When the objects are separated they gain a component of velocity with respect to
their original center of mass from rotation in the bound system. The velocity they gain
depends on the mass of the object, effectively the lower mass object is flung out faster
than the larger one. For one object to become bound energy must be removed from it and
transferred to the other one. The one that is flung out with respect to the center of mass
can be flung out in a direction that slows it down with respect to the planet, reducing its
energy and angular momentum with respect to the planet. This means that the lower mass
object is more likely to become the one that is bound.

Problem 6. Orbital timescales in the outer parts of a Hill sphere

The orbital period of the planet P = 2π
a
3/2
p

(GM∗)1/2
. The orbital period of the satellite

about the planet Ps = 2π a
3/2
s

(GMp)1/2
. The ratio of these

Ps

P
=

(
as
ap

)3/2(M∗
Mp

)1/2

Remember that rH = ap

(
Mp

3M∗

)1/3
. If we sub in for the mass ratio

Ps

P
∼
(
as
ap

)3/2( ap
rH

)3/2

3−1/2 ∼
(
as
rH

)3/2

This radio as as/rH → 1 is of order 1. Collision timescales in the outer parts of Hill radii
can be similar to orbital timescales.


