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Integrable motion

* Integrable: n degree of freedom Hamiltonian has n
conserved quantities

* Examples:
— Hamiltonian is a function of coordinates only

— Hamiltonian is a function of momenta only —in this case
we can call the momenta action variables and we can say
we have transformed to action angle variables

— Hamiltonian has 1 degree of freedom and is time

independent. H(x,v) gives level contours and motion is
along level contours.

* Arnold-Louiville theorem - integrable implies that the
Hamiltonian can be transformed to depend only on
actions



Hamilton Jacobi equation

If the coordinate g does not appear in the Hamiltonian
then the corresponding momentum p is constant

Try to find a Hamiltonian that vanishes altogether, then
everything is conserved

Generating function S,(q,,9,,...,P,, P,, ...,t) function of old
coordinates and new momenta which we would like
conserved

New Hamiltonian
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Finding conserved momenta
2-body problem

* Our new momenta are conserved, constants of
integration, P,

0S 0S

@i = OP,

e 2bodyin 2 dimensions

2 2
Py L v old coordinates
H(r,0ipr, L) =5+ 55 — =

new momenta
4

0S5 05 0S
H(T,E,%)—i—a—o

* Hamilton Jacobi equation



Assume separable

S = 5,(r) 4+ Sp(0) + Si(t)
Substitute momenta in to Hamilton Jacobi equation

Since separable 95 0,
20~ % ot

Hamilton Jacobi equation gives
2

(di) 2(a1+”> =2

0S

(08N 1 (08\*\ nu_ 05
2 or r2 \ 00 ro

ot

S——a1t+a29+/ dr\/ ozl—l—

Because we choose S
separable these
derivatives must be
constant,

as they are constant
we also make them be
our new momenta



" 2
S:_O‘lt‘|‘0429—|-/ dr\/2(oz1—|—ﬁ)_a_22
r r

S depends on new monenta so a,a, are new momenta

Py

L4

2a

0S
%:QQZL:P2 P1:Oé1
P2 = [, = \/,LLCL(l _ 62) ;Jsinl_g expression
0S
T o ™1
New coordinates
0S oS
Tu _ Ql @ — QQ

Q1=—t+/rdr [2(a1+ﬁ)__

is energy



le—t—l—/rdr [2(041—#”)—&%]

r r2
Sub in for constants and use

r=a(l —ecos F), dr = aesin EdFE

43/2
Q1 = —-t+ ﬁ (1 —ecos E)dE
43/2
= —t+ T(E —esin )
0

M
= 4+ —
n

Q1 =—7 Q, is time of perihelion



(Hamilton Jacobi equation and 2 body problem continued)

* With a similar integral we can show that Q, is angle of
perihelion

QQZQ_]C:W le—T

Py =L =+/pa(l — e?) P =——

* 3D problem done similarly

* These coordinates not necessarily ideal. Add and subtract
them to find the Delaunay, modified Delauney and Poincaré

coordinates



Cannonical transformations

Different approaches
1. Choose desirable generating functions

2. Solve integrals resulting from Hamilton-
Jacobi equation

3. Choose new coordinates and momenta and
show they satisfy Poisson brackets

4. Use expansions (e.g., Birkhoff normal form)
(can lead to problems with small divisors)



Example

(continuing two body H =0,
problem)
Fy = (t—71)g(P1)
OF5
Y72 e — o(P
gt d
2 _ . _rag B
o—1 g(P1) =p1 = 20 da  2a?
oF,
— = P;)(t — =M
) g (P)(t—T1)
_ d dg da
n = 1/2a 3/2: / P g _ g
H Jh) o=
dP; M1/2 P _
—1/'[1/61/
da 2a1/2
2
K=g(P)=-1=-1

L4

p— —’7‘7 _——
d1 9

P1 —

Desirable to have a
third angle as a
coordinate

The mean anomaly
M = n(t-t)

as expected



Harmonic oscillator

2 2 121 . -
H:%—I—K% q = ;Slngb %—\/E
H(I,$) = Ix p = V2Ikcoso

e Use Poisson bracket to check that these variables are cannonical

(z }_axay_ﬁx(?y
= 9001 91 06

{¢,p} = \/gcos O ;/\37; cos ¢ + '2\2//; sin ¢V 21k sin ¢

you don’t get 1 here
unless there is the factor
of 2 in the variable

= 1



Harmonic oscillator

2

B — p—tangb Using a generating function
27 9
OFy  p° 2 @ — ptan ¢ —
8—gb = 5 sec o=1 Op p ¢ =q
P ot 1)
p*(1 + tan® ¢) = 21 q
21 = p? + ¢* p = V2[coso

g = V2Ising



Heliocentric coordinates

p? Z Gmimj N-bodies in inertial frame

— 2m;

Z ¢ 2ri — 1y

Fg(ri, Pz) = Z(I‘Z — I'()) P, +ry- Py generating function

i>0
OF5 . OF
6Pi:(ri_r0):Qi i 70 8—Pz:r0
OF5 . OF:
or; P L7 Org = Py ZPZ_pO
i>0
P2 Gmimo) Gm;m;
H=Y (oo~ Tor) ~ X g
<o \2m Qi i£j i,7>0 2|r; — 1y
1
iitoni —(Py— ) P)?
new Hamiltonian 2m0( 0 Z )

1>0



Democratic heliocentric coordinate
system

OF, bar
_ _ ycenter so can be set to
:PO_E P; = po Po—E P;
(91‘0 : zero

2>0 This is equivalent to using

momenta that are in center
of mass coordinate system

* IfP,=0 Hamiltonian becomes

o ( p?. B Gmim0> B Z Gm;m,;

1
. — E p;)?
Keplerian term 2mg 4

Interaction term
Drift term



Democratic heliocentric coordinates

 Hamiltonian is nicely separable in
— heliocentric coordinates and

— barycentric momenta




m, Jacobi
Coordinates

To add a body: work with respect to center of mass of all previous bodies.
Coordinate system requires a tree to define.

H— ( P,L-Z B szm()) B Z Gmimj

2m; Qi 2 5550 2|r; — 1y




Symplectic Integrators

Wisdom and Holman used a Hamiltonian in Jacobi
coordinates for the N-body system that also separated
into Keplerian and Interaction terms.

Hamiltonian approximated by

H = Hyep + 0(QU)Hint (Q)
— Integrated all bodies with f,g functions for dt = 1/Q (that’s H,, )
— Velocities given a kick caused by Interactions
— Integrate bodies again with f,g functions dt = 1/Q

Integrator is symplectic but integrates a Hamiltonian that
approximates the real one.

The integrator has bounded energy error and allows very
large step sizes



Second order Symplectic integrator

%_%._i_%._@zﬁ}[ 0z OH
dt 8qq (9pp_ dg Op  Op Oq
dz

Poisson bracket with H
gives evolution

2(1) = exp(7Dp)z(0)
2(7) = exp|r(Du, + Dp,)]|2(0)  H = Ho+ H
exp|T(A+ B)| = H exp(c;TA) exp(d;TB) + o(7" 1)

Find coefficients so this is true to whatever order you desire
(see Yoshida review)



Second order Symplectic integrator

Expand to second order
exp %A expTB exp gA

T ’7'2 7'2 T 7'2
~ (14 —A+ A (1+7B+ —B»)(1+ A+ A2
(—|—2—|—8)(—|—T—|—2 )(+2+8)

2 2

= 1+ 7(A+ B) + (A% + B) + —(AB + BA) + o)

= exp[T(A + B)] + o(7°)



Second order for N-body

T T T T
exXp §Dkep eXp §Ddrift eXp TDint exXp §Ddrz’ft exXp §Dkep

Evolve Kepsteps via f,g functions

Drift step lets positions change as the Hamiltonian term only
depends on momenta

Interaction steps only vary velocities as they only depend on
coordinates

Reverse order.
Central step chosen to be most computationally intensive

— This is known as the democratic heliocentric second order integrator
(Duncan, Levison & Lee 1998)



Symplectic integrators- Harmonic oscillator

1
H = §(p2 +q°)

e The exact solution is

(1) = (< (a8

e TofirstorderinTt

1 1
 However H' = i(p’2 + ¢ = 5(1 +72)(p° + ¢°)

and energy increases with time
A symplectic scheme can be constructed with

(7)) =5 7))



More on symplectic integrators

(7)) =% 7))

This is symplectic because the det is 1 and so volume is conserved
There is a conserved gquantity but it’s not the original Hamiltonian

_ 1 5 5 T
H=-(p"+¢q)+ 5pq
2 2
You can show this by computing this quantity for p’,q’
The difference between new and old Hamiltonian depends on timestep!

Integrator is no longer symplectic if timestep varied.



Approximating interactions with
Periodic delta functions

Interaction terms are used to perturb the system every time
step

Class of integrators where fast moving terms are replaced
with periodic delta function terms.

H(p,q) = Ho(p,q) + Hin(q)
Note interaction term only depends on coordinates.

Here is an example: F(7. ¢) = Iw + Acos ¢
We add extra terms to interaction term

H ., = A Z cos(¢ + 2mnt)

n=——aoo

= Acos¢ 27?25(15 = 27n)

periodic function



Integrating the approximate
Hamiltonian

H' = Iw+21Acos¢ 6(t = 2mn)

For t#z2mn oH" .
_ H/ .
For t=0,2m,4m... 8a¢ = —2mAsin¢ §(t = 2mn) = —I

Integrate over the delta function
5 Al = 27 Asin ¢

Procedure: integrate unperturbed Hamiltonian between delta
function spikes. At each t=0,2m,4m... update momenta. These
are the velocity kicks.



Justifications

Often the Hamiltonian has many cosine terms. As long as
frequencies are not commensurate, a perturbative
transformation can remove non-resonant terms. Dynamics
is only weakly sinusoidally varied by these terms. = Cosine
terms that are not commensurate are ignored.

We can add in cosine terms without significantly changing
the dynamics.

The approximate Hamiltonian is conserved exactly.

Sizes of errors can be quantified. Errors are bounded as
there is a conserved quantity.

You can’t change the step size as this would change the
approximate Hamiltonian integrated. If you change the
step size, the bounded property of errors is lost.

Wisdom, Holman, and collaborators



Similarity to

Standard map
I, + Ksinf,

|, @ mod 2m

If constant K is small there is no
chaos.
Width of chaotic zone depends on K

Above a certain value of K -> global

PR L G

et e
(0.0 |+ Clear Jcg




Regularization

Given
o Let K(p.q) = f(¢)(H — Hy)

* Hamiltonian H(p,q) o) dt

g g q) = ——
* Initial conditions H(p,,q,,t=0)=H, dr

8K OH dp

H — H —
=1 @(H ~ Ho)+ f@)F - = (@)
8K 8H dq
p p We have a new Hamiltonian system but

OK dp time can be re-scaled

dq dr Symplectic integrators that require equal

oK _ dq timesteps can be constructed with the

Op dr new time variable

"Extended phase space’ using time to
deal with initial conditions issue



General view of resonance

H(L 6) = Ho(I) + eH, (1, 6) w =V Ho(I)

vector of integers ksuchthat k- w ~ 0

Contrast with Periodic orbits

a period T such that for every frequency w,

T(,di
2

is close to an integer Z,

T is a multiple of the period of oscillation for every angle



Small divisor problem
H(I,0) = Hy(I) + e¢H,(0) w=0=VHo(I) frequencies

H1(9) — Z Ak COS(k ' 9) expand perturbation in Fourier series
k

We would like to find new variables @ = 0’ + perturbation
similar to the old variables I = I’ + perturbation

try this Fo=J-0+ Z Ck Siﬂ(k : 9) and try to find nice values for c,
k

Viby =0 = o' Canonical transformation
Voly =J + Z crkcos(k-0) =1 Insert this back into Hamiltonian
k

K(J,0')=Ho(J)+ ) cxViHo(J) kcos(k-6)+e> ajcos(k-6)+ ..

k
= Ho(J) + i(ckw -k + eay)cos(k-0) + ...
K

€dk

w -k

Choose These can be small!

Cx — —



Small divisor problem continued

2
K(J,0) = Ho(J) +€”... first order perturbations removed

I=J— Z caxk cos(k - 9) Nearing a resonance, the momentum
T goes to infinity
We will see that the infinity is not real,
but a result of our assumption that
new and old variables are similar

If there are no small divisors when removing first order perturbations,
there may be small divisors when attempting to remove higher order
perturbations from Hamiltonian via canonical transformation



Using the resonant angle

H(I,0) = Hy(I) + ecos(k - )

Fo=k-0Jy+ Z Ji0; generating function

1 >0
8F2 aFQ /
oo, ~ 0T 97, o 170
6F2 8F2 .
T2 g =] 2 .9 = resonant angle is a
00, 00 0 0Jy ¢ new coordinate

K(Jo, ¢; Ji,0;) = Ho(koJo, kiJo + J;) + €cos @

n-1 conserved quantities J; because Hamiltonian lacks associated angles
Can expand H, in orders of J,

K(Jo, ¢; J;,0;) = an + bJy + € cos ¢ + constants + higher order terms



Resonant angle
K(Jo, ¢; J;i,0;) = Ho(koJo, ki Jo + J;) + €cos ¢

Simple 2D Hamiltonian. There is no infinity in the problem.
Dynamics is similar to that of the pendulum.

We did not assume that all new angles were similar to old angles in
the transformation.

The infinite response previously seen near resonance was caused by
the choice of coordinate system

Above we considered only a single cosine term
When there is more than one cosine term, then dynamics can be more
complicated

Adopt a condition that the system is always sufficiently far from
resonance, allowing perturbation theory to be done at all orders
(Kolmogorov approach)

Consider proximity of resonances (Chirikov approach)



Expanding about a mean motion
resonance (Celestial mechanics)

* j:j-k resonance exterior to a planet

A = /ua, I'=\/pa(l —/1—e?)
1
HO(Aa)UF),V) — _W
e generating function
Fy =T(GA = (J — k)Ap)
* new momenta I=A/j, Y =G\ —(j — k),

—1  is resonant angle

TIE — (5 — k)In,.

unperturbed Hamiltonian units p=1

mean longitude of planet

Ho(1,¢;1,7) =




Expand around resonance

—1
25272

Ko(L,;T,~v) = constant+
3L2
2215

[~ = Kk)ny + 52157 L

Ko(L,¥;T,~) = aL? + bL + constant

with coefficients

3
0= — 2202

2
b=—(j—k)ny, + jno.



Adding in resonant terms from the
disturbing function

secular term

K(L,:T,v) = aL?+bL+cl

k
+ > 0k PEP2 cos (4 — (k — p)w — pwy,)
p=0

c:_%&‘r’/%g/é(&) 010 = —pV/20%% f3
01,1 — pepa for

—2j — ozD]b%)Q

for =
fa1 =

have opposite signs

1425+ @D]bgj/;”

O — DN —



First order resonances

sets distance to
resonance

K(L,;T,v) = aL?+bL+cl
+61. 0712 cos (v — w)

+d1.1 cos(¢ — wy)

corotation term proportional to
planet eccentricity usually
dropped but can be a source of
resonance overlap + chaos
(Holman, Murray papers in 96)



One last C-transformation and
going down a dimension

K(L,:T,v) = aL?+bL+cl
+61. 0712 cos (¢ — w)
Fy = —w)Ji +vJs Ji =1, ¢ =¢y-—w

Ji+Jy =L 0 =41

K =aT?+ VT + bJy + T2 cos ¢
New Hamiltonian has no second angle so J, is conserved
We can ignore it in dynamics
It may be useful to remember J, later to relate changes in eccentricity to
changes in semi-major axis in the resonance

A
Jo=L—-1T=——-1p—-T
J



Distance to Resonance, Pendulum - -

-

P2
H(p,¢) = — +bp+ €ecos¢ /ﬂ

H=02 - S

a X .
fixed point is shifted
_2 - ]
Fy=—(p+b)Q o o 4 ¢
2
P=p+b K = — + ecos ¢ + constant

2
Hamiltonian transformed to a pendulum Hamiltonian
but with momentum shifted



Dimensional analysis
H = al'? + 672 cos ¢

Units of H cm?/s? Units of I cm?2/s

Units of a cm2 Units of § cm s3/2
&6%2x a units s3

— Unit of time a'1/3§2/3 sets typical libration period
&2/3 units cm?/3s1

— Unit of momentum 6%3a2/3  sets resonant widths

S is proportional to Planet mass

— Resonant widths depend on planet mass to the 2/3 power.
Migration is a variation in mean motion so has units s

— Relevant to figure out adiabatic limit



~4 A
D=0 ‘e:m\s‘e\

As distance to d
coordinate
resonance varied __ sstem

K =daT?+ VT +6I'2cos ¢ y = V2T si

Only one side has a separatrix

On one side it looks like a
harmonic oscillator

3 fixed points but only 2 stable

Without circulating about origin
means in resonance

Can think of drifting problems as
having time dependent b



Drifting systems

 Migrating planets

* Dust under radiation forces
(though dissipative dynamics is
NOT Hamiltonian)

e Satellite systems with tidal
dissipation

K=adT?2+ VT + T2 cos ¢

db
PR




Drifting
systems

Particle can be
pumped to high
eccentricity and
remain in librating
island,

resonance capture
possible

n
§\\\\\\\\ )

M ALY

CLTHITE

Particle must
jump to other
side,

no capture
possible



eccentricity

Numerical integration

—1——— 0.45 [

of a planet migrating inwards
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Integration with toy model

6 6 1
5t 5 Bitas F1e w
af 4 Tl yﬁfgﬁx* ’I:iwm¢
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¢ iE ‘;#“ﬁ‘“tﬂ*{u}wq
2 F 2 Hi T et Y
e+t T "vﬂ"“‘M ‘f-.of".h’,,. 4+
1p 1 T e
14 gLl e
12 ;
210 I | 15F
8 [ ] = -
I'~e s q o1

ar 1 05} ]
2t ]
0 - ] o , | _

0 5 10 15 20 25 30 40 0 5 20 25

t [ d
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Capture



Failure to capture

Volume in resonance shrinking rather than
growing (particle separating from planet)

Non-adiabatic limit. Rapid drifting
Initial particle eccentricity is high.
Prevented by strong subresonances



Adiabatic Capture Theory
for Integrable Drifting Resonances

V, = Rate of Volume swept by upper separatrix
V_ = Rate of Volume swept by lower separatrix

V. - V_ = Rate of Growth of Volume in resonance
V.-V

P, = Probability of Capture

e Theory introduced by Yoder
/ N and Henrard, applied toward
?Xs - mean motion resonances by

——— —— Borderies and Goldreich




Critical eccentricity

Below a critical eccentricity
probability of capture is 100%

This eccentricity can be estimated via
dimensional analysis from the typical
momentum size scale in the
resonance

It depends on order of resonance
and a power of planet mass. Hence
weak resonances require extremely
low eccentricity for capture.

Exact probability above e . in
adiabatic limit can be computed via
area integrals




Limitations of Adiabatic theory

K(Ay;T,y)=aA® + bA +cT e Mep
« At fast drift rates resonances L 4,.-(-,;1")'/;.
can fail to capture -- the non- - Eék,pr "reosy ~(k-p)w-pw,)
adiabatic regime. KR
- Subterms in resonances can <" .. i an
cause chaotic motion. AR

~ e

100 150 P )
temporary cdpture in a Sl S
chaotic system P T



Coupled pendulum

H =p? 4+ acos¢+ bcos(¢d + vt)  forced pendulum

H +T2 4 60I''/2 cos ¢ + 6, cos(¢ + vt) D

analogous first order resonance system

* plot points every t=1/v to make a
surface of section

e 2D system (4D phase space) can
be plotted in 2D with area
preserving map

* Nice work relating timescales for: - "

evolution to overlap parameter -, i,
by Holman and Murray :




Chaos first develops near separat

“e

el

SanaNna g
A VAL

.

M

z Y-
“vre

“ien

chaotic orbits
more likely
on this side




Non adiabatic limit

If drift is too fast capture is unlikely. Drifting
past resonance must be slow compared to
libration timescale.

Can be estimated via dimensional analysis

Use the square of the timescale of the
resonance.

This follows as drift rates are in units of t2



Reading

Morbidelli’s book Chap 1
Murray and Dermott (solar system dynamics) Chap 8

Yoshida, H. 1993, Celestial Mechanics and Dynamical Astronomy,
56, 27, “Recent Progress in the Theory and Application of
Symplectic Integrators”

Duncan, Levison & Lee 1998, AJ, 116, 2067, “A multiple timestep
symplectic algorithm for integrating close encounters”

Holman, Matthew J., Murray, N. W. 1996, AJ, 112, 1278,
“Chaos in High-Order Mean Resonances in the Outer Asteroid
Belt”

Quillen, A. C. 2006, MNRAS, 365, 1367, Reducing the probability of
capture into resonance’

Mustill & Wyatt 2011, MNRAS, 413, 554, "A general model of
resonance capture in planetary systems: first- and second-order
resonances’



