Solar System Dynamics

Instructor Alice Quillen

— Seminar class AST570 TR12:30-1:45pm B+L315
http://astro.pas.rochester.edu/~aquillen/ast570/

Dynamics of circumstellar disks, planetary systems,
solar system formation and evolution, exoplanets

Overlap with Galactic Dynamics

Recommended Texts:
— Solar System Dynamics by Murray and Dermott
— Galactic Dynamics by Binney and Tremaine

— Modern Celestial Mechanics by Morbidelli
http://www.oca.eu/morby/celmech.ps
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Some Topics for Lecture

Keplerian orbits, impulse approximation, hyperbolic orbits,
dynamical friction

Multiple planet interactions, secular perturbations, pericenter
glow model, apsidal resonance

Mean motion resonances, chaotic zone boundary near corotation,
timescales and size scales in resonances, resonance capture

Symplectic integrators

Collisional cascades, dust production, debris disk evolution
Planet migration in both gaseous and planetesimal disks
Planetesimal growth models

Chaotic motion and toy models for chaotic dynamics, lifetimes
and diffusion

Tidal evolution

10. Recommended additional topics



Class format

One lecture per week (Tues)

One group discussion/problem session per
week (Thursday)

No exams
A final research project
Problems to be worked at home or in class



- Gravitational

Interactions

* Impulse approximation ---
limit of fast close approac

* Integrating the effect:
Dynamical friction and
gravitational stirring

- * Introduction to Lagrange
points and tidal force




Hyperbolic orbit

m, V,
Impact b P 0
parameter
®
M
0 =2py — L = bV
Deflection Angular
angle momentum,

conserved



The center of mass

The location of the center of mass 1s given by

EMI.XI.
S

The velocity of the center of mass 1s given by taking

X =

the time derivative of the previous expression.
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S

l
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Relation between velocity changes

Two bodies, M, m with velocitiesv, , v,, V='u~Vn
is the velocity

difference
muv,, + Mvy = constant between bodies

mv,, + Mvy — Mv,,, + Mv,, = constant
(m + M)v,, + MV = constant

M
V,, = - —— MV + constant with a San flip |
m depending on sign
VM = — MV + constant convention for V
M
Av,, = -— AV ,
m+ M AV Velocity change between the two
m .
Avy = AV bodies before and after encounter

m + M



The two body problem

For two massive bodies, the total energy 1s

2 2
M v, + M,v; _ GM,\ M, , Kinetic Energy + Potential Energy

E =
2 2 |r1 o

_ MV? . uv:  GMu
2 2 r|
where M = M|, + M, 1s the total mass
( M1M2
M =
M, +M,

V = velocity of center of mass

We can rewrite this as: |E

) 1s the reduced mass

v =v, —V,, 1s the velocity difference, and r =1, —r,



Angular momentum in polar
- coordinates

Only depends
on tangential
velocity
component




Keplerian orbit

| d°r G(M + m)
Radial force — = = 5 r
dt r
vector r between the . "9 G (M - m)
two masses r—rf - 5
T
1
U= —
r 24
 du du h 7 h=r0=1L angular momentum
=T e e
40 40 Td2u " Get rid of time derivative using
i = ———h*u” conservation of angular
i do momentum
dt
2 lved b r= -
d_u+u:G(M—|—m) solved by 1+ ecos(f — @)
dh? h2 h?
with

P= G +m)



Conic sections
Keplerian orbit

orbit p= semllatgs. rectum
e = eccentricity
D a = semi-major axis
"= + ecos(f — w) g= pericenter distance

W = longitude of pericenter
0 =true longitude

0<e<1l p=a(l—e? ellipse,

e=1 p=2 parabola,
e>1 p=ale?—1) hyperbola

note sometimes a negative g is used
for hyperbolic orbits so that formula
for Energy is the same

pericenter for ellipse and hyperbola q=a|e-1]|



True anomaly

p
’r‘ o
1+ ecos(f — w) f=true anomaly
_ p T =1Ccos f heliocentric
1 +ecosf y =rsin f coordinates for

Keplerian problem

Angles with respect to pericenter tend to be called anomali,
those respect to the equinox direction tend to be called
longitudes



Energy and semi-major axis

For the two body system the energy is the sum of the center of
mass motion plus the Keplerian energy

mVy ~ GMm N (m+ M)V2

E — com
2 2a 2
m
Vcom — A%
m+M " G(M +m)
a = 12 a>0 as
. orbit is
unbound

Angular momentum, p and e
h2
P= Gty
hZ B b2‘/04
G(M+m)a G2(M +m)?

Two ways to write p e? — 1)

el —1=



Gravitational focusing

Another use of hyperbolic orbit. The difference between the impact
parameter b and the pericenter distance g

G(M +m)
at closest approach g=a(e-1) a = V2
0 b2v4
e’ =1+ 5 0 5
q = b{\/1+A2—A} GHM +m)
A - G(M +m)
bV?

Limit of high velocity compared to
Gives q~b,

For velocities slow compared to this Up 2
velocity there is focusing and g<b A= ( )

oy — \/G(M+m)



Impact parameter b b
Deflection angle 8,
(9d = 2@50 — T
* For a hyperbolic orbit e>1 In terms of impact
parameter
_ p
r =
1+ ecos f

* Large r when denominator is small or when  secgy = —e
or when tan2¢, =e? -1
1 + tan® ¢y = e

by symmetry this happens at two
different values of angle ¢



Deflection angle

P=0 at closest approach

0o =200 — 7



Velocity Changes

V() sin Qd
Vo(1 — cosby)

AV



Writing Velocity change
in terms of tan @,

0 =209 — 1
AV, = Vysinby
AV = V(1 —cosby) First relate these to functions involving @,
Then convert out of center of mass frame
Vosin8; = —Vysin2¢g
sin2¢y = 2sin ¢g cos ¢g L—cosfa = 1+ c2os 260
= 2tan ¢gsec? ¢ = Zcos 2¢O
B 2tan ¢g = 5
= 17 tanldg 1 4 tan“ ¢g

Can be derived using energy to get a and
the relation between e and tan ¢,

b2V
GQ(M + m)2 h2
P=cr+m)

C=1+tan’¢o =1+

= CL(62 —1)



Velocity changes

First relate these to functions involving ¢,

AV, = Vysinby
AV Vo(l 0.) Then convert out of center of mass frame
= — cos by :
” ’ using Ay = __ M Ay
m+ M
m
A = AV
VM m+ M
A B 2mbVy 1
UM, = G(M +m)2C Perpendicular component
omVy 1 relevant for impulse
Avy = ma approximation

Parallel component
% Important for dynamical

(2 (M + m)2 friction

C=1+tan*¢o =1+



Impulse Approximation

2mbV;3 1
A = 0 b2v4
UM, L G(M +m)2C C:1+tan2¢0:1+G2M0 -
A . QmVO i ( ™ m>
UM = (M +m)C

* |Ignore mass of M, only consider m
* Take the limit of large V, -2

2G'm
AV, =
= Vob

AV = 0




Impulse approx to order of mag

m

bn_ ) TA\

o
M

Assume velocity is high

The encounter is only important for a timescale C|'[=2|:)/VO

The force on M during the encounter is F~G m/b2
F=dv/dt so dv~F dt

Av G_m X 2—b 2Gm
b2 Vo bV,

Velocity change direction is approximately perpendicular to
direction to periapse



Ultraviolet Infrared .

2 N
¢ ° . e W

Chandra Galaxy ‘ Hubble . Spitzer

. ' -
X-ray Observatory Evolution Explorer Space Telescope Space Telescope

Cartwheel Ga|axy Chandra X-ray Observaécg‘lyé)?cllz%-\sl

NASA / JPL-Caltech / P. Appleton [SSC/ Caltech) Hubble Space Telescope * WFPC2
ssc2006-XX Spitzer Space Telescope * IRAC

Impulse is toward
position of closest
approx

Impulse
approximation is good
in the limit that
position of object
during collision is fixed



Applications of the Impulse
Approximation

» Effect of stellar flybys on the production of long period
comets from Oort cloud bodies.

— Impulse approximation is good as these bodies are moving slowly
compared to passing stars. For a comet, the position during the
collision is unchanged, however the velocity changes. If the velocity
perturbation is against the direction of rotation, the angular
momentum drops. That means the eccentricity increases and the
pericenter can be small, so the object can be sent into the inner solar
system.

— Note that Galactic tidal field is also thought to be important, causing
periodic eccentricity evolution.



Applications Impulse Approx

* Tidal heating and evaporation of clusters as they pass through
the Galactic plane

— As positions are not changed during collisions potential energy is
constant

— Kinetic energy is changed leading to heating and so evaporation of
some stars from star clusters

Disruption and evolution of wide stellar binaries

— Semi-major axis distribution for resolved binaries drops at about 10*
AU similar to the boundary of the Oort cloud

— flyby perturbations and Galactic tide would predict a change in the
semi-major axis and eccentricity distribution of very wide binaries.



Response of a Galactic disk
to a perturber on the orbit of
the Sgr Dwarf galaxy using
the impulse approximation
for the Dwarf at its last
pericenter less than 1Gyr
ago.

With the goal of seeing
whether we could create the
Galactic warp and the
Monocerous stellar stream
with a close passage




Stellar flybys and binary interactions
on a gaseous circumstellar disk

Prograde encounters are more damaging though this is not
predicted by the Impulse approximation



Dynamical Friction

Number density of stars a function of v: f(v)

Number of stars interacting for each impact parameter b gives
a rate of encounters

2mh db Vo f (v)d>v
Integrate Av|, as a function of b and v

2mV) i , 62‘/04
(M +m)C C =1+ tan ¢O:1+G2(M+m)2

AUM,H —

In the limit of large b AUH x b2

/ 27deUA’U|| ~x Inb particles at large distances are important



Dynamical Friction

dv 2\ 12 5 (v—vu)

— = 2rIn(1 + A*)G m(M—I—m)/f(v)d v(v o)

A — bma:cvo3 Coulomb log depends on size of system
G(M +m) Large but weak interactions are

important



Chandrasekhar’s formula

WM o 16rinA G*m (M +m) / F(v)v2dv

dt

Chandrasekhar’s dynamical friction formula
— Depends on v so is a frictional type of force

) Times a unitless factor that depends
avm ~ _4rln A3G M'OVM on velocity dispersion
dt U p=nM is stellar mass density

* |s stronger for more massive bodies --- large
objects are damped in planetesimal disks and
large satellite galaxies merger quickly whereas
Globular clusters can orbit in the halo for a
Hubble time



Dynamical Friction

dv pr 4rIn A G*Mp
\%

_ N —

dt U?w M

 The formula itself is not accurate to a factor of 3
or so because of uncertainty in the Coulomb log,
neglecting self gravity of wake and actual orbit
shapes for the important long range interactions

* Friction is stronger for lower velocities

* An acceleration in direction opposite motion ---
loss of angular momentum, spiral inwards for
massive objects orbiting in a Galaxy



Dynamical friction

* More accurate integration of velocity
distribution can be done if the velocity
distribution is Maxwellian. In this case the
friction force depends on the ratio . _ om

d 4rln A G*M 2X _ 2
ayam __ETA 3G P erf(X) — “=e | vy
dt V3 VT

where o is the velocity dispersion

* The friction acceleration is proportional to M
so the force is proportional to M?



Dynamical Friction --- Wake

Dynamical Friction |
o o o e o ®
¢ ¢° % o0 ,, °*° ¢ e

e et e S ..'.<.=@:‘.°

®
®
A




Diffusion coefficients

Consider phase space distribution f(v,z,t)
Rate of change of velocity (units v/t) D(AUH )

Rate of change of dispersion ~ D(Av?), D(Avf),

— Leading to gravitational stirring or heating by scattering

How to compute Diffusion coefficients: Compute Av or Av?
using perturbations from a hyperbolic orbit. Integrate all
possible impact parameters x27bdb. Integrate over velocity
distribution.



Diffusion coefficients
for a Maxwellian distribution

B 4nG?p(m + my) In A

D(Av)) = — G(X)
D(AY) = 4\@WG20pmalnAGg§()

DA = 4\/§wG2(fma1nA [erf(X)); G(X)]
G(X) = 2)1(2[erf(X)—%/);eX2]

See Binney & Tremaine on the Fokker Planck equation (in my
edition chap 8, equations 8.68)



Equipartition of Energy

Kinetic energy v?
E = ke
1
D(AE) = mZ[viD(Avi)—l—QD(Avf)]

m
= muD(Av)) + 5 (D(’Uﬁ) + D(vi))
where convention is the perpendicular part takes into account both

perpendicular directions

Dynamical friction term is negative so is a cooling term. Other
terms are heating terms.

When different mass bodies are present, the two terms can balance
leading to equipartition

mv=m,<v,>



Heating and dynamical friction

de*) Qrio*M*
dt Jm((€2) + (e 2)/2((i2) + (i*%)1/2

% I:BJ m* + 1.4AH (m*<e*2> — m<ez))]
e . e (62> + <e*2> ’

From Stewart and Ida 2000 (lcarus, 143, 28) discussing a
population of planetesimals affected by another population of
planetesimals.

o* is mass density of planetesimals of mass m*.

Q is angular rotation rate for an object in circular orbit at r,
This equation gives eccentricity dispersion growth on mass m
objects in the disk.

Two heating terms, one damping term.




Eccentricity and inclination evolution

m is self

d(e2) Qrg *M_2 m* is other
dt~ Jm((e?) + (e2DVA((i2) + (i+2)?

* [ o k2\ 2
x[BJem*+1.4AHe m, (e”) W(e))},

Dynamical friction
depends on mass of
self and cools disk

Heating depends on mass of
other particles

When these two cancel
we have what is known as
equipartition



Dependence on mass

d (e?) Sngo;',*MG;2
)!2((i2) + ()12

+1.4AH m(e”?) - m(eZ))]
. (e2) + (e*?) ’

Heating rates depend on produce of surface density times
mass. Strongly dependent on the most massive objects in
the disk for most size distributions you could envision.



Evolution of 2 populations

~  a=1AU, o=10gcm> —

~  (a) m=1x10""g, N=800 -
~  (b) m=4x10""g, N=200
01— f=0.7 .

0 2000 4000 6000
t(yr)
Ability of a low mass swarm to cool larger planetesimals invoked in

oligarchic planet formation scenario for outer planets by Lithwick and
Goldreich



Resolved Edge on Debris disks

AU Mic SE i

;
|

“ €\
“, p
P2 -
*
10 AU

Beta Pictoris Hubble Space Te/escope - ACS/HRC

T —— T
B : W SV




Inclination evolution

Similar evolution equation for inclination. For dispersion
dominated regime taking into account heating only

1d{i?)y op
Q dt (12) W is ratio of planetesimal
to stellar mass
With solution Q angular rotation rate
i(t) ~ (ath)l/4 o mass density times r2/M.

(note coefficients dependent on Coulomb log and of order 1
are not given)

Disk thicknesses for a few debris disks are observed (AU Mic,
Beta Pic, maybe Fomalhaut) leading to the speculation that
Pluto sized planetary embryos reside in these disks



Sheer dominated and dispersion
dominated regimes

Relative velocity set by differential rotation --- in which case
sheer dominated

Relative velocity set by velocity dispersion of particles — which
case dispersion dominated

d(e?) Qrio*M*
dt— Jm(e?) + (e 2D2((2) + (i2)1/2
x [BJ m* + 1.4AH (m*<e*2> - '”(ez))}
: N (@A) +ed) )
Two heating terms, first dominates when eccentricity of
perturbers are low, (sheer dominated)

Regime depends on Hill radius ....




Tidal forces

* Expand the gravitational potential from a perturber about
another body

dq)(Ro) dQCI)(Ro) Tﬂ“j

d(r— Ry) = ¢(R i
(I‘ O) ( 0)+ dﬂ?z i dwzdx] 2
GM
Fr = =5 (20, —y,—2) Ry=(D,0,0) r=(z,y2)

* Set tidal force equal to self gravitating force F,.=Gm/r?
Tidal force exceeds self-gravity when

(L)S M < 1 Note that this can always be
D m written as a density ratio

M external (like Sun)
m local object (like Earth)



Expanding Gravitational force in a
Taylor series

fx+0) = f(x)+ f'(x)d + f"(z)%

* Force is a vector and we need to know how the force
depends for three directions of varying the position.
Expand each component separately. (Or expand the
potential and then take the gradient of it.)

f(x+5x,y+5y,z+5z):f(x,y,z)+
of (z,y,2) of (z,y,2) of (z,y,2)

P b T By S,
+32f(93,y72) 07 N 0° f

Ox? 2 0x0y

5aby + ...



Tidal force

 Expand the Force from
the Sun about a distant
point.

Force is stronger nearer
the sun, so pulling out
on this side.

Force is weaker on the
distant side, if we
consider the strength at
the center, we have
overestimated, so the
tidal part pulls away.



Tidal Force
(continued)

GM_ ~ GM Ao
F=- d2®d+ d3®(3(d'r)d—r) .....
Here d is the distance between the Sun and Earth,

and r 1s the distance from the center of the Earth.

Moon

d represents the unit vector between Earth and Sun
r represents a vector from the Center of the Earth

The direction of the tidal force dependson the direction of r

- © 4 gravitational force was d-
o tidal force here d-3

Tidal force is 2F, outward forr toward oraway from the Sun,

and 1s — F] in the plane perpendicular to this line.



Tidal disruption

* If Jupiter has a mean density of about 1g cm™
what can you say about the progenitor comet
for Shoemaker Levy 9 that disrupted upon
close passage to Jupiter?




Tidal stripping

40_

trailing tail

\©)
0
I

Declination (J2000)
<
|

leading tail & ' -

|

N
o
|

235° 230° 225°
Right Ascension (J2000)
Leading tail is has higher angular momentum so moves

faster than cluster center. For elegant semi- analytical
formulation see Johnston, K. et al. 1999




Tidal stripping or disruption
— many settings

Disruption of comets near planets (Shoemaker-Levy 9)

Disruption of stellar binaries near the Milky Way’s central
black hole
Tidal stripping satellite galaxies, globular clusters

— Formation of eccentric disks in centers of galaxies (M31)

Useful to remember mean density of objects

— For Sun and Jupiter ~1.0g/cm3,

— larger stars 0.1

— Rocky planets ~3 (excepting Mercury which is 6 or 7)

— Comets ~0.5 (rubble pile and ice) v2r
— Stony asteroids maybe 1-3 M(r) ~ G
— Galaxies — depends on rotational velocity 02




Roche or Hill Radius

Near a planet its gravitational field is more important than
that of the Sun inside the Hill radius

M, 1/3
g — ap 3M@

Associated Hill velocity M
Vg = THN n=

Where n is the “mean motion” (angular rotation rate for a
circular orbit), or for any orbit P =27n/n



Sheer vs Dispersion dominated

e Difference in velocity from a circular orbit in
units of the Hill velocity greater than 1 then

dispersion dominated

° Or . M 1/3
“~ 30,

e Steward and Ida tend to work in units of Hill
velocities and related eccentricity and
inclination.



Lagra nge Force from Earth

points
G Mg
* Balance the force from the planet I= r2
with that of the Sun
At L1 the Earth’s force exactly
s the | f f th
cancels the larger force from the GM,,

Sun so that an object feels slightly p — _
less force, allowing it to remain in a r
orbit with the same orbital period

as the Earth which is slightly further

out

At L2 the Earth’s force adds to the
Sun’s allowing an object to orbit
with a orbital period equivalent to
that of the Earth even though the
object is further away from the Sun

2

Force from Sun

L2
F =

®r-

LY F =

G M

o

G M
RQ

G M (1
RQ

1- %)
R

s
R



Lagrange Points

There are special points
where a particlein a
frame rotating with a
planet feels no net force.

These are known as
Lagrange points.
There are 5 of them.

We can think of L1 and L2
as places where the tidal
force from the Sunis
balanced against gravity
from the planet.




Restricted Three-body Problem

 Two massive bodies, in a circular orbit. Like Jupiter+Sun.
Orbit is Keplerian.

* Consider the dynamics of a third massless particle.

In the rotating frame with
gravitational potential from
each interaction

pseudo or effective
potential



y (AU)

Effective potential contours

GM, GM, Q*,

Cepp=— - -5
ror] rorl 2
__GM. _ GM, GO +M,),
r—r. |r—r, 2a3

Consider an orbit with nearly zero

velocity. The Coriolis force is
zero.

2—;’—2QXV=—V@€ff

Fixed points are extrema in the
-2 0 2 effective potential




y (AU)

Effective potential contours

L4,L5 are potential
minima.
Stable minima.

L1,L2 are saddle points.
Unstable minima



Fixed points and oscillations about
fixed points

e Lagrange points are fixed points in the rotating
frame

* By expanding as a function of distance from a
fixed point, it is possible to determine whether
stable or not, and if stable, what period of
oscillations about the fixed point is



(b)

Ly

Ls

From dePater and Lissauer

In the frame rotating with the Earth.

Horseshoe
and Tadpole
Orbits

The L4 and L5 points are stable.
Near these points there are small
closed orbits.

The other Lagrange points are
not stable. This means that a
small nudge away from the point
will cause the particle to move
far away in its orbit.

Space craft putin the L1 or L2
points must be maintained in
these positions.



Same semi-major axis as a planet.

Quasi-satellte
@,
L . .

L I ‘.. .. o
Y Quasi-satellite

Both the planet and the quasi-satellite The quasi-satellite appears to make an
yo around the Sunin one year oblony loop when viewed from the planet




Quasi satellites

Earth, Venus, Neptune and (recently
discovered) Pluto have quasi-satellites

Goes outside the Hill sphere of the planet
(this is different than regular satellites

Stays in the vicinity of the planet (different
than tadpole or horseshoe orbits

Perturbations from the planet are important,
lifetimes thousands of orbits but not
necessarily the age of the solar system



Gravitational potential
in free space

* Qutside a planet there is no mass density so the
gravitational potential satisfies Laplace’s V24 — 0
equation

* This can be re-written in the form of Legendre’s
equation, and this is satisfied by spherical
harmonic functions multiplied by powers of r

o

O(r, p,¢) = {AMQ + Bnr*”“)} Sn(p, @)

n=0
* By symmetry near a non-round body the

solution should only depend on p=cos 6 and
should be independent of ¢



Gravitational potential

In the case of axi-symmetry and requiring the potential to be finite either
work with

o Bn oo N
O(rop) =Y 5 Palp)  or  (rp) =Y Aar"Pa(p)
n=0 n=0
-potential outside an -potential due to tidal forces

oblate spinning planet -potential inside a non-round body



Expansion and Legendre polynomials

1 1
r-R| Vr2+RZ_2r-R
1 1 _ (r-R)
R\/14+ a2 —2apu H="""h
,
expand in powers of a o = R

1 1 = d" r\" 1
_ L 1 2 _9u0)" 12|, _ (_) A+
R r| anzodoc”( Tt =2pa)" Fla=o (R ) 1)

This function also satisfies Laplace’s equation with axi-symmetry in
spherical coordinates

& ([ 0V d 1%
il i — (1 =)= ) =
or (r 3R)+5’u (( Mﬁu) ’




Expansion and Legendre polynomials

Separating into powers of r and functions p we can show that the
functions of u must satisfy Legendre’s equation

PPu(n) . OP()
(1 — pu?) 02 21 N +nn+1)P,(u) =0
1 1 [/ T\" P_are the Legendre
r—R| R Z (E) FPulp) polynomials



Gravitational potential due to tides

GM /r\2 ,
Op(r,p) ~ — (_) P lowest order is
T( ) R R 2(,u) the quadrupole
1 2
Po(p) = 53" — 1)

tidal potential is the quadrupolar term in this expansion



Reading

* This lecture:
— Binney and Tremaine Chap 7

— Murray and Dermot Chap 2
— Stewart & Ida 2000, Icarus, 143, 28



