
PROBLEM SET #3B AST242

1. Are galaxy gas disks accretion disks?

Consider a gas rich spiral disk galaxy. A typical velocity dispersion for turbulent
motions in the HI gas is of order 10 km/s and a typical radial sizescale for the disk is
of order 10 kpc. A typical circular rotation velocity would be 200 km/s.

(a) Using the velocity dispersion in the HI disk and hydrostatic equilibrium, estimate
the scale height of the atomic gas component in parsec. Here the velocity dispersion
plays the role of the sound speed.

(b) Using the scale height and velocity dispersion in the HI disk, estimate a turbulent
viscosity.

(c) Using the radius of the galaxy, estimate an accretion timescale in years, or a
timescale for accretion to take place over a large radius.

(d) Compare an accretion timescale to the Hubble time. Is viscous accretion likely to
be important in galactic gas disks?

It may be helpful to check that 1 km/s is approximately 1 pc/Myr is approximately
1 kpc/Gyr.

Figure 1. Galileo image of Jupiter’s red spot used by Choi et al. (2007).
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2. Estimating the vorticity of Jupiter’s great red spot

Figure 2. Velocity vectors measured by Choi et al. 2007.

Using Figure 2, and taking into account the rotation of Jupiter and latitude of the
red spot, estimate the vorticity in Jupiter’s red spot, in units of s−1.

Figures 1 and 2 are from the following paper: Velocity and Vorticity Measurements
of Jupiter’s Great Red Spot Using Automated Cloud Feature Tracking, Choi, D. S.,
Bandfield, D., Gierasch, P. J. & Showman, A. P. Icarus, 188, 35-46 (2007).

The radius of Jupiter is approximately 70,000 km. The sidereal rotation period of
Jupiter is P = 9.925 hours = 3.573×104 s giving a spin of Ω = 2π/P = 1.758×10−4 s−1.

The cross product in cylindrical coordinates

∇×A =

(
1

r
Az,φ −Aφ,z

)
r̂ + (Ar,z −Az,r) φ̂+

1

r

(
∂(rAφ)

∂r
−Ar,φ

)
ẑ

3. Potential flow

Consider a flow where the vorticity is initially zero and the flow is everywhere
inviscid, barotropic and incompressible.
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(a) Explain using the Helmholtz equation or Kelvin’s circulation theorem why is it
possible to construct a velocity potential function Ψ with velocity

u = ∇Ψ

(b) Show that
∇2Ψ = 0

(c) Show that at each point streamlines are perpendicular to equipotential surfaces.

(d) If the flow is also steady state, show that Bernoulli’s constant is constant everywhere
in the flow, not just conserved along each streamline.

4. Burger’s vortex

Burger’s vortex is one of a few known simple steady state analytical solutions to the
Navier-Stokes equation that exhibit vorticity. It can be used as an analogy for how
water rotates as it goes down a drain, or perhaps for a tornado.

Figure 3. Streamlines for Burger’s vortex. If z is flipped then the flow is
like water going down a drain.

Consider a steady flow in cylindrical coordinates with velocity vector

(1) v = vrr̂ + vzẑ + vφφ̂

with

vr = −1

2
αr

vz = αz

vφ = vφ(r)(2)
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and α > 0 a constant that describes the strain or rate of shear in the flow.

(a) Show that this flow is incompressible.

Let the vorticity

(3) ω = ∇× v = ωrr̂ + ωφφ̂+ ωzẑ

(b) Show that the vorticity only contains a ẑ component and

(4) ωz =
1

r

d

dr
(rvφ(r))

For incompressible flow the Navier-Stokes equation can be manipulated to give an
equation for the evolution of the vorticity,

(5)
∂ω

∂t
−∇× (v × ω) = ν∇2ω

where ν is the kinematic viscosity.

(c) Show that equation 5 for this flow can be written as

Dωz
Dt

= ωz
∂vz
∂z

+ ν∇2ωz

Dωz
Dt

= ωzα+ ν∇2ωz(6)

(d) Show that equation 6 can be written

(7)

(
∂r +

1

r

)(
∂r +

αr

2ν

)
ωz = 0

with ∂r = ∂
∂r .

(e) Show that a steady state solution to equation 6 is

(8) ωz = ω0 exp
(
−cr2

)
with constant c, and find the constant c. This constant depends on the strain α
and the kinematic viscosity ν.

Here the viscosity causes the vorticity to diffuse outward, whereas the strain, with
strength α, causes a stretching of vortex lines and so an increase of vorticity. In
steady state there is a balance between the two affects.

(f) The solution is a Gaussian distribution of vorticity. If the strain increases how
(with what power index) does the width of the Gaussian vary? If the viscosity
increases how does the width of the Gaussian change?

The following may be handy:
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Figure 4. The strain of the flow stretches the vortex tube causing vorticity
to increase. Viscosity causes vorticity to diffuse outward. In steady state
there is a balance between the processes.

In cylindrical coordinates1 the divergence

(9) ∇ ·A =
1

r

∂Aφ
∂φ

+
1

r

∂(rAr)

∂r
+
∂Az
∂z

and the cross product

(10) ∇×A =

(
1

r
Az,φ −Aφ,z

)
r̂ + (Ar,z −Az,r) φ̂+

1

r

(
∂(rAφ)

∂r
−Ar,φ

)
ẑ

The z component of the Lagrangian derivative

(11) [(u ·∇)A] · ẑ = urAz,r +
uφ
r
Az,φ + uzAz,z

The Laplacian operator

(12) ∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2
+
∂2f

∂z2

The vector identity

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B ·∇)v − (A ·∇)B(13)

5. Spiral Density Waves in a Self Gravitating Gas Disk

1http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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Consider a thin rotating gas disk with surface density Σ. We denote the radial
velocity u and the tangential velocity v. In cylindrical coordinates (R,φ) the radial and
tangential components of Euler’s equation are

∂u

∂t
+ u

∂u

∂R
+
v

R

∂u

∂φ
− v2

R
= − ∂h

∂R
− ∂Φ

∂R
(14)

∂v

∂t
+ u

∂v

∂R
+
v

R

∂v

∂φ
+
uv

R
= − 1

R

∂h

∂φ
− 1

R

∂Φ

∂φ
(15)

where h is the enthalpy. We consider an unperturbed system with with radial velocity
u0 = 0, and tangential velocity v0 = RΩ where Ω = dΦ0

dR and the unperturbed grav-
itational potential axisymmetric, Φ0(R). The unperturbed system has enthalpy, h0,
surface density, Σ0, gravitational potential, Φ0, and tangential velocity, v0, that are
independent of time and φ.

Define the epicyclic frequency as

(16) κ2 ≡ 3Ω2 +
d2Φ0

dR2

(a) Show that to first order Euler’s equations are

∂u1

∂t
+ Ω

∂u1

∂φ
− 2Ωv1 = − ∂

∂R
(h1 + Φ1)(17)

∂v1

∂t
+ u1

κ2

2Ω
+ Ω

∂v1

∂φ
= − 1

R

∂

∂φ
(h1 + Φ1)(18)

and the continuity equation is

(19)
∂Σ1

∂t
+ u1

(
Σ0

R
+
∂Σ0

∂R

)
+ Σ0

∂u1

∂R
+ Ω

∂Σ1

∂φ
+

Σ0

R

∂v1

∂φ
= 0

Assume first order perturbations in the form

(20) ∝ ei(kR+mφ−ωt)

These perturbations have m spiral arms.

(b) Show that Euler’s equations become

i(mΩ− ω)u1 − 2Ωv1 = −ik(h1 + Φ1)(21)

i(mΩ− ω)v1 + u1
κ2

2Ω
=
im

R
(h1 + Φ1)(22)

and the continuity equation becomes

(23) i(mΩ− ω)Σ1 + u1

(
Σ0

R
+
∂Σ0

∂R

)
+ ikΣ0u1 +

imΣ0v1

R
= 0

Assume kR� 1 so that radial derivatives are dominated by k. Taking the limit of
large k is equivalent to a tight winding approximation or a WKB approximation.
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In this limit terms proportional to 1
R can be dropped as they are smaller than terms

proportional to k.

(c) Show that in the WKB limit

(24) u1 = −k(h1 + Φ1)(mΩ− ω)∆−1

and

(25) (mΩ− ω)
Σ1

Σ0
+ ku1 = 0

where

(26) ∆ ≡ (mΩ− ω)2 − κ2

Combine these equations together to show that

(27) Σ1 = k2Σ0(h1 + Φ1)∆−1

(d) Assume that the disk is very thin. Using LaPlace’s equation ∇2Φ = 0 above
the disk and Gauss’ law in a pillbox containing the disk and Poisson’s equation
∇2Φ = 4πGρ, show that

(28) Φ1 ≈ −
2πGΣ1

|k|

(e) Using h1 ∼ c2
s

Σ1
Σ0

and the above expression for Φ1 derive the following dispersion
relation for spiral density waves valid for a thin disk in the WKB approximation

(29) (mΩ− ω)2 − κ2 = k2c2
s − 2πGΣ0|k|

(f) For axisymmetric perturbations m = 0. Show that all wavevectors gives wavelike
solutions and all perturbations are stable if

(30) Q ≡ csκ

πGΣ0
> 1

The above parameter is called the Toomre Q parameter.

Notes: equation (24) implies that velocity perturbations become infinite as ∆ → 0.
These are known as Lindblad resonances. Equation (25) implies that density perturba-
tions can be large where mΩ ∼ ω. This is known as a corotation resonance. Lindblad
resonances are locations where spiral density waves can be excited or driven, for exam-
ple by planets or satellites embedded in the disk. Numerical N-body simulations if they
are begun with Q near 1 will exhibit spiral density waves or bar instability. Here we
have considered a gas disk however a similar stability criterion exists for a particle or
stellar disk, but with the velocity dispersion of the stars or particles playing the role of
the sound speed.


