
PROBLEM SET #1B AST242

1. Validity of continuum or fluid approximation in a hydrostatic planetary at-
mosphere

Consider the Euler equation

(1)
∂u

∂t
+ u ·∇u = −1

ρ
∇p+ g

with an additional force from g, the gravitational acceleration. In hydrostatic equilib-
rium we can assume that the velocity u = 0 and remains that way.

(a) Assume a planet’s atmosphere is isothermal and has temperature T and sound
speed cs. Show that a solution for the density as a function of height above the
surface z is ρ ∝ exp(−z/h) and find an expression for the scale height h in terms
of the gas temperature.

(b) The velocity, vK , of an object in circular orbit of radius r around a planet is

vK =

√
GMp

r

where Mp is the planet’s mass and G the gravitational constant. Compare this
to the sound speed of the gas. For what sound speed would the atmosphere scale
height be the same order as the planet’s radius, Rp? For what scale height (in units
of the planet’s radius) is the mean thermal velocity equal to or below the escape
velocity? When the scale height is of order Rp or greater, a constant gravitational
acceleration is a bad assumption.

(c) High above a planet’s surface, the atmosphere becomes more and more rarified.
Assume a density at the planet’s surface of ρ0, the atmosphere is comprised of
molecules of mass m and a collision cross section for the molecules of σ. At what
height above the planet’s surface does a fluid approximation fail? (Where the
mean free path is greater than the scale height). When the fluid approximate fails,
equilibrium is no longer maintained by collisions. This height is called the exobase.

This problem is based on one posted by Eugene Chiang.

2. Destabilizing influence of radiation pressure.
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The most massive stars that can form are those in which radiation pressure and the
non-relativistic kinetic pressure are approximately equal. The total pressure is the sum
of that from gas and radiation,

(2) P =
kBρT

µmp
+

4σSBT
4

3c

where kB is Boltzmann’s constant, σSB is the Stefan-Boltzmann constant, c, the speed
of light, mp the mass of a proton, µ the mean molecular weight, ρ the gas density, and
T the temperature.

Assume the the gravitational binding energy of a star of mass M and radius R is

Eg ∼ GM2/R

The virial theorem (see the problems below) can be used to relate the mean pressure to
the gravitational binding energy

(3) P̄ =
Eg

3V
where V is the volume of the star. The gravitational binding energy can be integrated
as

Eg =

∫ R

0
4πr2ρΦ(r)dr

where Φ(r) is the gravitational potential at r. The mean pressure is also an integral

P̄ =
1

V

∫ R

0
4πr2P (r)dr

(a) Using an equation for hydrostatic equilibrium and the integral expressions for Eg

and P̄ , show that equation 3 is approximately correct.

-To do this first show that
∫

4πr3 dP
dr dr = −3P̄ V . Then use hydrostatic equilibrium

to write the same integral in terms of Eg. It may be useful to know that dΦ(r)
dr =

−GM(r)
r2

and Φ(r) = GM(r)
r where M(r) is the mass inside radius r.

(b) Using relation 3 for mean pressure show that

(4) P̄ ∼ GM2/3ρ4/3

(Remove V,R from the equation by replacing with expressions that depend on
M,ρ)

(c) Assume that the radiation pressure is approximately equal to the gas kinetic pres-
sure (as is true in very bright stars). Making this assumption solve for T (using
equation 2). Show that the total pressure is then

(5) P ∼
(σSB

c

)−1/3
(
kBρ

µmp

)4/3
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(d) Equate the two expressions for pressure (equation 4 and 5) and solve for mass in
solar masses assuming a fully ionized hydrogen composition. Put your mass in
solar masses! This gives a very approximate estimate for the maximum mass of a
bright star.

Based on a problem in Astrophysics in a Nutshell by Dani Maoz but without some
of the factors.

3. The Potential Energy Tensor

The gravitational potential, Φ(x) generated by a mass distribution with density ρ(x)
is

(6) Φ(x) =

∫
Gρ(x′)

|x− x′|
d3x′

We define a potential energy tensor (attributed to Chandrasekkar)

(7) Wij ≡ −
∫
ρ(x)xi

∂Φ

∂xj
d3x

Apparently, this integral has been called the virial by R. Clausius.

(a) Show that the potential energy tensor can be written

Wij = −G
2

∫∫
ρ(x)ρ(x′)

(xi − x′i)(xj − x′j)
|x− x′|3

d3xd3x′

It is a symmetric tensor.

Hint: After writing Wij as a double integral, swap indices of integration and add
to itself.

(b) Show that

trace W = Wii =
1

2

∫
ρ(x)Φ(x)d3x

is the total potential energy integrated over all space.

(c) Show that if the mass distribution is spherically symmetric, then Wij contains
terms only on the diagonal and all three diagonal terms are identical.

4. The Tensor Virial Equations

Consider a distribution of stars in phase space with function f(x,v, t) describing
numbers of stars per unit volume dx3 and per unit velocity volume d3v. The number
of stars per unit volume n(x, t) is the integral of the distribution function over velocity
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space. By integrating the distribution function times vi over velocity space and then
dividing by n, we can define a mean velocity ui ≡ n−1

∫
f(x,v, t)vid

3v. We can integrate
f(x,v, t)(vi − ui)(vj − uj) over velocity space giving us the velocity dispersion tensor.
It is useful to define a density ρ = mn where m is the average mass of the stars. The
average value of the x, y, z velocity dispersions or 1/3 the trace of the velocity dispersion
tensor wij is σa and we can define a pressure as P = ρσ2

a. We can also subtract the trace
from the velocity dispersion tensor giving us the traceless component yij that describes
the anisotropy of the velocity distribution.

By multiplying the Collisionless Boltzmann equation by a velocity component vi and
integrating over velocity space we find

(8)
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pδij + ρyij) + ρ

∂Φ

∂xi
= 0

In this problem we will integrate the above equation over space to derive a tensor
virial theorem.

Recall

〈vivj〉 = n−1

∫
f(x,v, t)vivjd

3v = wij + uiuj

where the velocity dispersion tensor

wij = 〈(vi − ui)(vj − uj)〉 =
1

ρ
Pδij + yij

using the definition for P .

Define a kinetic energy tensor K as

Kij ≡
∫

1

2
ρ〈vivj〉d3x =

∫
1

2
ρ(wij + uiuj)d

3x

We can divide the kinetic energy tensor into two parts, one dependent on the integral
of mean velocities and other on the integral of the velocity dispersion tensor

Kij = Tij +
1

2
Πij

with

Tij =

∫
1

2
ρuiujd

3x

Πij =

∫
ρwijd

3x

The tensor T can be associated with the kinetic energy in bulk motions like rotation,
whereas Π is associated with the kinetic energy in random motions.
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Define a moment of inertia tensor

(9) Iij ≡
∫
ρ(x)xixjd

3x

In the previous problem we defined a potential energy tensor

Wij ≡ −
∫
ρxi

∂Φ

∂xj
d3x

= −G
2

∫∫
ρ(x)ρ(x′)

(xi − x′i)(xj − x′j)
|x− x′|3

d3xd3x′

We take equation 8 and multiply by xk and then integrate over all space

(10)

∫
d3x xk

[
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pδij + ρyij) + ρ

∂Φ

∂xi

]
= 0

The kinetic energy, dispersion, moment of inertia and potential energy tensors are all
symmetric. We switch the indices of equation 10∫

d3x xi

[
∂

∂t
(ρuk) +

∂

∂xj
(ρukuj + Pδkj + ρykj) + ρ

∂Φ

∂xk

]
= 0

and then average the two equations

1

2

∫
d3x

[
xi
∂

∂t
(ρuk) + xk

∂

∂t
(ρui) +

xk
∂

∂xj
(ρuiuj + Pδij + ρyij) + xi

∂

∂xj
(ρukuj + Pδkj + ρykj) +

xkρ
∂Φ

∂xi
+ xiρ

∂Φ

∂xk

]
= 0(11)

(a) Show that

1

2

∫ [
xk

∂

∂xj
(ρuiuj + Pδij + ρyij) + xi

∂

∂xj
(ρukuj + Pδkj + ρykj)

]
d3x = −2Tik −Πik

This is the middle term in equation 11.

(b) Check that the two last terms in equation 11 (on the last line) give −Wik.

(c) Using the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0

show that
dIik
dt

=

∫
(xiuk + xkui)ρd

3x
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and
1

2

∫
d3x

(
xk
∂(ρui)

∂t
+ xi

∂(ρuk)

∂t

)
=

1

2

d2Iik
dt2

(d) Put these all these terms together to show that

(12)
1

2

d2Iij
dt2

= 2Tij + Πij +Wij

Equation 12 is known as the Tensor Virial Theorem. It has been used to
study the relationship between velocity dispersion and anisotropy (contributing to
Π), rotational support (contributing to the bulk motions, T), and the observed
ellipticity of the isophotes (affective the potential energy tensor, W) in elliptical
galaxies and galactic bulges.

The total kinetic energy, K, of the system can be computed from the diagonal
terms of the kinetic energy tensor K (this is because the total kinetic energy only
involves ρv2).

trace K = trace T +
1

2
trace Π

Taking the trace of the tensor virial theorem and assuming that the system is in

steady state (or equilibrium) so d2I
dt2

= 0 we find

(13) 2K +W = 0,

where W is the total potential energy and equivalent to trace W.

Equation 13 is known as the scalar virial theorem.


