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1. Viscous flows

Up to this time we have ignored viscosity. The most common astrophysical appli-
cation of viscosity is the accretion disk, so we will introduce viscosity specifically to
study viscous evolution of accretion disks.

We showed earlier that conservation of momentum could be written as

(1)
∂(ρu)

∂t
+∇ · π = −ρ∇Φ

with stress tensor πij = pδij +ρuiuj giving the momentum flux. We now consider the
momentum flux caused by viscosity and add this viscous stress tensor to the stress
tensor above coming from bulk flow and pressure.

As we discussed earlier the ij component of the stress tensor is the i-th component
of the force per unit area on a surface with normal in the j direction. The ij
component of the stress tensor is also the i-th component of the momentum density
through a surface with normal in the j direction.

1.1. The velocity gradient tensor. If there is no gradient in velocity then we
expect no stress. We expect viscous forces to depend on the gradient of the velocity,
∇u, however this is a 2 index tensor as each component is ∂ui

∂xj
. It can be described

as a 3 × 3 matrix, each index covering xyz. We can decompose the gradient of the
velocity into three components: a traceless symmetric component, σ, a traceless
rotation component, r, and a component that has the trace θ;

(2) ∇u =
1

3
θg + σ + r

where g is the tensor δij and

θ = ∇ · u(3)

σij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
θδij(4)

rij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(5)

We explain why the tensor r is equivalent to solid body rotation of the fluid element
and so should not cause any viscous stress. For a body in solid body rotation with
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angular velocity Ω the velocity at each point is u = Ω × r or using summation
notation

(6) ui = εijkΩjxk

where εijk is the Levi-Civita symbol (see http://en.wikipedia.org/wiki/Levi-Civita symbol).
Let’s be specific about he Levi-Civita symbol

(7) εijk =

 0,
1,
−1,

if
any two labels are the same
i, j, k is an even permutation of 1, 2, 3
i, j, k is an odd permutation of 1, 2, 3

Any cross product A = B×C can be written

(8) Ai = εijkBjCk

where summation notation means any repeated index is summed over all coordinates.
Taking the derivative of equation (6)

(9)
∂ui
∂xj

= εiklΩk
∂xl
∂xj

= εiklΩkδlj = εikjΩk

This is antisymmetric. Let us take this expression for ui,j and with it create an
antisymmetric tensor like r

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
=

1

2
(εikj − εjki) Ωk

=
1

2
(εikj + εikj) Ωk

= εikjΩk(10)

How many degrees of freedom does an antisymmetric 3 × 3 matrix have? The
diagonal terms must be zero. There are 6 non-diagonal terms and they must come
in pairs, positive and negative. Therefore there are 3 degrees of freedom. There are
also three components of the vector Ω. This means that any r can be described in
terms of a solid body rotation with

(11) rij = εikjΩk

Because our antisymmetric tensor r describes the solid body rotational fluid motion,
it can cause no viscous stress.

1.2. Viscous stress tensor. It has been found experimentally that the magnitude
of the shear stress in viscous flows is often proportional to the symmetric components
of the velocity gradient. This is an analogy to Hooke’s law. In other words

(12) Tvisc approximately ∝∇v
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Figure 1. The velocity gradient tensor is decomposed into three
pieces, the trace, describing compression or expansion, solid body ro-
tation and compression-less shear.

More exactly, using two coefficients ζ, η, the component of the stress tensor due to
viscosity is written as

(13) Tvisc = −ζθg − 2ησ

and there is no force if the fluid is simply rotating so no dependence on r. The first
coefficient, ζ, is known as the bulk viscosity and only is important in compressible
flows. The second term, η, is sometimes called the shear viscosity. Bulk viscosity is
often neglected in astrophysical flows except when considering the structure of shocks.
Both bulk and shear viscosity are often assumed to be independent of position and
temperature. Here we have assumed that the viscous strain is proportional to the
velocity gradient. When this is true the fluid is said to be ‘Newtonian’. Some
materials have memory or behave similar to solids when there is a rapidly varying
pressure gradient but behave like fluids when the forces on them are slowly changing.
These would require modifications to the stress tensor. For example, see the NCFM
movie on rheological properties of fluids for some examples of non-Newtonian fluids.

The gradient of the viscous stress tensor is a term that we can add to our equation
for conservation of momentum;

(14) ∇Tvisc = −∇(ζ∇ · u)− 2∇ · (ησ)

If we assume that the bulk and shear viscosity are independent of position then we
can more easily compute the i-th component of the second term (in summation
notation, summing over j index)

−2η
∂

∂xj

[
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
(∇ · u)δij

]
= −η

[
∂2ui
∂xj∂xj

+
∂

∂xi

∂uj
∂xj
− 2

3

∂

∂xi

∂uj
∂xj

]
= −η

[∑
j

∂2ui
∂x2

j

+
1

3

∂

∂xi
(∇ · u)

]
(15)
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We can then write

(16) ∇Tvisc ∼ −(ζ + η/3)∇(∇ · u)− η∇2u.

Assuming incompressible flow (so ∇ · u = 0) and inserting this component of the
stress tensor into our equation for conservation of momentum we find

(17)
∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ν∇2u

where

(18) ν ≡ η

ρ

is the kinematic viscosity and we have assumed that ν does not vary with position
in the fluid. The above equation is known as the Navier-Stokes equation. Let us be
specific about the components. For the i-th component of this equation the viscosity
term looks like

(19) ν
∑
j

∂2ui
∂x2

j

If the flow is compressible then more generally

(20) ρ
Du

Dt
= −∇p+ (ζ + η/3)∇(∇ · u) + η∇2u

though extra terms can be added if η and ζ are dependent on position.
Note that the addition of second order derivatives means that integrations require

additional boundary conditions. Viscosity is a form of energy dissipation. When vis-
cosity is important there is a corresponding term in the energy conservation equation
that depends on the viscosity and gradients of the velocity.

1.3. Navier Stokes equation – diffusion. Consider the Navier Stokes equation

(21)
∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ν∇2u

Consider a region with a really steep velocity gradient. The second derivatives dom-
inate the first ones and

(22)
∂u

∂t
∼ ν∇2u

This can be recognized as a diffusion equation with the kinematic viscosity, ν, the
coefficient of diffusion. Viscosity tends to reduce velocity gradients.
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1.4. Viscosity to order of magnitude. Note that the kinematic viscosity, ν, has
units cm2/s like a diffusion coefficient. For a gas it can be approximated as v2τ or
λ2/τ or vλ where v is a mean thermal velocity, τ the collision timescale and λ the
mean free path. For a turbulent medium one can use a mean eddy velocity and
length scale.

Figure 2. Two flat plates separated by a small distance, h, that is
filled with a viscous fluid. A force applied to the top plate allows it to
move. The force depends on the viscosity of the fluid.

1.5. Example using the viscous stress tensor: The force on a moving plate.
A plate h = 0.01 cm from a fixed plate moves at a velocity of v =100 cm/s. In
between the two flat plates is a fluid with dynamic viscosity of water or 8.9 ×10−3

Pa s. In cgs 1 Poise = 0.1 Pa s. So in cgs the dynamic viscosity is 8.9 ×10−4 Poise.
What is the force per unit area needed to maintain this velocity?

We take x in the direction that we are pushing the plate and z the direction
perpendicular to the plates. We can let z = 0 at the bottom plate and z = 0.01 cm
at the top plate. The fluid velocity where it touches the plate should be the same as
the plate.

(23) u = (v
z

h
, 0, 0)

We can assume the bottom plate is not moving so has ux = 0 and the top plate is
moving at ux = 100cm/s. The gradient of the x component of velocity

(24)
∂ux
∂z

=
v

h
=

100cm/s

0.01cm
= 104s−1

Let’s consider the traceless symmetric part of the velocity gradient σ. We have
no motion in the z or y directions. The gradients in the x and y direction of ux are
zero. The only part of σ that is non-zero is the part containing ∂ux

∂z
.

The viscous stress tensor gives the components of the force per unit area through
a surface. Consider component Txz of the viscous stress tensor. This gives the force
per unit area in the x direction through a surface oriented with normal along the z
direction. Ignoring terms containing ∇ ·u which is zero if the fluid is incompressible

(25) Tvisc = −2ησ
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As the only gradient of the velocity that is non-zero is ∂ux
∂z

so we know that Txx =
Tyy = Tzz = Tyz = Txy = 0. We now compute Txz

(26) Txz = −2ησxz = −2η
1

2

(
∂ux
∂z

+
∂uz
∂x

)
= −η∂ux

∂z

Using the dynamic viscosity of water and our velocity gradient we find that

(27)
F

A
= Tvisc,xz = −η∂u

∂x
= −8.9× 10−4 100

0.01
= −8.9 dynes cm−2

where the sign is in the direction opposite to the flow; the fluid opposes the velocity
shear.

Figure 3. Flow of blood in a capillary that induced by a pressure gradient.

1.6. Example using the Navier Stokes equation – Poiseuille flow or Flow
in a capillary. Consider the viscous flow of blood in a capillary. Supposing there is
a constant pressure gradient ∇P along the capillary of radius a. We orient our coor-
dinate system so the capillary extends along the z direction. We assume cylindrical
symmetry. We would like to find the velocity profile u(r). We assume there is only
flow in the z direction and the flow is steady. We have a boundary condition u = 0
at r = a. Here is a summary of boundary conditions and assumptions

∇P =
dP

dz
ẑ(28)

u = u(r) ẑ(29)

u(r = a) = 0(30)

∂u

∂z
= 0(31)

∂u

∂t
= 0(32)

∂u

∂φ
= 0(33)
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The Navier-Stokes equation for steady flow

(34) u · ∇u = −1

ρ
∇P + ν∇2u

As u ⊥∇u = 0, the term on the left is zero. There are only radial derivative terms
but the only component of interest is the z component as the pressure gradient is
zero in other directions. Since there are only radial gradients of u (where u is in
the z direction) we need only take the radial term in the diverge term in cylindrical
coordinates

(35)
∇P
ρν

=
1

r

∂

∂r
(r
∂u

∂r
)

We multiply both sides by r and integrate

r
∇P
ρν

=
∂

∂r
(r
∂u

∂r
)(36)

r2∇P
2ρν

+ C = r
∂u

∂r
(37)

with constant C. We divide by r and integrate again

r
∇P
2ρν

+
C

r
=

∂u

∂r
(38)

r2∇P
4ρν

+ C ln r +D = u(39)

with additional constant D. We now use our boundary conditions to set constants,
C,D. D must be zero so that u is finite at r = 0. The velocity is equal to zero at
r = a and this lets us solve for C. We find a velocity profile

(40) u(r) =
∇P
4ρν

(r2 − a2)

The sign of u is such that motion is in the opposite direction as the pressure gradient.
Flow is from high to low pressure.

Here we assumed that there were no gradients in the z direction. At the beginning
of a pipe, boundary layers caused by viscosity would grow until they meet, and
afterwards we could have a smooth steady Poiseuille flow.

1.7. Viscous Energy Dissipation. A stress tensor, T, gives a momentum flux or
a force per unit area. For example if we have a unit vector n̂

(41) A = T · n or Aj = Tijni
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gives the j-th force component per unit area on a surface with normal n̂ or equiva-
lently the flux of the j-th component of momentum through a surface with normal
n̂. Work is force times distance, so

(42) Ads = T · nds

is the work per unit area pushing on the surface as it moves a distance ds and

(43) B = T · u with Bj = Tijui

is the work per unit area per unit time for the surface moving with the fluid. Thus
T · u is an energy flux.

Our viscous stress tensor represents an additional momentum flux which can do
work on the fluid at a rate Tvisc · u per unit area. A work per unit area is also an
energy flux. There is an energy flux caused by viscous dissipation

(44) Fvisc = Tvisc · u or Fvisc,i = Tijuj

This energy flux is a vector and has units of energy per unit area per unit time.
The gradient of this energy flux will give us the energy dissipated per unit volume

per unit time. Sometimes you hear the energy flux described as stress times strain.
Our equation for energy conservation gains a flux term

(45) ∇ · (Tvisc · u)

with Tvis = −ζθg − 2ησ. Our conservation of energy equation becomes

(46)
∂E

∂t
+∇ · [(E + p)u + Tvisc · u] = −ρQ̇cool + ρ

∂Φ

∂t
−∇ · h

In the above E is the total energy per unit volume. Here Q̇cool is the cooling rate
per unit mass, h is the heat flux due to thermal conductivity (energy per unit area
per unit time).

To make it clearer how much energy is due to viscous dissipation we would like to
find TdS/dt due to viscous heating. Consider our conservation equation for conser-
vation of momentum

(47)
∂(ρu)

∂t
+∇ · (pg + ρu⊗ u + Tvisc) = −ρ∇Φ

If we take the dot product of u times the conservation law for momentum above
and subtract it from our equation for energy conservation (equation 46) we find

(48) ρT
dS

dt
= −Tvisc : ∇u− ρQ̇cool + ρ

∂Φ

∂t
−∇ · h

Our viscous stress tensor is negative so we get a positive heating rate. In the above
form it may be clearer that the heating rate is the stress (T) times the strain, (∇u).
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We have assumed that the viscous stress tensor is a constant times the strain. The
rate of heating can be written then as a viscosity coefficient times a square of the
strain. The form of the viscous dissipation term

(49) Tvisc : ∇u =
∑
ij

Tij
∂ui
∂xj

where I have been specific about the indices.
More specifically ∇u = 1

3
gθ + σ + r where the trace θ = ∇ · u, and σ is the

symmetric traceless component. The antisymmetric component, r, can be described
in terms of the rotation or vorticity and gij = δij for a Cartesian coordinate system.
Inserting our form for the viscous stress tensor (equation 14)

(50) ρQ̇visc = −Tvisc : ∇u = (ζθg + 2ησ) :

(
θg

3
+ σ + r

)
The antisymmetric term with r drops out of the sum by symmetry. Consider the
double sum of a trace term with a traceless term

(51) θg : σ = θ
∑

δijσij = θ
∑
i

σii = 0

where the last step follows because σ has zero trace. Because of the double dot, a
trace part on the left requires a non-zero trace term on the right (and vice versa) to
give a non-zero term. Consequently

(52) ρQ̇visc = ζθ2 + 2ησ : σ

where

(53) σ : σ =
∑
ij

σijσij = trace σ2

As σ is symmetric it can be diagonalized and the trace of its square is the sum
of 3 positive numbers, so σ : σ ≥ 0. This implies that Q̇visc ≥ 0 as expected for
dissipation. We can write ρQ̇visc out as

(54) ρQ̇visc = ζ

(∑
i

∂ui
∂xi

)2

+ η
∑
i 6=j

[(
∂ui
∂xj

)2

+
∂ui
∂xj

∂uj
∂xi

]
.

2. The Accretion disk

We consider the setting of a disk comprised of gas rings, each in circular rotation
around a massive object such as a black hole or star or planet. We use a cylindrical
coordinate system R, φ, z and assume that the disk is vertically thin. We assume
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Figure 4. In a rotating Keplerian disk, the angular rotation rate
drops with increasing radius, giving a velocity shear. This gives a
viscous stress that drives radial flow.

that velocity u, and density ρ are independent of φ so the system is axisymmetric.
Integrating the gas density, ρ, vertically

(55) Σ(R, t) =

∫ ∞
∞

ρ(R, z, t)dz

where Σ(R, t) describe the mass surface density (mass per unit area) in the disk.
With the assumption of a thin disk we can also integrate the velocity components
along the vertical direction describing the velocity in two dimensions as

(56) u = uRR̂ + uφφ̂

We can start by assuming that the disk is low mass compared to a central object
of mass M . The velocity of a particle in a circular orbit

(57) vc(R) =

√
GM

R

and angular rotation rate, Ω(R)

(58) Ω(R) = φ̇ =
vc
R

=

√
GM

R3

Because Ω depends on radius, there is differential rotation and gas rings experience
viscous stress that can transfer angular momentum between rings, causing radial
inflow or outflow of gas. We will describe the viscosity with a kinematic viscosity ν.

We consider thin disks with rotation that is nearly Keplerian

(59) uφ ∼ vc
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and assume that

(60) |uR| � |uφ|
With similar formalism we can consider a disk embedded in a galaxy or take into
account the self-gravity of the gas disk itself. In these cases vc and Ω can still be
functions of radius but it would be a different function than given in equations 57
and 58.

Assuming axisymmetry (no φ dependence) the continuity equation (conservation
of mass) becomes

(61)
∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0

The Navier-Stokes equation

(62)
∂u

∂t
+ (u ·∇)u = −1

ρ
∇P −∇Φ + ν∇2u

We expect both gravity and pressure to have gradients proportion to r̂. The φ
component of the Navier-Stokes equation in cylindrical polar coordinates becomes

(63) Σ

(
∂uφ
∂t

+ uR
∂uφ
∂R

+
uRuφ
R

)
=

∂

∂R

(
νΣ

∂uφ
∂R

)
+

1

R

∂

∂R
(νΣuφ)− νΣuφ

R2

There is no pressure or gravity derivatives because the above is the φ component
though the tangential velocity will depend on the gravitational potential. All terms
on the right hand side contain the viscosity and so are due to viscous stress.

It is useful to rewrite the above equation in terms of Ω = uφ/R. Combining the
continuity equation (times Ruφ) and the above (times R) we find

(64)
∂

∂t
(RΣuφ) +

1

R

∂

∂R

(
R2ΣuφuR

)
=

1

R

∂

∂R

(
νR3Σ

dΩ

dR

)
Angular momentum per unit area is

(65) l = ΣRuφ

so the first term is the rate of change of the angular momentum per unit area.
The second term is the radial flux of the angular momentum per unit area due to
advection at velocity uR. So we can write equation 64 as

(66)
∂l

∂t
+

1

R

∂

∂R
(RluR) =

1

R

∂

∂R

(
νR3Σ

dΩ

dR

)
The right hand side describes the torque due to viscosity.

Let’s consider the viscous stress tensor. The only component of it that we need is
the Tvisc,Rφ component that depends on the velocity shear due to differential rotation.
This is the gradient of the tangential velocity component in the radial direction. If
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the angular rotation rate, Ω ≡ uφ
R

is constant there is no shear. The gradient in

the R direction of the tangential velocity component must therefore be R dΩ
dR

, so we
expect

(67) Tvisc,rφ = −νΣR
dΩ

dR

The viscous stress tensor gives the momentum density flux. We multiply by R to
estimate the angular momentum density flux. The divergence of that is what we see
on the right hand side of equation (64) which we can now write as

(68)
∂l

∂t
+

1

R

∂

∂R
(RluR) =

1

R

∂

∂R

(
−R2Tvisc,rφ

)
If we multiply both sides of equation (64) by 2πRdR we can consider the angular

momentum in a ring of radius R with width dR. The right hand side then gives the
net torque on the annulus or the torque at R

(69) 2πdR
∂

∂R

(
νR3Σ

dΩ

dR

)
= 2πνΣR3 dΩ

dR

If there is an additional torque on the disk, for example from spiral density waves
driven by a planet at a resonance, it would be inserted into equation (64) in the same
position as the viscous torque term given above.

We can use a Keplerian approximation uφ =
√
GM/R for mass M . It is helpful

to compute

(70)
dΩ

dR
= −3

2

Ω

R

Substituting uφ and dΩ/dR into equation (64),

∂

∂t

(
R1/2Σ

)
+

1

R

∂

∂R

(
R3/2ΣuR +

3

2
νR1/2Σ

)
= 0(71)

R1/2∂Σ

∂t
+

3

2
R−1/2ΣuR +R1/2(Σ,RuR + ΣuR,R) +

1

R

∂

∂R

(
3

2
νR1/2Σ

)
= 0

R3/2∂Σ

∂t
+

3

2
R1/2ΣuR +R3/2 (uR,RΣ + uRΣ,R) +

∂

∂R

(
3

2
νR1/2Σ

)
= 0(72)

where for the second equation we have multiplied by R. Our continuity equation
gives us

(73)
∂Σ

∂t
+

ΣuR
R

+ Σ,RuR + ΣuR,R = 0
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Subbing in to equation 72 for ΣuR
R

+ Σ,RuR we find a relation for the radial velocity
for a Keplerian disk

(74) uR = −3Σ−1R−1/2 ∂

∂R

(
νR1/2Σ

)
Eliminating uR from equation (71) we find

(75)
∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(νΣR1/2)

]
which can also be written

(76)
∂Σ

∂t
= − 3

R

∂

∂R
(3RΣuR)

The second derivative in equation (75) implies that there are diffusive terms in the
evolution of the density as well as advective or accretion terms. We might call
“accretion” a flow that takes place even if the density is very smooth and diffusion
a flow that depends on the gradient of the density. Looking again at equation (76)
that holds for a Keplerian system. The mass flux through the disk at radius R is

(77) Ṁ = 2πRΣuR

We see from a comparison of the mass flux with equation (76) that a disk with
constant mass flux is also a steady state disk (Σ̇ = 0).

The more general expression for uR in a non-Keplerian setting (using the same
procedure as followed above) is

(78) uR =
1

RΣ
(2uφ +R2Ω,R)−1 ∂

∂R

(
νR3Σ

dΩ

dR

)
The sign of the radial velocity, uR, is set by the sign of the derivative. The derivative
is the same one giving angular momentum flux on the right hand side of equation (64)
and so determines the direction of angular momentum transport. If the derivative is
positive then one could have an excretion disk rather than an accretion disk.

2.1. Accretion to order of magnitude. Going back to equation (64)

(79)
∂

∂t
(RΣuφ) +

1

R

∂

∂R

(
R2ΣuφuR

)
=

1

R

∂

∂R

(
νR3Σ

dΩ

dR

)
We consider a steady solution (so drop the first term on left) and consider the typical
size of each term. The second term ∼ ΣuφuR. The right hand side ∼ νΣuφ/R.
Equating these two we find

(80) uR ∼ ν/R



AST242 LECTURE NOTES PART 3 15

typical accretion timescale

(81) tν ∼ R/uR ∼ R2/ν

and accretion rate through the disk

(82) Ṁ = 2πRΣuR ∼ 2πΣν

For Keplerian rotation with dΩ/dR = 3
2
uφ/R

2 and equation (74) gives

(83) uR ∼ −
3

2

ν

R

and so

(84) Ṁ ∼ 3πΣν

2.2. Hydrostatic equilibrium for an accretion disk. We recall that hydrostatic
equilibrium gives us

(85) ρ∇φ = −∇p
Consider a cylindrical coordinate system with

(86) s =
√
R2 + z2

and potential Φ(s). It is convenient to compute

(87)
∂s

∂z
=
z

s

We can expand the potential in z

(88) Φ(r, z) ≈ Φ(R) +
∂Φ

∂z

∣∣∣∣
z=0

z +
∂2Φ

∂z2

∣∣∣∣
z=0

z2

2

Evaluating derivatives

(89)
∂Φ

∂z
=
∂Φ

∂s

∂s

∂z
=
∂Φ

∂s

z

s

(90)
∂2Φ

∂z2
=
∂Φ

∂s

(
1

s
− z

s2

∂s

∂z

)
+
∂2Φ

∂s2

(
∂s

∂z

)2

=
∂Φ

∂s

(
1

s
− z2

s3

)
+
∂2Φ

∂s2

z2

s2

Only the second order term will contribute when z = 0 so

(91) Φ(R, z) ∼ Φ(R) +
∂Φ

∂s

z2

2R

We recall that the circular velocity for a particle in a circular orbit is

(92) v2
c = R

∂Φ

∂R
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so that

(93) Φ(R, z) ∼ Φ(R) +
v2
cz

2

2R2

and

(94)
dΦ

dz
∼ v2

cz

R2

Using the hydrostatic equilibrium equation we find

(95) −dΦ

dz
=

1

ρ

dp

dz
=

1

ρ

dp

dρ

dρ

dz
=
c2
s

ρ

dρ

dz

So that

(96) −dρ
ρ

= zdz
v2
c

R2c2
s

A solution is ρ ∝ exp(−z2/(2h2)) with scale height such that

(97)
h

R
∼ cs
vc

This useful equation relates the temperature of a disk to its aspect ratio or thick-
ness. The ratio h/r is often called the aspect ratio. The above relation implies that
a thick disk is a hot one and that a cold disk is a thin one. A velocity dispersion σ
of an ensemble can be used in place of the sound speed in this relation for example
in considering molecular clouds in a galaxy disk or planetesimals in a collisional ring
system.

This relation can also be written

(98) cs ≈ hΩ

where Ω = vc/R is the angular rotation rate of a particle in a circular orbit.

Figure 5. Hotter disks are thicker.
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2.3. Shakura and Sunyaev’s α-disk. Accretion disks are suspected in young stel-
lar systems and surrounding black holes and other compact objects. Unfortunately it
is often difficult to directly observe them and so characterize their physical properties.
It is common to estimate the kinematic viscosity as

(99) ν = αcsh

Here cs is the sound speed and h the vertical scale height of the disk. The parameter
α is dimensionless and we can see that we have the correct units for the kinematic
viscosity. The above form for the viscosity was adopted by Shakura and Sunyaev.
The parameter α is often unknown though it has been estimated to be small, of order
0.01 in circumstellar disks and of order 1 in some active galactic nuclei.

Let us estimate the accretion timescale for an α disk.

(100) tν ∼
R2

ν
∼ R2

αcsh

Using our hydrostatic equilibrium equation for cs

(101) tν ∼ α−1R
2

h2
Ω−1

The angular rotation rate Ω =
√
GM/R3 so we can write

(102) Ω−1 =
1yr

2π

(
M

M�

)−1/2(
R

1AU

)3/2

So our accretion timescale

(103) tν ∼
1yr

2π
α−1

(
h

R

)−2(
M

M�

)−1/2(
R

1AU

)3/2

For an aspect ratio of h/r ∼ 0.05 and α = 0.01 we get tν ∼ 105 yr at 1 AU. These
are “typical values” used for circumstellar disks.

2.4. Reynolds Number. The Reynolds number is a dimensionless number that
gives the importance of viscosity in a flow. We consider a flow with v a typical
velocity in the problem, L the length-scale and ν the kinematic viscosity. A ratio of
inertial to viscous forces can be estimate from a the sizes of the u ·∇u term and the
ν∇2u term in the Navier-Stokes equation.

(104)
inertial force

viscous force
∼ v2/L

νv/L2
∼ vL

ν

We define the Reynolds number as

(105) R ≡ vL

ν
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High Reynold’s number flows tend to be turbulent (flow inside a firehose). Note there
is no consideration of the sound speed here. Low Reynolds number flows are flows
where viscosity is important, like a bacteria swimming in water or a brick sinking in
tar.

Usually the Reynolds number is estimated with L the size of an object, like the
diameter of a rain drop. The velocity would be the rain drop’s velocity as it falls
through the air. The drag force is estimated as a function of Reynold’s number and
shape. Equating the drag force against the force from gravity would allow one to
solve for the the terminal velocity as a function of drop diameter.

What would a Reynolds number be for our accretion disk? Our typical velocity is
the circular velocity. Our length scale the radius, so

(106) R =
vcr

ν
∼ α−1

( r
h

)2

and is high for low viscosity thin disks.
Watch movie on Drag III at NCFM on boundary layers, drag coefficients and

Reynold’s number.

2.5. Circumstellar disk heated by stellar radiation. In circumstellar disks the
heat flux due to absorption of radiation from the central star may set the effective
temperature of the disk. If the temperature is set by the radiation from the central
star then

(107)
L∗

4πR2
∼ σSBT

4
eff

Here L∗ is the luminosity of the star. The above equation should include an albedo
and an emissivity and can more accurately be written

(108)
L∗

4πR2
(1− β) ∼ εσSBT

4
eff

where β is an albedo and ε is an emissivity. Here β and ε are both integrated over
wavelength.

Above we have not considered the possibility that the disk itself can block radiation
from the star or self-shield. If the disk is optically thick then we need to take into
account the fraction of the disk per unit area that is illuminated. A correction factor
to the above equation that depends on the flaring of the disk can be added. A disk
with constant axis ratio (h/R constant) will self-shield from the central star. So we
expect only a flaring disk will absorb starlight. The difference between the ray angles
from the star at a slope of h/r and the local disk slope, dh/dR, will determine the
flux absorbed. Only when dh

dR
> h

R
will the disk be illuminated. We estimate the
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Figure 6. A flared disk. At each radius, R, the height of the disk
gives an aspect ratio h/R. The amount of light absorbed per unit area
depends on the aspect ratio and its radial gradient.

fraction of flux absorbed

(109) f ∼ dh

dR
− h

R

which is sometimes written as

(110) f ∼ h

R

[
d lnh

d lnR
− 1

]
Our temperature balance equation becomes

(111)
L∗

4πR2
(1− β)f ∼ εσSBT

4
eff

Additional complications include considering that the skin of the disk could be hotter
than the interior because the spectrum of starlight peaks in the optical bands but
that from the thermal emission from the disk peaks in the infrared where the opacity
is lower.

2.5.1. Example of h(R) for an optically thin disk with flaring set by stellar radiation.
Suppose the disk is optically thin. In this case we can ignore the disk flaring in deter-
mining the fraction of light absorbed by the disk and so setting the disk temperature.
Our equation for radiation balance implies that Teff ∝ R−1/2. The temperature and
sound speed are related with cs ∝ T 1/2 so that cs ∝ R−1/4. We can use our equation

of hydrostatic equilibrium h ∼ csΩ
−1 with angular rotation rate Ω =

√
GM
R3 to find

that

(112) h ∝ R5/4

We note that the disk does flare as h/R ∝ R1/4 increases with radius.
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Figure 7. If viscous energy dissipation dominates the energy input
into the disk (left) then we expect the mid plane of the disk is hotter
than the surface. The effective temperature of the disk surface de-
pends on the energy dissipated in the disk. The vertical temperature
gradient depends on disk opacity. If the energy absorbed from the star
dominates that dissipated viscously then the disk temperature depends
on the radiation absorbed per unit area (right). The disk temperature
gradient would not be large. The temperature may not be exactly
uniform (as a function of height) as emission depends on opacity as a
function of wavelength. For example, the center of the disk, shielded
from star light might be able to radiate at longer wavelengths as the
opacity is often lower at longer wavelengths. In this case the surface
of the disk would be somewhat hotter than the mid-plane.

2.6. Viscous Energy Dissipation. We can estimate the energy dissipation rate
for the accretion disk. The important component of the viscous stress tensor is
Tvisc,rφ ∼ νΣR dΩ

dR
. From our discussion on viscous heat generation the heat generated

per unit volume is the viscous stress times the strain. The only non-zero component
of the viscous stress tensor is Tvisc,rφ. The strain to use is R dΩ

dR
because it gives the

velocity shear in the r, φ direction. The energy per unit area dissipated per unit time
would be

(113) q̇visc = νΣR2

(
dΩ

dR

)2

We can evaluate this for a steadily accreting Keplerian disk using dΩ
dR

= −3
2

Ω
R

,

(114) q̇visc =
9

4
Ω2νΣ

We now relate νΣ to Ṁ to find the dissipation rate as a function of radius. To
do this we need to consider a boundary condition (and if we don’t do this we will
falsely find the system does not conserve energy).
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Consider a disk with constant steady accretion flow

(115) Ṁ = 2πΣRuR = constant

Going back to equation 64 for angular momentum conservation and assuming a
steady state disk

R3ΣΩuR − νR3ΣΩ,R = C

R2ΩṀ

2π
− νR3ΣΩ,R = C(116)

with C another constant. We can solve for νΣ

(117) νΣ =
Ω

RΩ,R

Ṁ

2π

[
1− C ′

ΩR2

]
where C ′ is a constant. For a Keplerian system ΩR2 ∝ R1/2 and Ω

RΩ,R
= 2

3
so that

(118) νΣ =
Ṁ

3π

[
1−

(
C ′′

R

)1/2
]

where C ′′ is another constant — with units of radius. If we assume a boundary
condition at Rin (a truncation edge) where Σ→ 0 then

(119) νΣ =
Ṁ

3π

[
1−

(
Rin

R

)1/2
]

Note that at large radius we find Ṁ ∼ 3πνΣ as we previously estimated.
We insert this expression in to equation (114) finding

(120) q̇visc =
3ṀΩ2

4π

[
1−

(
Rin

R

)1/2
]

2.7. Accretion Luminosity. Consider equation (120) for the energy dissipated per
unit area for a nearly Keplerian system in steady state. This viscously dissipated
energy escapes as radiation from the top and bottom of the disk. Let us integrate
between inner and outer disk radii (Rin, Rout) to estimate the total luminosity of the
disk due to accretion

(121) Ldisc =

∫ Rout

Rin

2πR dR q̇visc
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For a Keplerian system accreting in steady state with accretion rate Ṁ ,

Ldisc =

∫ Rout

Rin

3

2
Ω2ṀR

[
1−

(
Rin

R

)1/2
]
dR

=

∫ Rout

Rin

3

2
GM∗Ṁ

[
1

R2
− R

1/2
in

R5/2

]
dR(122)

=
3

2
GM∗Ṁ

(
2R

1/2
in

3R3/2
− 1

R

)∣∣∣∣∣
Rout

Rin

∼ GM∗Ṁ

2Rin

(123)

The form and units of this are correct.

2.7.1. Comparison to energy gained in potential energy well. Let’s consider the en-
ergy gained due to inflow into the potential well. Consider the kinetic and potential
energy per unit mass for the gas in a circular orbit

(124) e =

(
u2
φ

2
− GM

R

)
= −GM

2R

where I have assumed a circular velocity u2
φ = R2Ω2 ∼ GM/R. The total energy per

unit radius is

(125)
dE

dR
= 2πRΣe

Flux of energy through radius R would be

(126) 2πRΣeuR = eṀ ≈ ṀΩ2R

2

and that per unit area (dividing by 2πR) would be

(127) q̇ ∼ ṀΩ2

4π
∼ GMṀ

4πR3

We compare this to the viscous energy dissipation. Note the units are the same
and make sense but the viscous energy dissipation is larger by a factor of 3 at large
radius but smaller at small radius. Probably overall it is possible to argue that energy
conservation is not violated. If we integrate q̇ over the disk we find a total energy

(128) Ė ∼ GMṀ

2Rin

which seems to be consistent with our accretion luminosity.
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2.7.2. The temperature profile of the disk. Assume now that the disk is primarily
heated by the viscous energy dissipation. Using equation (114)

(129) q̇visc =
9

4
ΣΩ2ν ∼ 2εσSBT

4
eff

where Teff is the effective temperature at the surface of the disk and ε is the emis-
sivity. We use a factor of 2 on the right hand side to include both top and bottom
surfaces of the disk. By surface we mean the height at which radiation can escape
(sometimes call the τ = 1 or where the optical depth is 1).

If the midplane of the disk is viscous then the heating takes place in the midplane
and heat must diffuse vertically through the disk before it escapes. In this case the
center of the disk could be hotter than the surface. The two temperatures would be
related by the disk opacity setting the diffusion coefficient of radiation through the
disk. We expect

(130) T 4
midplane ∼ τT 4

eff

where τ is the optical depth. The above holds if τ & 1, however if τ < 1 then the
midplane temperature is similar to the surface temperature.

(131) τ = κΣ/2

where κ is a mean opacity of the gas in the disk and the factor of two in the above
comes from considering escape of radiation from the midplane or only through half
of the disk. Note τ is unitless but κ has units of the inverse of Σ or g−1cm2. We note
that the above equation relating temperatures picks up a factor of 3/8 in a plane
parallel setting. A popular value for κ might be of order 1 g−1cm2 in a dusty disk
or about half that for an ionized disk. In general the averaged opacity is a function
of density and temperature. Lower values for opacity are used for cold molecular
clouds, κ ∼ 0.01g−1cm2.

The above equations are sufficient to roughly estimate the thermal structure of
a simple circumstellar accretion disk and are useful for exploring their physical pa-
rameters in a variety of settings. In some cases more than one heat source must be
considered to compute the thermal structure of a disk. If you are lucky one heat
source will dominate and you can neglect the others simplifying the calculation. The
temperature of low density circumstellar disks is set by the radiation of the central
star and only for the inner regions of an actively accreting system is there more heat-
ing due to viscous dissipation in which case this process sets the disk temperature.
Accretion disks in Seyfert galaxies and quasars the inner hot region of the accretion
disk may illuminate the outer regions. To fully compute the temperature and density
structure of a disk the opacity as a function of depth and wavelength must be taken
into account.
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3. Vorticity and Rotation

Vorticity is important in planetary atmospheres, including our own. 2014’s cold
winter is being attributed to variations in the structure of the vortex and vortices
near the north pole.

Define the vorticity as

(132) ω = ∇× u

To get some intuition on what vorticity is consider a solid body rotation with u =
Ω× r. Let’s compute the vorticity for this

(133) ω = ∇× (Ω× r)

To compute this let’s consider the i-th component and use summation notation

ωi = εijk
∂

∂xj
εklmΩlxm

= εkijεklmΩl
∂xm
∂xj

(134)

Before we evaluate this further it is useful to know the following identity

(135) εijkεimn = δjmδkn − δjnδkn

Using the identity

ωi = (δilδjm − δimδjl)Ωl
∂xm
∂xj

(136)

= Ωiδjm
∂xm
∂xj
− Ωjδim

∂xm
∂xj

(137)

= Ωiδjmδjm − Ωj
∂xi
∂xj

= Ωi3− Ωjδij

= 3Ωi − Ωi

= 2Ωi(138)

For solid body rotation we find that

(139) ω = 2Ω

Vorticity is a property of rotating flows. The above equation specifies the units for
vorticity. Vorticity is in units of s−1 as it is like an angular rotation rate.
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Remember our definition for the antisymmetric component of the velocity gradient
r

rij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
=

1

2
εijk

∂ui
∂xj

(140)

We can write the vorticity as

(141) ωk = εkij
∂ui
∂xj

The similarity between these two expressions means

(142) rij =
1

2
εijkωk

3.1. Helmholtz Equation. Starting with Euler’s equation

(143)
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p

We use the vector identity

(144) (u · ∇)u = ∇
(
u2

2

)
− u× (∇× u)

and the enthalpy ∇h = 1
ρ
∇p. The Euler equation can be written

(145)
∂u

∂t
+∇

(
u2

2

)
− u× ω = −∇h

Take the curl of this

(146)
∂(∇× u)

∂t
−∇×∇

(
u2

2
+ h

)
= ∇× (u× ω)

equivalent to

(147)
∂ω

∂t
= ∇× (u× ω)

where we have dropped terms involving the curl of a gradient which are zero. This is
known as Helmholtz’s equation and is related to Kelvin’s circulation theorem.
Note that we used an enthalpy here. This is justified as long as the constant pressure
and density contours are the same or the fluid is barotropic. If we had taken the curl
of 1

ρ
∇p we would have found a term proportional to ∇ρ×∇p which is zero when the

fluid is barotropic (or p(ρ)).
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We did not include an additional force in Euler’s equation in our derivation above
but as long as only conservative forces are considered, they do not change Helmholtz’s
equation because curl of a grad is zero and so they drop out of the equation. Non-
conservative forces, such as the Coriolis force would change the equation. The Cori-
olis force is rotational so that is not necessarily surprising.

It may be interesting to read Kip’s notes at this point where he constructs a
derivative corresponding to the rate of change of a vector with respect to a vector
that is moving with the fluid. With this new derivative Dω/Dt = −ω(∇·u) and the
vorticity evolution is parallel to itself. This may better explain the idea that vortex
lines are frozen into the fluid. Shu’s book on the other hand considers the rate of
change of an area vector for a surface.

Instead we follow the illustration by Pringle and King which I found the clearest.
We first consider the change in both length and direction of a small linear fluid
element that has both ends moving with the fluid.

Figure 8. A vector element with each end that is moving with the
fluid changes both in length and direction with the flow.

3.2. Rate of Change of a vector element that is moving with the fluid.
Consider a small linear element ds that has both ends moving with the fluid. We
can call the left hand side of ds a position x1 and the right and side x2. The original
vector at time t = 0 is

(148) ds = x2 − x1.

After time dt the vector is at

(149) ds + [u(x2)− u(x1)]dt

For any function f(x) we can write

(150) f(x2)−f(x1) =
∂f

∂x
dx+

∂f

∂y
dy+

∂f

∂z
dz =∇f(x2−x1) = (∇f)·ds = (ds·∇)f
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In the same way

(151) u(x2)− u(x1) = ∇u · (x2 − x1) = (ds ·∇)u

so

(152) ds + [u(x2)− u(x1)]dt = ds + (ds · ∇)udt

where each component of u is expanded out in Taylor series to first order. The
change in the vector element moving with the fluid is

(153)
Dds

Dt
= (ds · ∇)u.

This implies that the length of our little linear element only changes if the gradient
of the velocity in a direction parallel to ds is non-zero. The little linear element does
not change length if the velocity has a gradient perpendicular to the line element.
If there is no velocity gradient then the line element is swept along and stays the
same length and direction. Only if there is a velocity gradient does each end move
separately and the element changes length and direction.

Now let’s go back to our relation for vorticity or Helmholtz’s equation

(154)
∂ω

∂t
= ∇× (u× ω)

We use the identity

(155) ∇× (u× ω) = (ω · ∇)u + u(∇ · ω)− ω(∇ · u)− (u · ∇)ω

As ω is a curl ∇ · ω = 0. This gives us

(156)
∂ω

∂t
= (ω · ∇)u− ω(∇ · u)− (u · ∇)ω

or

(157)
Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u− ω(∇ · u)

where we have used our advective derivative. The first term on the right hand side is
in the same form as equation (153) for the rate of change of a linear element moving
with the fluid. The second term on the right hand side we manipulate using the
equation of continuity,

(158)
∂ρ

∂t
+∇ · (ρu) = 0 or

Dρ

Dt
= −ρ∇ · u

Inserting this into our relation for vorticity

(159)
Dω

Dt
= (ω · ∇)u + ω

1

ρ

Dρ

Dt
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or

(160)
Dω

Dt
+ ρω

Dρ−1

Dt
= (ω · ∇)u

or

(161)
D

Dt

(
ω

ρ

)
=

(
ω

ρ
· ∇
)

u

Compare this to equation (153) which I repeat here

(162)
Dds

Dt
= (ds · ∇)u

It is clear that they are in the same form. The interpretation is that ω/ρ moves as
if it were frozen into the fluid.

Figure 9. In an inviscid barotropic fluid, vorticity divided by density
is transported with the fluid.

3.3. Kelvin Circulation Theorem. We will look at the evolution of vorticity in
another way, that involving circulation. Consider the circulation around a small loop
C with a line integral

(163) Γ =

∮
C

u · ds
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Apply Stokes theorem

(164) Γ =

∮
C

u · ds =

∫
S

(∇× u) · dA =

∫
S

ω · dA

where S is a surface inside the loop C. The above implies that the circulation through
a small loop C is the same thing as the integral of the vorticity passing through the
loop.

Now we let C move with the fluid and consider the rate of change of the circulation,
Γ.

DΓ

Dt
=

D

Dt

∮
C

u · ds(165)

=

∮
C

Du

Dt
· ds +

∮
C

u · Dds
Dt

=

∮
C

(
∂u

∂t
+ (u · ∇)u

)
ds +

∮
C

u · Dds
Dt

(166)

The term on the right hand side has the rate of change in length and direction
for a linear element of ds where the line element is moving with the fluid. We have
looked this carefully previously with equation (153). Using equation (153)∮

C

u · Dds
Dt

=

∮
C

u · (ds · ∇)u =

∮
C

1

2
∇u2 · ds(167)

=

∫
S

∇×
(

1

2
∇u2

)
dA = 0(168)

Last step again using Stokes theorem.
Going back to our rate of change of circulation

(169)
DΓ

Dt
=

∮
C

(
∂u

∂t
+ (u · ∇)u

)
ds

Using Euler’s equation, and assuming conservative forces and an barotropic fluid

(170)
DΓ

Dt
=

∮
C

−∇P
ρ
ds =

∫
S

−(∇×∇h) dA = 0

The circulation around a loop that is moving with the fluid does not change in time.
A equivalent statement is that the vorticity passing through a surface moving with
the fluid remains constant.
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If we take the above equation (169) and our vector identity (equation 144) on the
right hand side we find

(171)
DΓ

Dt
=

∮
C

(
∂u

∂t
+
∇u2

2
− (u× ω)

)
· ds

now use Stokes equation

DΓ

Dt
=

∫
S

dA ·
(
∂ω

∂t
−∇× (u× ω)

)
.(172)

Thus the circulation theorem dΓ/dt = 0 implies that Helmholtz’s equation (equation
147) is satisfied. The statement that vorticity is frozen into the fluid, or moves
with the fluid is equivalent to Helmholtz’s equation. While we considered the time
derivative of the loop C as it moved with the fluid we could also have considered the
time derivative of the area dA as the surface S moves through the fluid to give the
same expression.

Figure 10. In an inviscid barotropic fluid, the circulation around a
loop that is moving with the fluid remains constant. Likewise the
vorticity integrated through the surface bounded by the loop remains
constant.

3.4. Vortex lines and vortex tubes. A vortex line is a line connecting local vor-
ticity vectors. At each point on a vortex line, the tangent to the line is equal to the
vorticity. A vortex tube is a surface formed by vortex-lines passing through a loop.
The strength of a vortex-tube, or the vortex flux, is the integral of the vorticity across
a surface that slices a vortex tube. Using Gaus’s law on a vortex tube

(173)

∫
V

∇ · ωdV =

∫
A

ω · dA

where A is a surface with top and bottom slicing a vortex tube and with sides
consisting of vortex lines. The divergence of the vorticity is zero so the left hand side
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Figure 11. A vortex line is a line connecting local vorticity vectors.

of the above equation is zero.

(174)

∫
top

ω · dA +

∫
bottom

ω · dA +

∫
sides

ω · dA = 0

Since along the sides the surface is parallel to the vorticity, the third integral is zero.
This is implies that the first two terms are equivalent and so the vortex flux is the
same at the top of the tube as at the bottom.

Figure 12. A vortex tube is a surface bounded by vortex lines. The
vortex flux (integral of vorticity across a surface that slices a vortex
tube) must be the same everywhere along the tube.
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Using the MHD approximation we will find an equation for the magnetic field that
looks similar to equation (147) and we will then conclude that magnetic field lines
are frozen into the fluid.

In the above discussion we have neglected viscous forces. When viscous forces
are included Helmholtz’s equation equation (147) picks up an extra and nonzero
term involving the viscosity. Where viscosity is not important the vorticity is frozen
into the fluid and moves with the fluid. However vorticity is generated in turbulent
regions and boundary layers.

To summarize: For a barotropic, inviscid fluid, the vorticity integrated through
a surface moving with the fluid is constant. Equivalently the circulation around a
loop moving with the fluid is constant. Equivalently the vector ω/ρ is frozen into
the fluid.

3.5. Vortex stretching and angular momentum. Looking at our equation that
we interpreted in terms of vorticity being frozen into the fluid.

(175)
D

Dt

(
ω

ρ

)
=

(
ω

ρ
·∇
)

u

In an incompressible setting we can remove the density

(176)
Dω

Dt
= (ω ·∇) u

If the gradient of u is positive in the direction of ω then the Lagrangian derivative
of the vorticity is positive and the vorticity increases. If we think of the vorticity
as lying between two points frozen into the fluid and the motion moves those two
points further apart then the length of the vorticity vector increases. This is known
as vortex stretching and it has to arise via conservation of momentum as we have
primarily been manipulating variations of Euler’s equation and this is equivalent to
conservation of momentum.

But why is it that when we have a diverging flow that it spins up? If we have
a diverging flow along the vorticity direction and the flow is incompressible then
we must also have a converging flow in the other directions. This is like an ice
skater reducing her momentum of inertia and so increasing her spin. Looking at the
flux tube picture if the flux lines get close together then the vorticity inside a flux
tube must increase. Because the vorticity is frozen into the fluid, this only happens
when there is converging flow making the the vortex lines approach each other and
stretching along the vortex lines corresponding to a diverging flow along the flux
tube.
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Figure 13. When a vortex tube is pinched and stretched, the vortic-
ity increases in the waste of the tube.

3.6. Bernoulli’s constant in a wake. In our derivation of Bernoulli’s equation,
but starting with the Navier Stokes equation

(177)
∂u

∂t
+ (u ·∇)u = −∇Φ− 1

ρ
∇p+ ν∇2u

using the vector identity

(178) u× (∇× u) =∇
(
u2

2

)
− (u ·∇)u

and using enthalpy we can write

(179)
∂u

∂t
+ u× ω = −∇

(
Φ + h+

u2

2

)
+ ν∇2u

We dot this with u to consider what happens along streamlines. In a steady state
flow and along a streamline

(180) u ·∇
(

Φ + h+
u2

2

)
= νu ·∇2u

The Bernoulli constant or function Φ + h+ u2

2
is not constant in the flow if viscosity

is important. The Bernoulli function Φ + h + u2

2
would decrease along a streamline

that is affected by viscous forces. Primarily streamlines that pass close to the surface
of a body or pass through turbulent eddies would be affected.
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3.7. Diffusion of vorticity. Recall the Navier-Stokes equation but including the
possibility of compressible flow

(181)
Du

Dt
=

1

ρ

[
−∇p+ (ζ + η/3)∇(∇ · u) + η∇2u

]
Taking the curl of both sides and using a vector identity

(182)
∂ω

∂t
−∇× (u× ω) =

η

ρ
∇2ω +

∇ρ
ρ2
×
[
∇p− η∇2u− (ζ +

η

3
)∇(∇ · u)

]
The first term on the right hand side gives the diffusion of vorticity due to kinematic
viscosity. The second term on the right arises when the fluid is compressible. When
the fluid is incompressible, (∇ρ = 0), then the equation is, in fact, a diffusion
equation. For incompressible flow

(183)
∂ω

∂t
−∇× (u× ω) = ν∇2ω

Figure 14. In the laminar part of the flow, Bernoulli’s constant and
the vorticity are conserved along stream lines. Turbulence and bound-
ary layers and viscous stresses in them can induce vorticity into an
object’s wake. Bernoulli’s constant is reduced in streamlines in the
object’s wake that pass through boundary layers.

3.8. Potential Flow and d’Alembert’s paradox. Consider an object moving
through a fluid that is at rest and extend to infinity in all directions. Where the
fluid is at rest, the flow has no vorticity. As vorticity is frozen into the fluid, it should
be zero everywhere. We can consider a velocity field such that the vorticity is zero
everywhere;

(184) ω = ∇× u = 0.

There should be a potential function, φ(x, y, z), such that

(185) ∇φ = u.
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Because u is a gradient of a potential function, its curl is automatically zero, and
the vorticity is zero everywhere. When the flow is laminar, it can be convenient to
solve for a potential function instead of the entire flow field.

When the fluid is incompressible ∇ · u = and ∇2φ = 0. In this case the potential
function satisfies Laplace’s equation and may be easier to work with.

Boundary layers and rotational flows cannot be described as a potential flow. As a
consequence, though mathematically attractive, potential flow models have limited
use. It is sometimes convenient to use them to describe part of a flow, and matching
the boundaries of the potential flow to a flow description that is not described by a
potential.

Consider the object moving through a fluid that at rest and extend to infinity
in all directions. As the vorticity is zero at infinity, the vorticity should be zero
everywhere. After using a single vector identify Euler’s equation (equation 145) for
a barotropic fluid can be written

(186)
∂u

∂t
+∇

(
u2

2

)
− u× ω = −∇h

If the vorticity is zero everywhere and the flow is steady state then

(187) ∇
(
h+

u2

2

)
+
∂u

∂t
= 0

If the fluid is irrotational then we can use a potential function∇φ = u and the above
equation becomes

(188) ∇
(
h+

u2

2
+
∂φ

∂t

)
= 0

This implies that

(189) h+
u2

2
+
∂φ

∂t
= F (t)

only depends on time and cannot depend on position. We can define a new potential

(190) φ′ = φ−
∫ t

F (t)dt

so that ∇φ′ =∇φ and

(191)
∂φ′

∂t
=
∂φ

∂t
− F (t)

Inserting this back into equation 189 we find

(192) h+
u2

2
+
∂φ′

∂t
= constant
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and this implies that we can choose the potential function such that the entire func-
tion is constant. If the fluid is steady state then

(193) h+
u2

2
= constant

This is Bernoulli’s function, but here the function is not only constant on streamlines
but is constant everywhere. In short: if the flow is irrotational, barotropic and inviscid
Bernoulli’s function is constant everywhere.

For an incompressible fluid, this implies that

(194) p = p∞ − ρ
u2

2
.

The drag on an object (or equivalently lift) in an inviscid flow is the pressure inte-
grated over the surface of the object

(195) F =

∫
S

pdA =

∫
S

(
p∞ − ρ

u2

2

)
dA

where S is the surface of the object. Using Gaus’s law (and remembering that we
have assumed an incompressible fluid with ρ constant and ∇ · u = 0), and assuming
a fixed body shape we find that

(196) F =

∫
V

∇ · (ρ
2
u2)dV = 0.

An irrotational flow about a body in a barotropic, inviscid, and incompressible fluid
gives no drag or lift. This is d’Alembert’s paradox.

The paradox is resolved by considering where our approximations fail. Flow is
not inviscid near the body and vortices can be generated from boundary layers. The
paradox implies that vorticity generation is necessary in order to account for (or
estimate) lift and drag forces. As a consequence, the potential flow approximation
cannot be used to describe the entire flow.

Vortex shedding is a necessary component to generate lift. However, it takes
energy to generate vorticity, so if a plane generates excessive vorticity then it will
burn more fuel. This is a particular issue for vortices generated at airplane wing tips.
Fuel efficient planes can minimize what is known as “vortex drag” by having large,
wide wings compared to the plane length, or with winglets – these are the little tags
pointing upwards at the ends of some airplane wings.

3.9. Burger’s vortex. Burger’s vortex is one of a few known simple steady state
analytical solutions to the Navier-Stokes equation that exhibit vorticity. It can be
used as an analogy for how water rotates as it goes down a drain, or perhaps for a
tornado.
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Figure 15. Vorticity generated at a planet wing tip. This figure from Wikipedia.

Figure 16. Streamlines for Burger’s vortex. If z is flipped then the
flow is like water going down a drain.

Consider a steady flow in cylindrical coordinates with velocity vector

(197) v = vrr̂ + vzẑ + vφφ̂
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with

vr = −1

2
αr

vz = αz

vφ = vφ(r)(198)

and α > 0 a constant that describes the strain or rate of shear in the flow.
The vorticity for this flow only contains a ẑ component.

(199) ωz =
1

r

d

dr
(rvφ(r))

The ẑ component of the Navier-Stokes equation then implies that

Dωz
Dt

= ωzα + ν∇2ωz(200)

The term on the left, caused by the strain α, gives vortex line stretching and increases
the vorticity. The term on the right, due to viscosity, reduces the vorticity. There is
a particular radial distribution of vorticity where the two terms balance.

A steady state solution to equation 200 is

(201) ωz = ω0 exp
(
−cr2

)
with constant c, that depends on a ratio of ν and strain α. If the strain is higher
then the vorticity is concentrated in a smaller region. If the viscosity is higher then
the balance is achieved with a wider vorticity distribution.

4. Rotating Flows

4.1. Coriolis Force. In a rotating frame, a particle moving at a constant velocity
can actually be on a curved trajectory. The acceleration of a fluid element depends
on the particle’s position, with respect to the center of rotation, and on the particle’s
velocity. In a frame rotating with angular rotation rate or spin Ω the acceleration is

(202)
∂u

∂t
+ 2Ω× u + Ω× (Ω× r)

gaining two terms, a Coriolis term (depending on u) and a centripetal term propor-
tional to Ω2.

If Ω is in the ẑ direction we evaluate the centripetal acceleration term Ω×(Ω×r) =
Ω2(x, y, 0). More generally

(203) Ω× (Ω× r) = Ω2(r− (r · n̂)n̂)
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where n̂ = Ω/|Ω|. In cylindrical coordinates with R =
√
x2 + y2 and with z aligned

with the spin the centripetal acceleration can be described as a gradient

(204) Ω× (Ω× r) =∇
(

Ω2R2

2

)
Here R is the distance to the axis of rotation. We call the effective potential

(205) Φeff =
Ω2R2

2

This can be incorporated into either gravity or pressure term (in the barotropic case)
within Euler’s equation.

The Navier-Stokes equation becomes

(206)
∂u

∂t
+ (u ·∇)u + 2Ω× u = −1

ρ
∇p−∇Φ′ + ν∇2u

where the gravitational potential

(207) Φ′ = Φ + Φeff

4.2. Rossby and Ekman numbers. Previously we took a ratio of inertial to vis-
cous forces to create a dimensionless number called the Reynolds number. We now
have an additional free parameter Ω. We can use it to create two new dimensionless
numbers. Our physical objects are a velocity scale, v, a size scale L, a viscosity ν and
a rotation rate Ω. For the inertial force we estimate (u ·∇)u ∼ v2/L. For the Corolis
force we estimate Ω × u ∼ Ωv. For the viscous force we estimate ν∇2u ∼ νv2/L2.
We call the Rossby number the ratio of the inertial to Coriolis force

(208) Ro ≡ Inertial force

Coriolis force
≡ v

ΩL

We call Ekman number the ratio of viscous force to Coriolis force

(209) Ek ≡ Viscous force

Coriolis force
≡ ν

ΩL2

The Ekman number is low when viscosity is unimportant. The Rossby number is low
when the Coriolis force is important. Jupiter’s atmosphere is a low Rossby number
setting.

4.3. Geostrophic flows and the Taylor Proudman theorem. We consider a
setting with small Rossby and Ekman numbers. We neglect the inertial force and
we neglect the viscous force. But we keep pressure force and Coriolis force and these
balance (in the steady state)

(210) 2Ω× u = −1

ρ
∇p−∇Φ′
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If the flow is incompressible we can incorporate the effective potential term within
the pressure gradient. If on the surface of a planet we can ignore vertical variations
in gravitational potential. Geostrophic balance is then written

(211) 2Ω× u = −1

ρ
∇p′

where p′ = p+ ρΩ2R2/2.
The left hand side is a vector that is perpendicular to u and so is perpendicular

to stream lines. The right hand side is in the direction of pressure gradient and so
perpendicular to constant pressure contours. So the above equation is interpreted to
imply that pressure is constant along streamlines.

Let us take the curl of the geostrophic flow equation (equation 211).

(212) ∇× (Ω× u) = 0

We use a vector identity

(213) (Ω ·∇)u− (u ·∇)Ω + u(∇ ·Ω)−Ω(∇ · u) = 0

Because Ω is a constant, the second and third terms are zero. If the fluid is incom-
pressible then the last term is zero and we find

(214) (Ω ·∇)u = 0

If we align our coordinate system so that ẑ is along the spin axis

(215) Ω
∂u

∂z
= 0 → ∂u

∂z
= 0

There cannot be any vertical variations in the velocity. This is called the Taylor-
Proudman theorem. If we describe u = (u, v, w), then

(216)
∂u

∂z
=
∂v

∂z
=
∂w

∂z
= 0

The velocity components can only vary in the plane, motions can only take place in
planes perpendicular to the spin axis. Often a boundary sets w = 0 somewhere and
we find that w = 0 everywhere. A consequence of the Taylor-Proudman theorem is
the formation of features known as Taylor columns.

A steady state, incompressible flow with low Rossby and Ekman numbers gives
us geostrophic flow. In such a flow there can only be motions perpendicular to the
axis of rotation. A rapidly spinning planet is expected to be comprised of columns.
Vertical motions are surpressed.
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Figure 17. Taylor columns for low Rossby, Eckman number steady
state flow in a rotating body.

4.4. Two dimensional flows on the surface of a planet. On the surface of a
planet we can look at the velocity components only on the surface. In this case u
has two directions (azimuthal and latitudinal). Let u = (u, v, w) with u for the east-
west direction, v the north-south component and w the vertical component. This
is equivalent to assuming that the vertical velocity component is small compared to
velocities of horizontal wind on the surface of the planet. Setting w = 0 we can
compute the vorticity finding only a vertical component

(217) ω =

(
∂v

∂x
− ∂u

∂y

)
ẑ

Let us call ζ the vertical component of the vorticity

(218) ζ =
∂v

∂x
− ∂u

∂y

This is in a local coordinate system with x, y, z aligned with u, v, w. However we
have not taken into account the vorticity due to the rotation of the planet. The
vorticity of a rotating body is equivalent to 2Ω where Ω is the spin vector of the
body. The vertical component of Ω depends on the latitude. If the neighborhood
is on the equator then there is no component of the spin in the vertical direction.
Altogether the vertical component of the vorticity is

(219) f = 2Ω sin θ
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where θ is the latitude. The total vorticity (taking into account both horizontal
winds and rotation of the planet) is

(220) ω = (0, 2Ω cos θ, ζ + 2Ω sin θ)

In this local coordinate system.
Question: How come the vorticity evolution equation only seems to depend on

ζ + f? What happens with the other component? A north south motion should
change the y component of vorticity.

4.5. Thermal winds? Within the context of a geostrophic flow, flow velocities can
depend on height. Instead of using height, z, as a free variable, the pressure is used.
Hydrostatic equilibrium gives us a relation between pressure and height; dp = −ρgdz.
Vertical gradients can be written as a derivative with respect to pressure.

(221)
1

ρ
= −g

(
∂z

∂p

)
x,y,t

By combining the geostrophic equations with the vertical pressure variation we can
derive a relation between vertical velocity gradient and horizontal temperature gra-
dient (at constant pressure).

(222) f
∂v

∂p
= − 1

ρT
∇T

where the temperature gradient is at constant pressure and v = (u, v). These are
known as the thermal wind equations. Vertical velocity gradients are related to
horizontal temperature or density gradients.
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