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1. Inviscid Barotropic flow

1.1. Enthalpy and the Bernoulli equation. Recall Euler’s equation with gravity

(1)
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p−∇Φ

We define a quantity h, that we denote the enthalpy that is
∫
dp/ρ so that∇h = 1

ρ
∇p.

For an ideal gas with p = Kργ we find that

h =
γ

γ − 1

p

ρ

Using the enthalpy we can write Euler’s equation as

∂u

∂t
+ (u · ∇)u = −∇(h+ Φ)

Using the vector identity

u · ∇u = ∇
(
u2

2

)
− u× (∇× u)

Euler’s equation becomes

(2)
∂u

∂t
− u×∇× u = −∇

(
u2

2
+ h+ Φ

)
Note the vorticy, ω, is defined as

ω = ∇× u

so we could write equation 2 as

∂u

∂t
− u× ω = −∇

(
u2

2
+ h+ Φ

)
Consider a steady flow with ∂u

∂t
= 0. We consider how the previous equation varies

along the direction of u or along streamlines. We dot the equation 2 with u (and
dropping u,t) finding a scalar equation

(3) u · ∇
(
u2

2
+ h+ Φ

)
= 0
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This shows that the function (Bernoulli’s function)

(4)
u2

2
+ h+ Φ

is constant along streamlines.

(5)
u2

2
+ h+ Φ = constant

is known as Bernoulli’s equation.

Figure 1. Along stream lines in a steady state flow, u2

2
+ h + Φ

is conserved. In an incompressible setting enthalpy h ∝ p pressure.
Bernoulli’s equation then implies that pressure drops where velocity
increases. The gradient in pressure across an airplane wind gives a
force known as lift.

What is meant by stream lines? We can define them locally in terms of a direction
dl = (dx, dy, dz) such that

(6)
dx

vx
=
dy

vy
=
dz

vz

so that dl ∝ u lies in the same direction as the velocity and u× dl = 0.

1.2. Dimensional analysis for Bondi accretion. We consider radial flows near a
central star (or other compact object) with mass M . Parameters describing the flow
are the density and sound speed at infinity ρ∞ and c∞, and the mass of the central
object, M . We assume the ambient medium is at rest with respect to M . We can
combine M along with the gravitational constant G to form a gravitational radius

(7) rG =
GM

c2∞
Inside this radius we expect the flow to be strongly dependent on the gravity of the
central object and outside this we expect the flow to only be slightly influenced by
the central mass.
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Figure 2. Lift and drag forces on a sail.

Figure 3. Setting for Bondi accretion.

Using this gravitational radius we can roughly estimate an expected accretion rate.
We can assume a cross section r2G and a typical velocity c∞ and so would estimate a
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rough accretion rate

(8) Ṁ ∼ ρ∞c∞r
2
G ∼ ρ∞(GM)2c−3∞

1.3. Bondi accretion. We consider radial flows near a central star with mass M .
In spherical coordinates the mass conservation equation becomes

(9)
∂ρ

∂t
+

1

r2
∂

∂r
(ρr2u) = 0

where u now refers to the velocity in the radial direction. If the flow is steady we
can set ∂ρ

∂t
= 0 and integrate the previous equation finding that the outflow or inflow

rate is constant or

(10) Ṁ = 4πρr2u

Using our expression for enthalpy Bernoulli’s equation becomes

(11) − GM

r
+
u2

2
+

γ

γ − 1

p

ρ
= B

with constant B.
Consider the value of the previous equation at large radius. At large radius the

gravitational term is negligible. We set the speed at large radius to be 0 so that
u→ 0 as r →∞. The sound speed distant from the star c2∞ = γp∞/ρ∞. So

(12) B =
c2∞
γ − 1

We have three equations that relate our variables ρ, cs and r: the equation for Ṁ ,
Bernoulli’s equation and the equation of state. Using our boundary condition at ∞
these can be solved numerically.

Writing Bernoulli’s equation in terms of u versus cs

(13)
u2

2
+

c2s
γ − 1

=
c2∞
γ − 1

+
GM

r

we see that solutions must be on an ellipse on the u versus cs plot. At each r we get

a different ellipse for solutions. The axis ratio of the ellipse is
√

γ−1
2

.

Our equation for mass conservation allows us to relate the velocity to the accretion
rate and density at infinity. We first write the speed of sound in terms of the density

c2s =
γp

ρ
= γKργ−1

for constant K so that (
cs
c∞

)2

=

(
ρ

ρ∞

)γ−1
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Figure 4. Solutions lie on ellipses with semi-major axis dependent
on radius and the sound speed at infinity (equation 13).

We now use our relation for Ṁ to find

(14) u =

(
Ṁ

4πρ∞r2

)(
cs
c∞

)−2/(γ−1)
The intersection of this curve with an ellipse on the u vs cs plane give solutions
or u, cs. At each r we get a different curve for u vc cs which must intersect the
appropriate ellipse defined by Bernoulli’s equation at that radius (equation 13).

Figure 5. Solutions are where ellipses intersect the hyperbolic-like
curves from equation 14. At each radius there is one hyperbolic-like
curve (but dependent on Ṁ), and one ellipse.

1.4. The transonic point. It is useful to classify solutions by whether they have
a sonic transition point or whether there is a point where the velocity is equal to
the sound speed. It is easiest to do this using the derivative forms for the mass and
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momentum conservation law. The radial component of Euler’s equation in spherical
coordinates (and ignoring derivatives with respect to θ, φ

∂u

∂t
+ u

∂u

∂r
= −1

ρ

∂P

∂r
− ∂Φ

∂r

Using
1

ρ

∂P

∂r
=

1

ρ

∂P

∂ρ

∂ρ

∂r
=

1

ρ
c2sρ,r,

We can write the Euler equation in steady state as

(15) uu,r + c2s
ρ,r
ρ

= −GM
r2

where derivatives are denoted with commas. Mass conservation in spherical coordi-
nates (equation 9 taking the steady state and dividing by ρu) can be written

(16)
ρ,r
ρ

+
u,r
u

+
2

r
= 0

Subbing this into equation 15

uu,r − c2s
u,r
u

=
2c2s
r
− GM

r2
or

(17)
u,r
u

(u2 − c2s) =
2c2s
r
− GM

r2

The sonic transition point where u = cs occurs at a radius

(18) rB =
GM

2c2st
where cst is the sound speed at the transonic point. Putting this into Bernoulli’s
equation (equation 13) finding a relation between cst at the sonic point and c∞ or

(19)

(
cst
c∞

)2

=
2

5− 3γ

and

(20) rB =

(
5− 3γ

4

)
GM

c2∞
.

The sonic transition point can be used to find the accretion rate as we know the
velocity at a particular radius and we have a relation between the velocity and the
accretion rate. For the solution that goes through the sonic point,

(21) ṀB =

(
2

5− 3γ

) γ+1
2(γ−1)

4πr2Bρ∞c∞ =
1

4

(
2

5− 3γ

) 5−3γ
2(γ−1)

4π(GM)2ρ∞c
−3
∞
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where rB is defined above as the sonic transition point.
Note rB becomes large when γ = 5/3. When γ = 5/3 there is no trans-sonic

transition point for a smooth flow. In most astrophysical situations this possibility
is often ignored as it is considered too idealized.

We note that the condition that the flow contain a sonic transition point specified
the location of the transonic point and the accretion rate. This implies that there is
only one possible smooth transonic solution. Other solutions with discontinuities or
shocks could exist. For smooth solutions the flow can only pass through a transonic
point at one radius, rB. This means that smooth solutions that don’t pass through a
sonic point at rB must remain either subsonic at all times or supersonic at all times.

If the solution does not have a sonic transition the left hand side of equation 17 is
only zero when u is a maximum or minimum. In this case the radius where

(22) r =
GM

2c2s

corresponds to the radius where the velocity is a maximum or minimum of the flow.
Equations 19, 20 and 21 do not apply as we have assumed that u = cs at this radius.

Figure 6. Steady state spherical flows. Only the wind and accretion
flows have a transonic point and that point must happen at r = rB.

There are 4 different types of solutions.

(1) Those starting subsonic at small radius and crossing at rB to supersonic
outflow (stellar winds).
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(2) Those starting subsonic at large radius and crossing at rB to supersonic inflow
(Bondi accretion).

(3) Those starting subsonic and remaining subsonic everywhere. These are nearly
hydrostatic solutions.

(4) And those remaining supersonic. The last two classes of solutions can be
approximated by dropping either the u2 term or the c2s in equation (17).

We can also parametrize the solutions in terms of the accretion rate with

(23) Ṁ = λ4πρ∞c∞r
2
G = λ4πρ∞(GM)2c−3∞

We define λc as the value that allows a solution with a transonic point (see the
coefficient in equation 21 for λc). The wind solutions (Parker winds) can be similarly
described with a parameter λ.

1.4.1. Maximal accretion rate solution. One last thing that it is maybe useful to
know is that the accretion rate is maximized by the solution with the sonic transition.
You can show that the accretion rate for the transonic solution is an extremum by
considering the velocity and speed of sound for flows that are not transonic at rB.
Let us rewrite the parameter λ giving the accretion rate in equation 23

(24) λ =

(
u

c∞

)(
r

rG

)2(
cs
c∞

) 2
γ−1

Now let us look at the radius where the velocity is an extremum or equal to the sound
speed (where the left hand side of equation 17 is zero) and r = rB = GM/(2c2s).
Inserting this in to the previous equation

(25) λ =

(
u

c∞

)
1

4

(
cs
c∞

) 2
γ−1
−4

where u, cs are those for each flow at rB. Now consider Bernoulli’s equation (equation
13) at this radius

(26) u2
(γ − 1)

2
+ c2s(3− 2γ) = c2∞

Solve for c2s/c
2
∞ and sub this into our equation for λ. Then take the derivative with

respect to u

(27)
1

λ

dλ

du
=

(
1− u2

c2∞

γ − 1

2

)
− u2

c2∞
(3− 2γ).

Set the above equation to zero to find the extremum for λ and solve for u (the velocity
for the extreme solution at rB) finding

(28)
u2

c2∞
=

5− 3γ

2
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But this is the sound speed at rB for the transonic solution. The transonic solutions
turn out to be maximum flow rate solutions.

It is interesting to watch the video on nozzle flow after thinking about Bondi flow
as the equations are similar. Instead of a gravitational potential there is a nozzle
surface area function. For a flow entering the nozzle under sufficient pressure, flow
is regulated. The narrowest part of the nozzle sets the sonic transition point. If the
pressure outside the nozzle is not consistent with that predicted using Bernoulli’s
equation there is a shock after the narrowest part of the nozzle. Our analysis here
has not considered the possibility of shocks in the flow.

There is a nice review of Bondi-Hoyle-Lyttleton accretion at http://nedwww.

ipac.caltech.edu/level5/March09/Edgar/Edgar_contents.html including its lim-
itations, what happens with the addition of more physics (moving object, opacity,
cooling) and some applications.

Here we have used only 3 equations to discuss the flow, conservation of mass,
Euler’s equation and an equation of state. If radiation or conductivity or cooling
were considered as part of the flow then an equation for energy transport would be
required.

1.5. Subsonic and Supersonic limits. Consider Bernoulli’s equation

(29)
u2

2
+

c2s
γ − 1

=
GM

r
+

c2∞
γ − 1

When u� cs (supersonic limit) we can drop the terms with sound speeds and we find
a relation between velocity and radius that is equivalent to gas in freefall. Pressure
in the gas fails to slow the flow down at all. Because we have a solution for u(r) we
can write the density in terms of Ṁ and radius. We can’t write our solution in terms
of density at infinity because at some point at large radius the flow must drop below
the sound speed and violate our assumption that u� cs.

When u � cs (the subsonic limit) we can drop the term depending on u in
Bernoulli’s equation and we find

(30) cs =
√
v2c (γ − 1) + c2∞

where v2c = GM/r is the velocity of a particle in a circular orbit. This solution is
the same as we would have found with a hydrostatic solution. In other words if we
go back to Euler’s equation

(31)
∂u

∂t
+ u · ∇u = −1

ρ
∇p−∇Φ

Taking the limit u→ 0 is the same as dropping the terms on the left or letting u� cs.
And this is the same as assuming hydrostatic equilibrium. As 1

ρ
∇p = ∇h hydrostatic

equilibrium can also be written h = Φ+ constant, where h is the enthalpy. This and

http://nedwww.ipac.caltech.edu/level5/March09/Edgar/Edgar_contents.html
http://nedwww.ipac.caltech.edu/level5/March09/Edgar/Edgar_contents.html
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our definition for enthalpy gives us the above radial form for the sound speed. As
we have taken the u→ 0 limit we have no constraint on the velocity as a function of
radius. However we could solve for the density as a function of radius using our radial
formula for sound speed and integrating the equation for hydrostatic equilibrium.
Equivalently as h ∝ p/ρ ∝ ργ−1 we can solve for ρ in terms of vc using Bernoulli’s
equation. It is useful to remember that γK = c2∞ρ

γ−1
∞ giving

(32)
ργ−1

ργ−1∞
= c−2∞ ((γ − 1)v2c + c2∞)

and allowing us to solve for ρ as a function of r.

1.6. Notes on astrophysical applications of Bondi flow. The Galactic center
harbors a million solar mass black hole that lies in an X-ray emitting medium. There
are massive stars in the vicinity driving winds. These winds provide a medium
that can accrete onto the black hole. The Bondi accretion rate is estimated as
10−5−10−6M� yr−1 however the total luminosity from the black hole is less than 1036

erg/s which is 10−9 times the Eddington luminosity. The black hole at the Galactic
Center, as in many elliptical galaxies, is extremely dim. Thin disk accretion models
are ruled out at accretion rates as low as Ṁ . 10−10M� yr−1. This problem has
inspired new accretion models including radiatively inefficient forms of accretion or
flows that efficiently drive winds so that not much material makes it into the black
hole. There is also the possibility that accretion is episodic.

1.7. Analogy with the De Laval Nozzle.
Now is a good time to watch Channel Flow of a Compression Fluid at

http://www.youtube.com/watch?v=JhlEkEk7igs (Note some of the You-tube videos
are screwed up but this one seemed OK.) Maybe the lack of sync between voice and
video has to do with the internet connection. I watched this one okay in my office
and then it screwed up for the second (and never again) time in class.

In the above section we introduced Bernoulli’s equation and immediately applied
it to the astrophysically motivated problem of accretion onto massive bodies (Bondi
accretion) and stellar winds. More traditionally one would have introduced the
rocket nozzle. Here the nozzle cross sectional area serves the role of the gravitational
potential in Bondi-flow.

The De Laval nozzle is a one dimensional flow into a pipe that has varying cross
sectional area. We describe the flow as a function of time t and position x along
the nozzle. This gives us pressure, density and velocity p(x, t), u(x, t), ρ(x, t). These
functions will be determined from the properties of our fluid at the input ρ0, u0 and
sound speed c0 and will depend on the shape of the pipe or nozzle. Assuming an
equation of state we can use the sound speed as variable instead of the pressure as

h
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Figure 7. Flow through a nozzle can make the transition to super-
sonic flow where the cross sectional area of the nozzle is a minimum.

we did for our discussion on Bondi flow. Bernoulli’s equation is particularly simple

(33)
u2

2
+ h = constant

When we discussed Bondi flow Bernoulli’s equation contains a term depend on grav-
ity. Here instead of a gravity term we have the cross sectional area of our nozzle that
depends on distance; S(x). Conservation of mass becomes

(34) ρuS(x) = Ṁ = constant

and its differential form

(35)
ρ,x
ρ

+
u,x
u

+
S,x
S

= 0

As we will show in our problem set, the transonic point must occur at an extremum
of S, where dS/dx = 0. This is not only an extremum but a minimum. The transonic
point here is set by the nozzle minimum rather than set by the Bondi radius.

2. Riemann Invariants and the Method of Characteristics

The method of characteristics is a method used to solve the initial value prob-
lem for general first order partial differential equations. By first order we mean
only containing first order derivatives. Our conservation laws fit into this category.
Consider

(36) a(x, t)u,x + b(x, t)u,t + c(x, t)u = 0

along with an initial condition

(37) u(x, 0) = f(x)

We find a change of coordinate system from (x, t) to a new coordinate system (x0, s).
In the new coordinate system the partial differential equation becomes an ordinary
differential equation (with only derivatives with s) along certain curves in the x, t
plane. The new variable x0 is constant along these curves. These curves are called
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Figure 8. Trajectories can be specified by characteristic curves as a
function of space and time where the velocity is the inverse of the slope
of the curve. Along each curve (trajectory) s increases. Each curve
is specified by its initial x0 value or x position value at time t = 0 or
with s = 0. Solutions can be described by how u changes along s, for
each initial condition x0 rather than u(x, t).

characteristics. The variable s varies along the characteristics but x0 does not. How-
ever x0 changes along the initial curve set by our initial condition with t = 0 in the
x, t plane. In 1 dimension characteristics are the trajectories of particles starting at
x0 and with velocity u as a function of position and time satisfying equation 36.

Choose

dx

ds
= a(x(s), t(s))

dt

ds
= b(x(s), t(s))

so that

du

ds
=

dx

ds

du

dx
+
dt

ds

du

dt

=
dx

ds
u,x +

dt

ds
u,t = a(x, t)u,x + b(x, t)u,t

Our partial differential equation can be written

(38)
du

ds
+ c(x, t)u = 0

du

ds
+ c(x(s, x0), t(s, x0))u = 0

The above is an ordinary differential equation. We solve it for u(s) and use x0 for
constants of integration.

1

u

du

ds
= −c(x0, s)
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d lnu = c(x0, s)ds

The equations

dx

ds
= a(x(s), t(s))(39)

dt

ds
= b(x(s), t(s))(40)

are called the characteristic equations. They don’t depend on the initial conditions
x0. However, after you integrate these equations our formulas for x(s) and t(s) will
have constants of integration that do depend x0. The characteristic equations have
slope (velocity) a/b so that a particle trajectory depends only on x0.

Let us divide one characteristic equation by another

(41)
dx

ds

ds

dt
=
dx

dt
=
a

b

This implies that a/b is a slope on a x, t plot.
Our original variations are x, t. We are considering new variables x0, s. Our

original variables x(s, x0) and t(s, x0). We specify that t(s = 0, x0) = 0 and that
x(s = 0, x0) = x0. We can think of the above characteristic equations as partial
derivatives

∂x(s, x0)

∂s
= a(42)

∂t(s, x0)

∂s
= b(43)

Once these are integrated they depend on the constant of the integration or functions
that depend on x0.

2.1. General strategy. Here is a recipe
1) Solve the two characteristic equations for a relation between s and x(s) and

t(s). Assume that t = 0 for s = 0.
2) Find constants of integration for the integrated characteristic equations by

setting x(s = 0) = x0.
3) Solve the ordinary differential equation for du

ds
with initial condition u(0) =

f(x0). We now have a solution u(x0, s).
4) Solve for s and x0 in terms of x, t using our solution for the characteristic

equations.
5) Sub these values into u(x0, s) to get a solution to the original partial differential

equation as a function of (x, t).
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2.1.1. Constant coefficient example. Let a(x, t) be a constant, b = 1 and c = 0. Our
partial differential equation and initial condition are

au,x + u,t = 0(44)

u(x, t = 0) = f(x)(45)

Our characteristic equations are

dt

ds
= 1 → t = s+ constant(x0)(46)

dx

ds
= a → x = as+ constant(x0)(47)

We find that t = s+ a constant that depends on x0. Letting t(0) = 0 we find that
s = t. Our second characteristic equation gives x = as + g(x0). Letting x(0) = x0
we find x = as+ x0 = at+ x0. Altogether

t = s(48)

x = as+ x0(49)

This gives us

(50) x0 = x− as = x− at
Our ordinary differential equation becomes

(51)
du

ds
= 0→ u(s, x0) = constant(x0)

So that u does not vary with s. This means that u(s) = h(x0) for some function h().
Our initial condition is u(s = 0) = f(x0). The solution is

u(s) = f(x0) = f(x− at)
We find that the velocity is constant along lines of constant x− at as expected.

Note that our constant coefficient example

(52) au,x + u,t = 0

could be written as

(53)
Du

Dt
=

[
∂

∂t
+ a

∂

∂x

]
u = 0

if we think about u as a quantity moving with a velocity a. The characteristics
with slope (or velocity) a are streamlines or particle trajectories. Our variable s is
a variable that changes along streamlines. Our characteristics velocities (or slopes)
are the speed that things move along these streamlines. Each streamline is defined
or fixed by its initial condition or x0.
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Figure 9. On top are initial conditions and on the bottom showing
evolution after a period of time. The left most panels show u vs x the
rightmost panels show t vs x. The differential equation is u,t+au,x = 0
so that characteristics are parallel. Figure made with http://www.

scottsarra.org/shock/shockApplet.html Here u is just a quantity
advected at velocity a.

2.1.2. A more difficult example. Consider differential equation and initial condition

2xtu,x + u,t = u(54)

u(x, 0) = x.(55)

The characteristic equations are

dt

ds
= 1 → t = s+ constant(x0)(56)

dx

ds
= 2x(s)t(s) → d lnx = 2t(s)ds(57)

Setting s = 0 at t = 0 we find that t = s. The second characteristic equation gives
us

(58) dx/x = 2sds

http://www.scottsarra.org/shock/shockApplet.html
http://www.scottsarra.org/shock/shockApplet.html
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with the solution lnx = s2 + c(x0) and constant function c(x0). This gives us

(59) x = c′(x0) exp s2

with another function c′(x0). At t = 0 or s = 0 we would like x = x0. This lets us
specify the function of x0;

(60) x(x0, s) = x0 exp s2

or

(61) x0(x, t) = x exp(−t2)
Our characteristic equations are more complex than our last example. Here they are
exponentially increasing lines. Let us write variables in terms of one another

x(x0, s) = x0 exp(s2)
t(x0, s) = s

x0(x, t) = x exp(−s2)
s(x, t) = t

Our first order differential equation is

(62)
du

ds
= u

with solution u = c(x0)e
s. Note u is not conserved along our characteristic equations

but increases exponentially along it. We have been given the initial condition u(t =
0) = x so c(x0) = x0 and

(63) u(x0, s) = x0e
s

But x0 = x exp(−t2) so we have a solution at later times

(64) u(x, t) = x exp(−t2 + t).

What do the characteristics look like? On a x, t plot, s = t and x0 sets the root of
each characteristic on the x axis. If we set t on the y axis then we want a plot of t
as a function of x and x0. Inverting equation 60

(65)
√

ln(x/x0) = t = s

See Figure 10. And along each characteristic, the u value will increase exponentially
according to equation 63, however the characteristics turn over so quickly that the
solution for u(x, t) drops at large t. The u stuff is advocated really quickly to large
x along the characteristics, so quickly that this overcomes the fact that u increases
along each characteristic.
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Figure 10. Characteristics where x(x0, s) = x0 exp s2 and t = s. The

lines drawn are t =
√

ln(x/x0). Each x0 gives a different curve.

2.2. Vector Linear case. Consider vectors y, a linear equation and initial condition

y,t + Ay,x = 0(66)

y(x, t = 0) = F(x)(67)

with A a matrix and F a vector of functions. We diagonalize the matrix with U so
that

(68) Λ = UAU−1

is diagonal and set

(69) z = Uy.

The matrix U gives a coordinate transformation so that A becomes diagonal (Λ).
In the new coordinate system, the basis vectors are eigenvectors of A.

Insert y = U−1z into our differential equation and we find

(70) U−1z,t + AU−1z,x = 0

Multiply by U and we find

(71) z,t + Λz,x = 0.

Our equation becomes a series of equations (one for each component)

(72) zi,t + λizi,x = 0

where λi are the eigenvalues of A. Our initial condition for the eigenvectors z(x, t =
0) = UF(x). We define a new vector function G(x) so that

(73) z(x, t = 0) = G(x) = UF(x)
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The eigenvalues are the velocities and determine the characteristics for the solutions
of z(x, t) and so for y(x, t).

(74) zi(x, t) = Gi(x− λit)

Now that we know z(x, t) we also know

(75) y(x, t) = UG ⇐⇒ yi(x, t) = UijGj(x− λjt)

where on the right I have written the solution out in terms of components. This is
the solution at all times.

Figure 11. For the two dimensional case, there can be two charac-
teristic velocities. If the initial condition is a constant vector on the
left and a different constant on the right, the solution in the middle is
a mixed state at later times.

For every eigenvector we can have a characteristic velocity λi. For every dimen-
sional degree of freedom we can have a different characteristic velocity. While in one
dimension we only had a single characteristic velocity, in 3-dimensions we can have
three. These turn out to be the different velocities that information can propagate.
For Euler’s equation in three dimension, we will find characteristic velocities like
u, u+ c, u− c.

The vector form is useful to think about because our fluid equations can be written
in conservation law form like

ρ,t +∇ · (ρu) = 0(76)

(ρu),t +∇ · (Pg + ρu⊗ u) = 0(77)

So we can think of ρ and ρu as the components of our vector y. The analogy is that
we will have eigenvalues, v ± c, for information propagating at the sound speed and
that our solution will be a vector combination of information propagating at these
two velocities. However the above fluid equations are non-linear so we will explore
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this case in one dimension before considering characteristics for the fluid equations
in two or three dimensions.

2.3. Non-linear 1-dimensional case. Consider an equation in conservation law
form

(78) u,t +
∂F (u)

∂x
= 0

We can write this as

(79) u,t +
dF (u)

du
u,x = 0

so that we can think of

(80) c = F ′(u)

as our velocity and we would expect our solutions to depend on x− ct. However c is
no longer a constant and depends on u(x, t).

Let’s try following our method of characteristics. We find s = t again from our
first characteristic equation. Our second one

(81)
dx

ds
= F ′(u(x, t))

(82)
d

ds
u(x, t) = u,x

dx

dt
+ u,t = u,xF

′(u(x, t)) + u,t = 0

(83)
du

ds
= 0

This means that the solution u(x(t), t) will not change with time along the character-
istic curve. As u is fixed along a characteristic so is F ′(u) along each characteristic.
This means the characteristic velocity (and slope in a x, t plot) is stays fixed along
each characteristic.

So we start with an initial condition u(x0, t = 0) and then figure out the velocity
F ′(u) at x0 and t = 0. Each position x0 has a characteristic that is a straight line
but each position will have a characteristic that is a different slope. On an t, x with
t along the vertical axis the slope of each characteristic is 1/F ′(u(x0, t = 0)). Each
characteristic crosses the t = 0 axis at initial x0. Each characteristic satisfies

(84) x = x0 + F ′(u(x0, t = 0))t

or

(85) t =
x− x0

F ′(u(x0, t = 0))t
.
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Figure 12. On top are initial conditions and on the bottom showing
evolution after a period of time. The left most panels show u vs x
the rightmost panels show characteristics on a plot of t vs x. The
differential equation is u,t + uu,x = 0. Characteristics are not parallel.
Note the steepening to a shock at later times. The peaks of the sine
wave travel faster than the troughs. Figure made with http://www.

scottsarra.org/shock/shockApplet.html

Previously we described things moving with the fluid with a derivative

(86)
D

Dt
=

∂

∂t
+ c

∂

∂x
where c is the velocity. Now the effective velocity depends on u but u itself still
remains constant along its own streamlines or characteristics. See figure 12 for an
example using Burger’s equation.

2.4. Steepening into a shock. The example of the inviscid Burger’s equation
shows that the velocity remains constant on characteristics but that the charac-
teristics do not have the same slope. An initial condition of a sine wave steepens till
there is an infinite slope (the characteristics cross). At this time a shock develops
and the fluid properties change rapidly over a small distance in distance that is of
order a few mean free path lengths.

http://www.scottsarra.org/shock/shockApplet.html
http://www.scottsarra.org/shock/shockApplet.html
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Figure 13. Characteristics are shown on a t vs x plot for Burger’s
equation with initial conditions that are a sine wave. The time to
development of a discontinuity can be estimated by computing the
time it takes characteristics to cross.

Using characteristics we can estimate the time it takes for a small discontinuity to
develop into a shock. Consider the following non-linear equation

(87) u,t + cu1.5u,x = 0

with initial condition

(88) u(x, t = 0) = u0 + A cos kx

with A � u0. At what time does a shock develop? Here the coefficient c has units
of velocity times u−1.5 and A has units of u.

Solutions have constant u along lines in x, t space with slope that is determined
from the initial u value at each initial position or x0. They satisfy

(89) x = x0 + u(x0, t = 0)1.5t

or

(90) t =
(x− x0)

u(x0, t = 0)1.5

On a t vs x plot like shown in Figure 13 the slopes of the characteristics are given
by the initial value of 1/(cu1.5). On a plot like that shown in Figure 13 we need to
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invert equations 92, 93 to give lines for the characteristics at x0 = 0 and x0 = π/k
or

t =
x

cu1.50 (1 + A/u0)
1.5

t =
x− π/k

cu1.50 (1− A/u0)1.5
(91)

The characteristic with x0 = π/k is steeper than that for x0 = 0.
The characteristic going through x0 = 0 is

(92) x = cu1.50

(
1 +

A

u0

)1.5

t ∼ cu1.50

(
1 + 1.5

A

u0

)
t

At x0 = π/k the characteristic has

(93) x = cu1.50

(
1− A

u0

)1.5

t− π

k
∼ cu1.50

(
1− 1.5

A

u0

)
t+

π

k

By subtracting one equation from the other, we solve for the time when the two
characteristics intersect, finding

(94) t ≈ π

k

u0
A

1

3cu1.50

.

A quick check of units is comforting.
If A is very small then it takes a long time for a discontinuing to develop. If

the differential equation is non-linear, then even very smooth initial conditions can
eventually give discontinuities.

2.5. Characteristics and discontinuities. Consider Burger’s equation

(95) u,t + uu,x = 0

with an initial discontinuity

(96) u(x, t = 0) =

{
uL
uR

for x < 0
for x ≥ 0

Figure 15 shows a situation with uL < uR. No characteristics propagate into the
green region so the solution is not unique. However not all solutions are physically
meaningful or stable. Techniques to find physically good solutions include using an
entropy condition or specifying a vanishing viscosity at discontinuities.
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Figure 14. Here we show converging characteristics for Burger’s
equation with uL > uR. The shock appears at the intersections of
the characteristics.

Figure 15. Here we show diverging characteristics with uL < uR.
This is a rarefraction wave. No information can propagate into the
green region so the solution in this region is not unique. However
the fan-like solution is preferred as it is stable and would arise in the
presence of viscous processes.

2.6. Characteristics for isentropic fluid flow in one dimension. Starting in
conservation law form, conservation of mass and Euler’s equation can be written for
fluid flow in 1 dimension

ρ,t + (ρu),x = 0(97)

(ρu),t + (p+ ρu2),x = 0(98)
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Define a new variable j = ρu. The above two equations become

ρ,j + j,x = 0(99)

j,t +

(
p+

j2

ρ

)
,x

= 0(100)

which we can write in terms of vectors as

(101) yt + F(y),x = 0

with conserved quantities

(102) y =

[
ρ
ρu

]
and flux vector F

(103) F(y) =

[
j

p(ρ) + j2

ρ

]
.

We need not add a third conservation law if we adopt an equation of state relating
p, ρ.

Our flux vector F(y) has Jacobian matrix A (with components Aij = ∂Fi
∂yj

)

(104) A(y) =

(
0 1

c2s − u2 2u

)
with sound speed cs such that

(105)
∂p

∂ρ
= c2s

Using this Jacobian we can write our original equation as

(106) y,t + A(y)y,x = 0.

Eigenvalue and eigenvector pairs for A are(
1

u± cs

)
u± cs(107)

The eigenvalues define our characteristic velocities. We can rewrite the Jacobian
as a product

(108) A = RΛL

where R and L are composed of right and left eigenvectors and the diagonal matrix
Λ has the eigenvalues in it.

(109) A =

(
1 1

u+ cs u− cs

)(
u+ cs 0

0 u− cs

)(
−(u− cs)/2cs 1/2cs
(u+ cs)/2cs −1/2cs

)
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Using A we can write our original differential equation as

(110) y,t + RΛLy,x = 0.

It would be nice to write our differential equation as two equations that look like

(111)
∂J±
∂t

+ (u± cs)
∂J±
∂x

= 0

and then we would have conserved quantities J± (known as Riemann invariants) along
the characteristic curves defined by u± cs. Our eigenvectors (which are proportional
to (u± cs, 1)) would satisfy this if we could find an integral form for them.

Let us write

(112) A = UΛU−1

associating U−1 ∝ L. Multiplying both sides of equation 110 by U−1 then our
differential equation can be written

(113) U−1y,t + ΛU−1y,x = 0

If we can find a new variable

(114) dv = U−1dy

then we can write our above differential equation as

(115) v,t + Λv,x = 0

and our new vector v is conserved along characteristics. Note that the equation will
still be non-linear as Λ depends on v.

Going back to our form for A let us try

(116) U−1 =
k

2cs

(
−(u− cs) 1
(u+ cs) −1

)
with constant k. It is convenient to compute

(117) dj = ρdu+ udρ

Multiplying equation 116 by the vector

(118) dy =

(
dρ
dj

)
,

using our expression for dj and taking the first component

(119)
(cs − u)dρ+ dj

ρ
=
csdρ

ρ
+ du
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and a similar equation for the second component. Above we have used k = 2cs/ρ.
Using an equation of state and c2s = Kγργ−1 we can show that

(120) cs
dρ

ρ
= (Kγ)1/2ρ(γ−3)/2dρ =

2

γ − 1
dcs

This means that

(121)
(cs − u)dρ+ dj

ρ
= du+

2dcs
γ − 1

We find that with

(122) J± = u± 2cs
γ − 1

we can write

(123) U−1
(
dρ
dj

)
=

(
dJ+
dJ−

)
we can write our matrix equation in the form of equation (111) or

(124)
∂

∂t

(
J+
J−

)
+

(
u+ cs 0

0 u− cs

)
∂

∂x

(
J+
J−

)
= 0

Thus our 1D fluid equations are consistent with 2 characteristics and 2 conserved
quantities (the Riemann invariants) that are conserved along these 2 characteristics.

Figure 16. Solutions at a later time must conserve both Riemann
invariants but each one is conserved along a different characteristic
velocity line.
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The Riemann invariants

u =
1

2
(J+ + J−)

cs =
γ − 1

4
(J+ − J−)

When an energy equation is added it is not always possible to find a simple form
for conserved quantities along the characteristics and there is a third characteristic
velocity that is u.

2.7. Riemann invariants. We illustrate another way to show that our functions
J± (known as Riemann invariants) are conserved along trajectories of speed u± cs.
Conservation of mass in one dimension can be written

(125)
1

ρ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
+
∂u

∂x
= 0

(where I have divided the continuity equation by ρ). Euler’s equation in one dimen-
sion

(126)
∂u

∂t
+ u

∂u

∂x
= −c

2
s

ρ

∂ρ

∂x

Notice the dρ/ρ terms in both equations. We will replace these with expression that
depend on dcs.

We manipulate derivatives of the sound speed for a barytropic gas

c2s = Kγργ−1

2csdcs = (γ − 1)Kγργ−2dρ

2

γ − 1

dcs
cs

=
dρ

ρ
(127)

Inserting the expression for dρ/ρ into our 1 dimensional equations for conservation
of mass and Euler’s equation (and multiplying by cs)

∂

∂t

(
2

γ − 1
cs

)
+ u

∂

∂x

(
2

γ − 1
cs

)
+ cs

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+ cs

∂

∂x

(
2

γ − 1
cs

)
= 0(128)

Adding and subtracting these two equations we obtain[
∂

∂t
+ (u+ cs)

∂

∂x

](
u+

2

γ − 1
cs

)
= 0[

∂

∂t
+ (u− cs)

∂

∂x

](
u− 2

γ − 1
cs

)
= 0(129)
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Equivalent to what we had shown before by diagonalizing the linearized equation
and searching for integral forms for the eigenvectors. For a general problem, it may
not be possible to find integral forms for the eigenvectors, however eigenvalues (char-
acteristic velocities) and eigenvectors may still be used to approximate the solution.
The matrix decomposition used here is sometimes used in numerical methods.

3. Shocks

3.1. Jump Conditions. Consider the conservation law form for conservation of
mass, momentum and energy for a gas can be written in the form

(130)
∂U

∂t
+∇ · F = 0

with conserved variables

(131) U =

 ρ
ρu

ρ(u2/2 + e)


and flux

(132) F =

 ρu
pg + ρu⊗ u

ρu(e+ u2/2 + p/ρ)


with g = δij a metric tensor that allows us to write the momentum flux density as a
tensor.

Consider applying Gaus’s theorem to a short cylindrical volume at a stationary
discontinuity with normal n = (0, 0, 1) in the z direction. This is equivalent to
working in the frame moving with the discontinuity. Gaus’s law for any divergence

(133)

∫
∇ · FdV =

∫
S

F · dA

Adjusting our volume so that it is a narrow slab and oriented with normal n

(134) F · n |21= (F2 − F1) · n = 0

We find that conservation of mass, with F = ρu,

(135) [ρu · n]21 = 0

across a discontinuity (where the subscripts refer to quantities on one side subtracted
by those on the other side). If we consider density on each side as ρ1, ρ2 and take
velocity components only in the direction perpendicular to the discontinuity in the
frame of the shock, conservation of mass implies

(136) ρ1uz1 = ρ2uz2
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Figure 17. Apply Gaus’s law to a conservation law to give a relation
ship between fluxes on either side of a discontinuity, in a frame moving
with the discontinuity; F1 · n̂ = F2 · n̂.

Figure 18. Jump conditions on velocity and density across a shock,
in the frame moving with the shock. The ux, uy velocity components
remain unchanged but the uz velocity component and the density both
can differ on either side of the discontinuity.

We now consider momentum density and momentum flux. Our momentum flux
is given by the stress energy tensor, πij = pδij + ρvivj. Applying Gaus’s theorem to
each component we have three equations (each one through surfaces with direction
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n).

(137) π · n |21= 0

or in summation notation

(138) πijnj |21= 0

or orienting the shock normal along z (and in the shock frame)

(139) [πxz]
2
1 = [πyz]

2
1 = [πzz]

2
1 = 0

For each one of these equations conservation of momentum implies[
p+ ρu2z

]2
1

= 0(140)

[ρuxuz] = 0(141)

[ρuyuz] = 0(142)

The second two equations (along with that for conservation of mass; [ρuz] = 0) imply
that velocity components parallel to the discontinuity don’t change. The first of the
equations can be written

(143) p1 + ρ1u
2
z1 = p2 + ρ2u

2
z2

Lastly we look at the energy conservation. Conservation of energy leads to the
following shock condition

(144)

[
ρu · n

(
u2

2
+ e+

p

ρ

)]2
1

= 0

or using conservation of mass again

(145)

[
u2

2
+ e+

p

ρ

]2
1

= 0

These jump conditions are known as the Rankine-Hugoniot conditions.
In terms of the upstream Mach number, M1 = u1/c1, and using an equation of

state with adiabatic index γ (relating p(ρ)) it is possible to show that

(146)
ρ2
ρ1

=
u1
u2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

and

(147)
p2
p1

=
2γM2

1

γ + 1
− γ − 1

γ + 1

Also the downstream Mach number

(148) M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)
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There are maximum density and velocity changes allowed across a shock jump that
depend on the adiabatic index. By considering the entropy change in a shock one
can show that only compressive shocks (downstream density greater than upstream
density) occur in nature (have entropy increase). We have problems on our problem
set illustrating this.

3.2. Strong shocks. Strong shocks are those in the limit of M1 →∞ giving

(149)
ρ2
ρ1

=
u1
u2
→ (γ + 1)

(γ − 1)

p2
p1
→ 2γM2

1

γ + 1

For γ = 5/3 the density and velocity ratio is 4. This is the maximum value. A
strong shock for a gas with γ = 5/3 can have a maximum density and velocity
contrast across the shock of 4.

3.3. Comment on Entropy. We note that we could look at p/ργ = K where K is
the coefficient in P = Kργ. The ratio

(150)
p1ρ
−γ
1

p2ρ
−γ
2

is not in general equal to 1. This means that K is not the same on either side of
the shock and that entropy is not conserved across shocks. The gas jumps from
one adiabat to another one of higher entropy. It may be puzzling to consider that
we have specified an equation of state on either side of the shock that implies that
variations are adiabatic. While we have assumed that P ∝ ργ on either side of the
shock and with the same γ, we have not specified that the constant K is the same
on either side of the discontinuity. There is a direction to the problem in that shocks
cannot decrease the entropy, only increase it. Because there is an entropy change
at the shock discontinuity, energy must be dissipated in the shock interface itself.
Dissipation such as from viscosity and thermal condition set the shape of the actual
shock interface on small scales and do dissipate energy.

3.4. Isothermal shocks. After a shock front the gas is heated but this gas may
cool in some cases back to its original temperature. The temperature may increase
at the shock but then cool over a cooling length back to its original temperature. If
the cooling length is short then we call the shock isothermal. We can consider the
change in velocity, pressure and density between the initial values and those following
the cooling phase assuming that T2 = T1. The Rankine-Hugoniot conditions for
conservational of mass and momentum still hold so

ρ1u1 = ρ2u2(151)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2(152)
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Since the temperature is the same before and after the shock p1 = ρ1c
2
s and p2 = ρ2c

2
s.

By replacing ρ2 in the second equation with ρ1u1/u2 we find

(153) ρ1(u
2
1 + c2s) = ρ1

u1
u2

(u22 + c2s)

We can write this as

(154) u21 [u1 − u2] = c2s

[
u1
u2
− 1

]
as long as u1 6= u2 This becomes

(155) c2s = u1u2 or M1M2 = 1

We can take equation 152 and write it as

(156)
ρ2
ρ1

=
M2

1 + 1

M2
2 + 1

Inserting M2 = 1/M1 we find that

(157)
ρ2
ρ1

=
u1
u2

= M2
1

This means that the compression factor can be arbitrarily large. This is consistent
with the limit of γ → 1 and the ratio in equation 149.

3.5. Going back into the inertial frame from the shock frame. Note that the
above was done in the frame of the shock. After calculating velocity changes in the
shock frame one must transfer back into a coordinate frame. If the shock velocity is
Us in the lab frame and the gas velocities in the lab frame are v1z, v2z and the shock
normal is in the z direction, then

u1z = v1z − Us
u2z = v2z − Us(158)

where u1z and u2z are gas velocities in the shock frame.

3.6. Example of transferring from lab to shock frame. In the lab frame we
can detect line of sight components of velocities and we can place constraints on
temperatures and densities based on line diagnostics. Either temperature or density
diagnostics on both sides of the shock (and an estimate for γ) are enough to estimate
the Mach speed of the shock, M1 and so u1 and u2. Suppose you use temperature
and density line diagnostics and estimate a Mach number M1 = 10 and a preshock
temperature of 104K. The sound speed of 104K gas is about 10 km/s so that in the
shock frame (and using our value for M1 and sound speed we find u1 ∼ 100km/s. The
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shock is strong (high Mach number) so we expect a density ratio of 4 (for γ = 5/3;
see equations 149) . The density ratio tells us that u2 = 100/4 = 25 km/s.

(159) u1 = 100km/s u2 = 25km/s

Suppose the shock normal is oriented along the line of sight and we measure a
post-shock velocity of v2 = 20 km/s. What is the pre-shock velocity observed, v1,
and what is the speed of the shock in the observer’s frame? The difference between
pre and post shock velocity in lab frame is equivalent to that in shock frame

v1 − v2 = u1 − u2 = 100− 25 = 75km/s

v1 = v2 + 75 = 90km/s

Using equation 158, the shock front velocity in the observer’s or lab frame

Us = v1 − u1 = 90− 100 = −10km/s

Supposing using Doppler shifts of spectral lines that we measure in the lab frame
a line of sight pre-shock velocity of 20 km/s and a line of sigh post-shock velocity of
10 km/s. What is the shock propagation speed and at what angle does it propagate
with respect to the line of sight? We can subtract the two lab frame velocities and
find a difference of v1 − v2 = 10 km/s. However this is much lower than u1 − u2 =
100−25 = 75 km/s. This means that the shock is not oriented along the line of sight.
If it were we would have measured a full Doppler difference of 75 km/s. To correct
for this we must multiply by the cosine of the angle between the shock normal and
the line of sight.

(160) (v1 − v2)los = (u1 − u2) cos θ

We solve this finding that

θ = acos(10/75) = 1.437radians = 82.3◦.

We correct v1 by the angle finding that the preshock velocity (all components) has
length of

v1 = 20× 75/10 = 150km/s.

Likewise the postshock velocity lab frame has

v2 = 10× 75/10 = 75km/s.

The difference between the pre-shock velocity in lab and shock frame is u1 − v1 =
100−150 = −50km/s. That on the other side is u2−v2 = 25−75 = −50km/s so the
shock velocity is 50 km/s in the observer’s frame, but only if the gas we measured did
not contain a velocity component parallel to the shock normal. This illustrates how
one could begin to relate observational diagnostics to an underlying shock model.

Note I did not add in a velocity component for motion parallel to the shock direc-
tion but radial velocity measurements should have an additional velocity component
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from motion parallel to the shock surface. This would affect our the estimate of the
shock front propagation speed. Sometimes transverse velocity components can be
measured with proper motions or estimated by other means – using the geometry of
the system or shock itself.

Interpretation of observations of shocks can also be complicated by the presence
of multiple unresolved shocks, radiative precursors, cooling and additional sources
of pressure such as that from a magnetic field. Because high temperatures reached
in shocks are often transient, models often consider ionization and recombination
processes to predict line diagnostics. As recombination timescale may not be short,
emission line ratios seen in shocks may differ from those emitted in a plasma that
is in equilibrium. These exotic line ratios then provide evidence of shock excitation
and are used to differentiate shock excitation from other excitation mechanisms such
as photo-ionization.

Figure 19. A balance between pressure of the ambient interstellar
medium and solar wind ram pressure approximately determines the
location of a shock that is being encountered by the Voyager probes.
The structure of the shock is complex.

3.7. Estimating bow shock location. Let’s go back to our momentum condition
across the shock

(161) p1 + ρ1u
2
1 = p2 + ρ2u

2
2
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where I am only listing the velocity component along the shock front. This equation
looks like a balance between ram pressure and pressure so sometimes we can use it
to estimate the position of a bow shock. Supposing on one side of the shock the
ram pressure is high and the other side the velocity is zero. This gives us a relation
between ram pressure on one side and the pressure on the other side. For example
let’s consider the solar wind with a mean velocity of about 300 km/s and mass loss
rate about 10−14M�/yr. At about 100 AU from the Sun the wind encounters a shock.
Before the Voyager probes encountered the shock, its location was estimated based
on estimates of the physical properties of the interstellar medium in what is known
as our local bubble. Now that the Voyager probes have encountered the shock we
can use the shock location to estimate the properties of the ISM beyond the shock.

The wind velocity is well above the escape velocity in the inner solar system so we
can assume that it is nearly constant with radius. However the density then drops as
a function of r−2. We are interested in how the ram pressure ρv2 scales with radius.

Here ρv2 ∼ Ṁv
4πr2

where I have assumed v is independent of radius and Ṁ = 4πr2ρv.
Using our shock condition we can relate the pressure outside and in the ambient ISM
to the ram pressure in the wind at the radius of the shock

(162) poutside = ρv2 ∼ Ṁv

4πr2

The interstellar medium just external to the Sun is probably ionized. Suppose its
temperature is 104 K. We can use p = nkT to determine n the density of gas in the
ambient ISM outside the solar sytem.

In this case we can estimate the density of the gas outside the solar system with

(163) n ∼ (kBT )−1
Ṁv

4πr2

Inserting r = 100 AU and T ∼ 104K we can estimate the gas density n.

3.8. Shock velocity for conservation laws. For a general set of conservation laws

(164)
∂U

∂t
+∇ · F(U) = 0

the jump condition for a single discontinuity can be written

(165) s(U2 −U1) = [F(U2)− F(U1)] · n̂

for a shock velocity s and a shock face with normal n̂. Here U1,U2 are values of
U on either side of the discontinuity. The shock velocity times the difference in
U must be equal to the differences in the fluxes (components perpendicular to the
shock face). The above relation is also sometimes called the Rankine-Hugoniot
condition. It means that s must be an eigenvalue of the operator F on the vector
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U2−U1. This is the same thing as saying that speeds s are characteristic velocities
for small U2 −U1.

Figure 20. Integrating conservation laws in x, t space with a traveling discontinuity.

The above jump condition comes from integrating the conservation law. We place
a box around our discontinuity and integrate in both volume and time (see Figure
20). Let the surface normal

(166) dA = (y2 − y1)(z2 − z1)x̂∫ x2,y2,z2

x1,y1,z1

∫ t2

t1

d3x dt ∂tU(x, t) = −
∫ t2

t1

∫ x2,y2,z2

x1,y1,y3

d3x dt∇ · F(U(x, t))(167)∫ x2

x1

dx dA[U(x, t2)−U(x, t1)] = −
∫ t2

t1

∫
box surface

dt dA · F(U)∫ x2

x1

dx[U(x, t2)−U(x, t1)] = −
∫ t2

t1

dt n̂ · [F(U(x2, t))− F(U(x1, t))](168)

with n̂ = x̂ the discontinuity normal. The above is an integral form for a conservation
law.

We define our discontinuity as passing from x1 at time t1 to x2 at time t2 (see
Figure 20). Let

dX = x2 − x1 dT = t2 − t1
At time t2 the shock has passed and the first part of integral on the left of equation
168 gives us U1dX. At time t1 the shock has just come into our box and the second
part of the integral on the right gives us U2dX. At position x2 the shock arrives
only at t2 the first term of the integral on the right hand side gives us F(U1)dT . At



38 AST242 LECTURE NOTES PART 2

position x1 the the shock arrives at t1 and so the second term on the integral on the
right hand side gives us F(U2)dT .

(169) dX (U1 −U2) = −dT n̂ · [F(U1)− F(U2)]

We set

(170) s ≡ dX

dT

as the shock or discontinuity travel speed. Altogether we get our jump condition
(the Rankine-Hugoniot condition) in equation (165) which I repeat below.

(171) s(U2 −U1) = n̂ · [F(U2)− F(U1)]

It is also possible to get the sign correct by considering solutions of the form U(x−st)
and integrating them over both t and x.

3.9. Computing the velocity of a discontinuity for a one-dimensional non-
linear conservation law. Consider the inviscid Burger’s equation

u,t + uu,x = 0

u,t +
∂

∂x

(
u2

2

)
= 0

with initial condition

(172) u(x, t) =

{
u1 = 1
u2 = 1

2

for
x < 0
x > 0

The flux

(173) f(u) =
u2

2
.

We check that the characteristics do converge so we do not get a rarefaction wave.
The fluxes

f(u1) =
u21
2

=
1

2

f(u2) =
u22
2

=
1

8

Using our fluxes, we use equation 171 and solve for s

(174) s =
f(u2)− f(u1)

u2 − u1
=

1/8− 1/2

1/2− 1
=

3/8

1/2
=

3

4
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3.10. The Hugoniot Locus. Supposing one side of a jump we have U1 and flux
F(U1). We can ask what values of U2 and velocity s are allowed. The Rankine-
Hugoniot jump condition relates s and U2 for a specific U1. The jump condition
gives curves for U2, where each value corresponds to a particular velocity, s. The set
of points on these curves is often called the Hugoniot locus. There may be more
than one curve. If U2 lies along the p-th Hugoniot curve then we say that U2 and U1

are connected by a p-shock. We can parametrize each curve with a variable ξ where
sp(ξ). At ξ = 0, we assert that U2,p(ξ = 0) = U1. corresponding to no discontinuity.

Figure 21. For a one dimensional isentropic or isothermal fluid flow
the state vector is y = (ρ, j) with j = ρu the mass flux. There are two
different characteristic velocities. From an initial condition y1, after a
discontinuity, there can be a new condition y2 that lies on one of two
different lines. Along each line or locus, the discontinuity velocity s
varies. These curves are known as the Hugoniot locus. Near y1 the
two directions are the two eigenvectors of the Jacobian matrix F′ at
y1 and the discontinuity velocities are the eigenvalues of the Jacobian
matrix (the characteristic velocities) at y1.

The jump condition gives for each curve

(175) F(U2,p(ξ))− F(U1) = sp(ξ)(U2,p(ξ)−U1).

Differentiating this expression with respect to ξ and setting ξ = 0 gives

(176) F′(U′2,p(0))U′2,p(0) = s′p(0)(U2,p(0)−U1) + sp(0)U′2,p(0),

and using the condition for ξ = 0,

(177) F′(U1)U
′
2,p(0) = sp(0)U′2,p(0).
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The above relation implies that U′2,p(0) is a right eigenvector of F′(U1) and that
sp(0) is an eigenvalue of this matrix.

For example consider the one dimensional gas dynamic equations for an isother-
mal fluid.

ρt + jx = 0(178)

jt +

(
j2

ρ
+ a2ρ

)
x

= 0(179)

where j is the mass flux and a is the sound speed and a constant. This can be written

(180) yt + F(y)x = 0

where

(181) y =

(
ρ
j

)
and

(182) F(y) =

(
j
j2

ρ
+ a2ρ

)
The Jacobian of the matrix is

(183) F′(y) =

[
0 1

a2 − j2

ρ2
2j/ρ

]
and eigenvalues are

(184) λ± =
j

ρ
± a

and eigenvectors

(185) r± =

(
1

j/ρ± a

)
.

The Rankine-Hugoniot condition becomes

j2 − j1 = s(ρ2 − ρ1)(186) (
j22
ρ2

+ a2ρ2

)
−
(
j21
ρ1

+ a2ρ1

)
= s(j2 − j1).(187)

Solving for j2 and s in terms of ρ2

j2 =
ρ2j1
ρ1
± a
√
ρ2
ρ1

(ρ2 − ρ1)(188)

s =
j1
ρ1
± a
√
ρ2
ρ1
.(189)
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We can parametrize the curves with ξ using

(190) ρ2,p = ρ1(1 + ξ)

Rewriting our solutions

y2,− = y1 + ξ

(
ρ1

j1 − aρ1
√

1 + ξ

)
, s− =

j1
ρ1
− a
√

1 + ξ(191)

y2,+ = y1 + ξ

(
ρ1

j1 + aρ1
√

1 + ξ

)
, s+ =

j1
ρ1

+ a
√

1 + ξ.(192)

Note that equation 177 related the eigenvalues and eigenvectors of the Jacobian
matrix at u1 to the Hugoniot locus. We can verify that the derivative

(193) lim
ξ→0

∂y2,+

∂ξ
(ξ) ∝ r+

is proportional to the positive right eigenvector and that

(194) lim
ξ→0

∂y2,−

∂ξ
(ξ) ∝ r−

is proportional to the left eigenvector. Likewise the velocities approach the eigenval-
ues,

(195) lim
ξ→0

s±(ξ) = λ±

Not all solutions of the Rankine-Hugoniot condition may be physically relevant
(this problem is related to entropy conditions and limits of equations with finite
viscosity). Also the existence of solutions with a single discontinuity is not necessarily
assured.

With some feeling for the Hugoniot locus and shock conditions it is interesting to
see how scientists at or visiting the LLE attempt to achieve certain high pressure
and density conditions. A single shock cannot achieve post-shock conditions in any
spot in P vs ρ. One solution is to use a laser in such a way as to drive two shocks,
one after another (for example hole in plate and then plate ablates). Another idea
is to use the laser to accelerate a plate that continually pushes on the gas.

4. Self-similar flows and blast waves

4.1. Dimensional analysis. Consider an explosion of energy E into an ambient gas
of density ρ. For example we can consider a supernova into the ISM or an atomic
explosion into the atmosphere. Energy has units of g cm2/s2 and density g cm−3. If
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we divide energy by density we find a unit of E/ρ ∼ cm5/s2 so we expect a size scale
for our blast wave of

(196) R(t) ∼
(
E

ρ

)1/5

t2/5

as a function of time.
This estimate is remarkably simple and likely to be accurate to an order of mag-

nitude as long as energy is conserved. The size of a shell and its age or velocity can
be used to estimate the total energy of the blast.

We can ask, how is it that energy is conserved but not momentum? As long as the
energy cannot be radiated away, then energy will be conserved. However the blast
wave can sweep up mass and so the total momentum may change with time. The
time when energy is conserved but material is swept up is sometimes called the snow
plow or adiabatic expansion phase and in this phase the above self-similar solution is
good.

As a supernova shock expands radiation can be important. If energy is efficiently
radiated the cooling time will be short. In this case it may be a good approximation
to consider the shell momentum as the variable setting the blast wave solution and
a similar self-similar solution can be derived but depending on the total momentum
imparted initially. This approximation is sometimes used for stellar outflows to
estimate their affect on the ambient ISM and can be used to describe a supernova
remnant once it starts to radiate efficiently. Because energy can be radiated efficiently
during this phase of expansion much of the total energy from a supernova is put
into radiation and only a percent or so is put into kinetic motion into the nearby
interstellar medium.

At earliest times the ambient density may be irrelevant and the explosion can
be “coasting” at constant velocity. This earliest phase is sometimes called the free
expansion phase.

Sizes of blast waves can be roughly estimated with dimensional or self-similar
estimates. However these estimates do not predict the density or temperature as a
function of radius, nor do they capture the complexity of the real objects. Supernova
remnants can show small scale structure implying that there are instabilities in the
flow.

4.2. Similarity variables. We can define a similarity variable

(197) ξ = r
(ρ0
E

)1/5
t−2/5 =

r

R(t)

where ρ0 is the density outside the shock and where R(t) is from equation 196.
At time t the value of ξ is just proportional to r. Thus the shock location for an
explosion is at a fixed value of ξ = ξs. The above variable is a dimensionless distance
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parameter. We assume that all variables can be described as a function of ξ and so
will have similar functional forms at all times.

Any variable X(r, t) we now write as

(198) X(ξ, t) = X1(t)X̃(ξ)

At any time our variable X has the same shape (w.r.t ξ) but scaled up and down by
a factor X1(t).

For strong shocks (equation 149 repeated here)

ρ2
ρ1

=
u1
u2
→ (γ + 1)

(γ − 1)

p2
p1
→ 2γM2

1

γ + 1

Which side is pre-shock and which side is post-shock? The ambient outside
medium is pre-shock. So the density should be higher just inside the shock than
outside. We chose a function for density

(199) ρ(r, t) =

(
γ + 1

γ − 1

)
ρ0ρ̃(ξ)

where the factor is chosen based on the strong shock jump condition, allowing a
normalization of ρ̃(ξs) = 1. To be consistent with a shock we expect that outside the
shock ξ > ξs we have ρ0 but just inside the shock we have ρ(ξs) = (γ + 1)/(γ − 1)ρ0.
We look for solutions for ρ̃(ξ) inside the shock for ξ < ξs that have

(200) lim
ξ→ξs

ρ̃(ξ)→ 1

At ξ = ξs we have a jump condition and for ξ > ξs the density is equal to the ambient
value ρ(ξ > ξs) = ρ0. With our choice for R(t) we expect that the discontinuity
occurs at ξs = 1.

Now let us consider the velocity. In the lab frame, the shock has velocity s = Ṙ
and the pre-shock velocity, outside the blast wave, v1 = 0. The ratio of the shock
frame velocities

(201)
u1
u2

=
v1 − Ṙ
v2 − Ṙ

=
γ + 1

γ − 1

where I have used the strong shock condition in the last step. We can solve for v2,
the velocity inside the shock in the lab frame

(202) v2 = Ṙ
2

γ + 1



44 AST242 LECTURE NOTES PART 2

Using this we can also find

u2 = Ṙ
1− γ
γ + 1

u1 = −Ṙ
The jump condition on pressure we can write

(203)
p2
p1

=
2γM2

1

γ + 1
=

2

γ + 1

p1
ρ1
u21 =

2

γ + 1

p1
ρ1
u21Ṙ

2

For ρ(x, t) above (equation 199) the factor X1(t) is a constant but for velocity and
pressure we expect it to depend on time. We can choose similar functions for velocity
and pressure

u(r, t) =
2

γ + 1
Ṙũ(ξ)(204)

p(r, t) =
2

γ + 1
ρ0Ṙ

2p̃(ξ)(205)

and these should resemble equation 202 and equation 203.
To convert our fluid equations into self-similar variables (those that depend on t

and ξ) we need to compute derivatives,

∂X

∂r
= X1(t)

dX̃

dξ

∂ξ

∂r

∣∣∣∣∣
t

(206)

∂X

∂t
= X̃(ξ)

dX1

dt
+X1(t)

dX̃

dξ

∂ξ

∂t

∣∣∣∣∣
r(ξ,t)

(207)

with

(208)
∂ξ

∂r
=

1

R(t)

∂ξ

∂t
= −rṘ

R2

These relations for derivatives are inserted into Euler’s equation, the continuity
equation and the energy equation in spherical coordinates. These equations are
simplified by assuming there are only radial motions and spherical symmetry. The
result is a series of equations that depend only on ξ which when solved give the
shapes of solutions during all times. Integrating these equations is called “laborious”
by Landau and Lifshitz. Clarke and Carswell say that “the important thing here is
not the details of the resultant equations....” However, these equations are carefully
described and solved by Gordon Ogilvie in his lecture notes, illustrating that by using
self-similar variables a set of complex non-linear differential equations can sometimes
be reduced to a solvable set of ordinary differential equations.
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The equations with the new self-similar variables give what is known as the Sedov-
Taylor blast wave solution and is shown in Figure 22. The cusp in density near the
shock is material swept up by the blast wave. Post shock flow (that interior) is
subsonic so the pressure inside does not change rapidly with radius. The pressure
inside is higher than outside allowing the acceleration of freshly swept up fluid. The
energy in the blast can also be estimated by considering the mass and velocity in the
swept up shell.

Figure 22. Scaled pressure, density and velocity as a function of
scaled radius behind a Sedov-Taylor blast wave in air with γ = 1.4.
Figure from Kip’s lecture notes.

4.3. Example of using dimensional analysis in interpretation of shells and
cavities. A famous example is the estimate of the energy of an atomic bomb only
knowing the size of the blast wave at a particular time. The estimate relies only on
the density of the ambient air and a photograph labelled with the time since ignition.

Here we will consider the momentum conserving phase rather than the energy
conserving phase. Supposing that the blast wave has expanded sufficiently that the
density in the shell has dropped. In this case radiation can easily escape the blast
shell and so the shock face can be isothermal. Because radiation escapes the total
energy is no longer conserved, however the total outward radial momentum in the
shell might be conserved. Momentum p has units g cm/s. If we divide this by density
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we get units of cm4/s. We expect a scaling

(209) R ∼
(
p

ρ

)1/4

t1/4

Late stages of supernova blast shells are expected to enter a momentum conserving
phase.

If there is gas in a shell like structure then its velocity could be measured from
its Doppler shift. We can predict the velocity of the shell as a function of time by
differentiating the above equation

(210) V ∼
(
p

ρ

)1/4

t−3/4

We could also search for a scaling relation that depends on V and R instead of R
and t. Note the age of a shell can be estimated by dividing the scaling relation for
radius by that for the velocity and this is pretty much equivalent to simply dividing
the observed radius by its observed velocity. Here I have neglected factors of 1/4.
An observed shell radius, velocity and an ambient density estimate can be used to
estimate the age of a blast as well as its total momentum (or energy if that is what
is conserved).

Dimensional analysis and self-similar estimates can be used to estimate energies for
supernova blast waves but they are also sometimes useful when any shell like feature
is detected. For example groups of supernovas or a star burst can evacuate a region in
a galaxy and create an expansion shell. Cavities evacuated by stellar outflows or jets
could follow nearly self-similar solutions even if they are not spherically symmetric.

Young stellar objects can have an outflow of total mass Mw ∼ 0.1M� going into
a molecular cloud at at velocity of vw ∼ 100 km/s over a time period of about 105

years. The total momentum imparted would be

(211) p ∼ 0.1× 2× 1033g 107cm/s ∼ 2× 1039g cm/s

Using an estimate for the density in a molecular cloud, one can use scaling laws
to estimate the sizes and velocities of cavities that could have been opened by the
previous epochs of outflows. Supposing the momentum is sent into a molecular
cloud of density n ∼ 103 cm−3. If the molecular cloud is molecular hydrogen this

corresponds to a density of ρ ∼ 3 × 10−21g/cm3. So
(
p
ρ

)1/4
∼ 9 × 1014 cm/s−1/4.

How would the cavity size depend on time?

(212) R ∼ 0.7pc

(
Mw

0.1M�

)1/4(
vw

100km/s

)1/4 ( n

103cm−3

)−1/4( t

106yr

)1/4
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The above illustrates that stellar outflows are expected to leave observable cavities in
molecular clouds and that the properties of these cavities might be used to estimate
the properties of previously active outflows.
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