
AST233 Lecture notes

Alice Quillen

February 25, 2020

Contents

1 Eulerian and Lagrangian views 1

2 The collisionless Boltzman equation 3
2.1 The particle distribution function . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Collisionless Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Conservation of momentum and Jeans equations . . . . . . . . . . . . . . . 9

3 Using moments of the Collisionless Boltzmann equation 11
3.1 The tensor virial equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Applications of Jean’s equations . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Tremaine-Weinberg method for measuring pattern speeds . . . . . . . . . . 15

4 Problems 17

1 Eulerian and Lagrangian views

We view the system from a fixed coordinate system and describe each variable as a function
of (x, t). The partial time derivative

∂

∂t

describes how variables change in time from the point of view of a fixed point in space
attached to a coordinate system or an inertial frame. This is the Eulerian viewpoint.

We could also describe the system from the view point of particles moving with the
fluid. Suppose we have a scalar quantity like T . We would like to predict what would cause
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a small change δT as our fluid element moves. Over a small change in time δt and with
small changes in coordinates δx, δy, δz.

δT =
∂T

∂t
δt+

∂T

∂x
δx+

∂T

∂y
δy +

∂T

∂z
δz

We now divide by δt.
δT

δt
=
∂T

∂t
+
∂T

∂x

δx

δt
+
∂T

∂y

δy

δt
+
∂T

∂z

δz

δt
(1)

If we chose δx, δy, δt to be an element of the fluid that is moving along with the fluid then
δx
δt = u and we can write the above as

δT

δt
=
∂T

∂t
+ u ·∇T

Figure 1: A fluid element moving within a larger flow.

If we consider derivatives from the point of view of particles moving with the fluid then
we can describe changes with the Lagrangian time-derivative or

D

Dt
=

∂

∂t
+ u ·∇

Let us write this out in terms of components

D

Dt
=

∂

∂t
+
∑
i

ui
∂

∂xi

as we had done in equation (1). With summation notation it is understood that any
repeated index is summed. With summation notation we would write

D

Dt
=

∂

∂t
+ ui

∂

∂xi
.
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The index i = 1 gives x, i = 2 gives y and i = 3 gives the z coordinate.
Another way to think about this is to consider a fluid element at x that has moved by

uδt in a time δt. If we consider T for that fluid element we can write T as

T (x + uδt, t+ δt)

so the change in T moving with the fluid element

DT

Dt
= lim

δt→0

(
T (x + uδt, t+ δt)− T (x, t)

δt

)
=

[
∂

∂t
+ u ·∇

]
T

If we write equations from the view point of fluid elements that are moving we say we are
using the Lagrangian view point.

Consider traffic flow. We can describe traffic flow in terms of density, ρ, (cars per unit
length) and a velocity, u, the speed of cars on the road. If we describe ρ and u as a function
of position on the road we are using the Eulerian view point. If we describe ρ and u in
terms of those seen by individual drivers we say we are using the Lagrangian viewpoint.

Numerical methods that use fixed grids work in the Eulerian view point. Numerical
methods that allow particles to move in the simulation and compute forces on these particles
work in the Lagrangian viewpoint. Smooth Particle Hydrodynamics (SPH) codes use the
Lagrangian viewpoint.

2 The collisionless Boltzman equation

We call f(x,v) the phase space distribution function. A volume element in real space

dx3 = dx dy dz

A volume element in velocity space

dv3 = dvxdvydvz

The distribution function f() is the number of stars (or particles) per unit volume in space
per unit volume in velocity space. For a specific phase space volume element the number
of stars in it is

f(x,v, t)dx3dv3

What is the number of stars per unit volume?

n(x, t) =

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

∫ ∞
−∞

dvz f(x,v, t) =

∫
d3vf(x,v, t)
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If all the particles have the same mass m then the density at position x is

ρ(x, t) = mn(x, t)

What is the mean velocity at a position x?

〈v〉(x, t) = u(x, t) =
1

n(x, t)

∫
vf(x,v, t)d3v

This is similar to the expression for an expectation value where f gives a probability
distribution.

Conservation of mass for a fluid gives

∂ρ

∂t
+ ∇ · (ρu) = 0

where density ρ(x, t).
If stars are not born and do not disappear then similarly

∂n

∂t
+ ∇ · (nu) = 0

This can be written in index form and using summation notation as

∂n

∂t
+

∂

∂xi
(nui) = 0

Stars can change velocity. If stars are not born and do not die then Df/dt = 0. We
can take f(x,v, t) and differentiate all variables w.r.t. to time

Df

Dt
=
∂f

∂t
+
∂f

∂xi

dxi
dt

+
∂f

∂vi

dvi
dt

= 0

=
∂f

∂t
+ ∇f · v + ∇vf · v̇ = 0

In the first line I used summation notation. I am using gradient operators

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
∇v =

(
∂

∂vx
,
∂

∂vy
,
∂

∂vz

)
These are known as the collisionless Boltzmann equation. The acceleration is related

to the gradient of the gravitational potential

v̇ = −∇Φ
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so the collisionless Boltzmann equation can also be written as

∂f

∂t
+ ∇f · v −∇vf ·∇Φ = 0

Collisions and birth and death of stars would add terms to the collisionless Boltzmann
equation.

We are only keeping track of the position and velocity of stars. We could also take into
account more degrees of freedom, such as mass or age or metallicity.

2.1 The particle distribution function

To describe a distribution of particles we can consider a particle distribution function that
depends on position, velocity and time, f(x,v, t). Here f(x,v, t)d3xd3v represents the
number of particles found in a volume element of volume d3x and in a velocity bin of size
d3v at time t. Here volume elements

d3x = dx dy dz d3v = dvx dvy dvz

in Cartesian coordinates. The number density (number of particles per unit volume) at
position x and at time t would be

n(x, t) =

∫ ∞
−∞

f(x,v, t)d3v

where we perform the integral in 3 dimensions. If each particle has mass m then the density

ρ(x, t) = mn(x, t).

We can consider the average of any function Q(v) as

〈Q〉(x, t) = n−1
∫
Q(v)f(x,v, t)d3v.

For example the bulk or average velocity would be

u(x, t) = 〈v〉 = n−1
∫

vf(x,v, t)d3v

and ∫
vivjf(x,v, t)d3v = n〈vivj〉 for i 6= j

For a single component (like v2x or v2y) we can write∫
v2i f(x,v, t)d3v = n〈v2i 〉
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But this is not necessarily the same as nu2i = n(〈vi〉)2 which depends on the square of the
average velocity. Usually

〈v2i 〉 6= u2i 〈vivj〉 6= uiuj

We can define a total velocity dispersion, σa, averaged over all directions, as

σ2a ≡ 1

3

(
〈(vx − ux)2〉+ 〈(vy − uy)2〉+ 〈(vz − uz)2〉

)
=

1

3n

∫
|v − u|2fd3v

Evaluating σ2a

σ2a =
1

3n

∫
(v2 + u2 − 2u · v)d3v

=
1

3
(〈v2〉+ u2)− 2

3n
u ·
∫

vd3v

=
1

3
(〈v2〉+ u2)− 2

3
u2

=
1

3
(〈v2〉 − u2)

so we can write

n〈v2〉 =

∫
v2fd3v = n(u2 + 3σ2a)

We can think about the velocity vi as a sum of the mean velocity ui plus a random
component. Let us consider a velocity dispersion tensor

wij ≡ 〈(vi − ui)(vj − uj)〉 = 〈vivj〉 − uiuj
Here wij is a symmetric dispersion tensor with two indexes where each index can assume
one of three values (x, y, z). When wij contains off diagonal components or its diagonal
components are not equal we say the dispersion tensor is “anisotropic.” If the system
is “isotropic” then the diagonal components would all be the same and the off diagonal
components would be zero.

We can write the trace of w as wii in summation notation and

σ2a =
1

3
(〈v2〉 − u2) =

wii
3

=
1

3
trace w

If wxx = wyy = wzz then σ2a = wxx. The dispersion tensor is symmetric. We can decompose
the dispersion tensor, wij , into the sum of a trace component that has zeros off the diagonal
and a symmetric traceless component, yij ;

yij =
wij + wji

2
− trace w

δij
3

=
wij + wji

2
− σ2aδij

Note that yij can contain components on the diagonal but their sum would be zero. If the
system is isotropic then all components of yij would be zero.

We can associate pressure in a fluid or gas with the trace of wij or σ2a.
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2.2 Collisionless Boltzmann equation

In the absence of collisions the collisionless Boltzmann equation describes the evolution of
the density distribution.

Df

Dt
=
∂f(x,v, t)

∂t
+
∂f(x,v, t)

∂x
· dx
dt

+
∂f(x,v, t)

∂v
· dv
dt

= 0.

The derivative here is done with respect to all degrees of freedom of the distribution
function. As v = dx/dt and dv/dt = −∇Φ for a force field with potential Φ we can write

∂f(x,v, t)

∂t
+ ∇f(x,v, t) · v −∇vf(x,v, t) ·∇Φ = 0. (2)

Using summation notation this equation is

∂f(x,v, t)

∂t
+
∂f(x,v, t)

∂xi
vi −

∂f(x,v, t)

∂vi

∂Φ(x, t)

∂xi
= 0. (3)

Equation 2 (or 3) is known as the collisionless Boltzmann equation. It is used to study the
kinetic theory of gases, atomic nuclei and for stellar dynamical systems such as galaxies
and globular clusters. The collisionless Boltzmann equation is sufficiently complex that it
is usually difficult to solve. Equation 2 is sometimes written

Df

Dt
= 0

where the Lagrangian derivative is

D

Dt
=

∂

∂t
+ v ·∇−∇Φ ·∇v

Here the Lagrangian derivative describes a small element moving in phase space or (x,v).
Previously we used a Lagrangian derivative for a small element moving only in Cartesian
space.

When collisions are important we can use the full Boltzmann equation by adding a
source term that is due to collisions

Df

Dt
=

(
∂f

∂t

)
C

where the term on the right hand side depends on the cross sections of particles and their
velocity differences. In many situations collisions conserve mass, momentum and kinetic
energy. When these are conserved∫

m

(
∂f

∂t

)
C

d3v = 0∫
mv

(
∂f

∂t

)
C

d3v = 0∫
mv2

(
∂f

∂t

)
C

d3v = 0
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2.3 Observables

The number density n(x, t) is an integrated quantity and so possibly an observable.
The mean velocity 〈v〉 = u can be considered an observable.
The velocity dispersion in a particular direction (here the z direction)

σ2z(x, t) = 〈(vz − 〈vz〉)2〉 =
1

n

∫
d3vf(x,v, t)(vz − uz)2

The velocity dispersion tensor

w2
ij =

1

n

∫
d3vf(x,v, t)(vi − ui)(vj − uj)

= 〈vivj〉 − uiuj − uiuj + uiuj

= 〈vivj〉 − uiuj

We can integrate along the line of sight (here the z direction)

g(x, y,v, t) =

∫
dzf(x, y, z, vx, vy, vz, t)

A spectrum would be sensitive to Doppler shifts in one direction giving

h(x, y, vz, t) =

∫
dzdvxdvyf(x, y, z, vx, vy, vz, t)

This is what is measured from an integral field spectrograph at different positions x, y
where z is the line of sight direction. In a galaxy absorption lines are broadened by the
different Doppler shifts of stars. A velocity dispersion along the lines of sight direction at
different positions on the sky

σ2z(x, y, t) =

∫
dzd3v(vz − uz)2f(x, y, z, vx, vy, vz, t)∫

dzd3vf(x, y, z, vx, vy, vz, t)
.

2.4 Conservation of mass

The simplest continuum equation can be made by integrating the Boltzmann equation over
all possible velocities. The first term in the collisionless Boltzmann equation (∂f/∂t) gives
us the time derivative of the particle density. Integrating the first term in the collisionless
Boltzmann equation over velocity space∫ ∞

−∞

∂f(x,v, t)

∂t
d3v ≈ ∂

∂t

∫ ∞
−∞

f(x,v, t)d3v =
∂

∂t
n(x, t)
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The second term in the collisionless Boltzmann equation is v ·∇f . As derivatives with x
and v commute we can integrate the second term in the following way∫ ∞

−∞
∇f(x,v, t) · v d3v = ∇ ·

∫
fvd3v = ∇ · (nu)

where we have rewritten the last term in terms of the average velocity u. The last term
in the collisionless Boltzmann equation is −∇vf ·∇Φ(x). We integrate this over velocity
space

−∇Φ(x, t) ·
∫
d3v∇vf(x,v, t)

Consider one part of the sum

−∂Φ(x, t)

∂x

∫
dvxdvydvz

∂f

∂vx
= −∂Φ(x, t)

∂x

∫
dvydvzf(x,v, t)

]vx=∞
vx=−∞

= 0

This vanishes as long as we assume that the numbers of stars is small at large velocity, or
f → 0 as vi → ±∞.

Putting these together with the integral of the collision term (also zero) we find

∂n

∂t
+ ∇ · (nu) = 0 (4)

To summarize: the integral over velocity space of the Boltzmann equation gives an equation
that looks just like the equation for conservation of mass for a fluid.

2.5 Conservation of momentum and Jeans equations

To derive an equation similar to Euler’s equation (which is a result of conservation of mo-
mentum) we multiply the Boltzmann equation by v and then again integrate over velocity
space. Taking the i-the component of the velocity and using summation notation for the
other indices ∫ (

∂f

∂t
vi +

∂f

∂xj
vjvi −

∂f

∂vj

∂Φ

∂xj
vi

)
d3v =

∫ (
∂f

∂t

)
C

vid
3v = 0 (5)

Consider the first term∫
∂f

∂t
vid

3v =
∂

∂t

∫
fvid

3v =
∂

∂t
(n〈vi〉) =

∂(nui)

∂t

Consider the second term of equation 5. This can be written∫
∂f

∂xj
vjvid

3v =
∂

∂xj
[n〈vjvi〉]

9



We can decompose this in terms of the dispersion tensor (w) and then the traceless com-
ponent of the dispersion tensor (y) and the average dispersion (σ2a)

∂

∂xj
[n〈vjvi〉] =

∂

∂xj
[n(uiuj + wij)] (6)

=
∂

∂xj
[n(uiuj + σ2aδij + yij)]

=
∂

∂xj
[n(uiuj + yij) + Pδij ]

where we define a pressure in terms of the trace of the dispersion tensor

P ≡ nσ2a =
nwii

3
.

Altogether the second term in the momentum equation (5) becomes

∂

∂xj
(nuiuj + Pδij + nyij)

The first two terms inside the derivative, nuiuj + Pδij are known as the stress tensor in
hydrodynamics. The last term nyij depends in the traceless component of the dispersion
tensor and is only non-zero when the velocity distribution is anisotropic.

The third term in the momentum equation (5) can be integrated through integration
by parts. The term is

∂Φ

∂xj

∫
∂f

∂vj
vi d

3v

First consider the case i 6= j and let k be the third index

∂Φ

∂xj

∫
dvk

∫
dvivi

∫
dvj

∂f

∂vj
=

∂Φ

∂xj

∫
dvk

∫
dvivi f(x,v, t)

∣∣∣∣vj=∞
vj=−∞

= 0

Now consider the case i = j and the denote k, l as the other two indices, and we integrate
by parts

∂Φ

∂xj

∫
∂f

∂vj
vi d

3v =
∂Φ

∂xj
δij

∫
dvk

∫
dvl

(
f(x,v, t)vi|

vj=∞
vi=−∞ −

∫ ∞
−∞

fx,v, t)dvi

)
=
∂Φ

∂xj
δij (0− n)

= −n ∂Φ

∂xi

This is the integrated third term of equation (5)
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Altogether (5) becomes

∂

∂t
(nui) +

∂

∂xj
(nuiuj + Pδij + nyij) + n

∂Φ

∂xi
= 0

This is an equation for momentum conservation. Except for the term associated with
anisotropy this looks just like that derived in hydrodynamics but with n replaced by mass
density ρ.

By making use of the equation of continuity we can manipulate this equation so that
it becomes an equation for acceleration that resembles Euler’s equation

Du

Dt
= − 1

n
∇P −∇Φ− 1

n
∇ · (ny)

where the last term is a divergence of the traceless component of the dispersion tensor.
If the velocity dispersion is isotropic then y = 0 and we recover Euler’s equation. To
summarize: by multiplying the Boltzmann equation by velocity and integrating over all
velocities we recover an equation that looks remarkably like Euler’s equation.

Here we have integrated over velocity. We have taken the first ”moment” of the col-
lisionless Boltzmann equation. If one also integrates over all space one can derive tensor
“virial” equations. Integrating only over velocity and working in cylindrical or spherical
coordinates the equations, and in the setting of stellar dynamics, the equations are called
the Jeans equations.

Using equation 6 and not trying to use a pressure like term we can also write the
momentum equation as

∂

∂t
(nuj) +

∂

∂xi
(nuiuj + nwij) + n

∂Φ

∂xj
= 0 (7)

and using summation notation.
Then combined with the equation of continuity (equation 4) this becomes

n
∂uj
∂t

+ nui
∂uj
∂xi

+ n
∂Φ

∂xk
+
∂(nwij)

∂xi
= 0 (8)

This is known as the Jeans equations.

3 Using moments of the Collisionless Boltzmann equation

3.1 The tensor virial equations

We will integrate the collisionless Boltzmann equation over all space.
We define something that is like a moment of inertia tensor

Iij ≡
∫
d3xρ(x)xixj = m

∫
d3x xixj

∫
d3vf(x,v, t)
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This is to be compared to the actual moment of inertia tensor for a rigid body about
the origin which is the sum over mass elements inside the rigid body

Iij,actual =
∑
k

mk(r
2δij − xixj) =

∫
d3xρ(x)(r2δij − xixj)

where r is the distance to the origin for each particle in the sum and xi is x, y or z depending
upon the index.

Kinetic energy per unit volume∑
i

1

2

∫
d3vv2i f(x,v, t)m =

∑
i

1

2
n(x, t)m〈v2i 〉 =

∑
i

1

2
ρ(x, t)〈v2i 〉

The total kinetic energy

K =
∑
i

1

2

∫
d3xn(x, t)m〈v2i 〉 =

∑
i

1

2

∫
d3xρ(x, t)〈v2i 〉

A more general total kinetic energy tensor we define as

Kij ≡
1

2

∫
d3xρ(x, t)〈vivj〉 (9)

The trace of this ∑
i

Kii = K

is the total kinetic energy.
The total ordered velocity tensor

Tij =
1

2

∫
d3xρ(x, t)uiuj (10)

The total random velocity tensor is an integral of the velocity dispersion

Πij ≡
∫
d3xρ(x)w2

ij (11)

=

∫
d3xρ(x)(〈vivj〉 − uiuj)

= 2Kij − 2Tij .

This gives a relation between the total kinetic energy tensor, the order velocity tensor and
the the random velocity tensor

Kij = Tij +
1

2
Πij (12)
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Lastly we create a tensor for the gravitational energy. We tentatively define a gravita-
tional potential energy tensor as

Wjk ≡ −
∫
d3xρ(x)xj

∂Φ(x)

∂xk
(13)

This is also known as the Chandrasekkar potential energy tensor. The gravitational po-
tential

Φ(x) = G

∫
d3x′

ρ(x′)

|x− x′|
The gradient of the gravitational potential

∂Φ(x)

∂xk
= −G

∫
d3x′

ρ(x′)(xk − x′k)
|x− x′|3

This gives an alternative form for Wjk

Wjk = G

∫
d3x

∫
d3x′ρ(x)ρ(x′)

xj(xk − x′k)
|x− x′|3

= −1

2
G

∫ ∫
d3xd3x′ρ(x)ρ(x′)

(xj − x′j)(xk − x′k)
|x− x′|3

In the last step we infer that we can flip the indices to rewrite the integral in such a way
that it is clear is symmetric. The trace of this

W =
∑
j

Wjj =
1

2

∫
d3xρ(x)Φ(x)

is equal to the total gravitational potential energy.
Now that we have a few definitions, we go back to the first moment of the Collisionless

Boltzmann equation (equation 7) which I repeat here:

∂

∂t
(nuj) +

∂

∂xi
(nuiuj + nwij) + n

∂Φ

∂xj
= 0 (14)

We multiply this by mxk and integrate this over all space∫
d3xxk

∂

∂t
(ρui) +

∫
d3xxk

∂

∂xi
(ρuiuj + ρwij) +

∫
d3xxkρ

∂Φ

∂xj
= 0 (15)

The last term on the right is equal to the potential energy tensor −Wjk from the definition
in equation 13. The second term can be integrated by parts∫

d3xxk
∂

∂xi
(ρuiuj + ρwij) = δik

[
xk(ρuiuj + ρwij)|∞xk=−∞ −

∫
d3x(ρuiuj + ρwij)

]
= 0− δik (2Tij + Πij)

= −(2Tjk + Πjk)
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where we have neglected a term on the second line with the assumption that the density is
zero at infinity, ρ→ 0 at x→ ±∞. This neglect means the outer boundaries might affect
the results. The first term can be written as

d

dt

∫
d3xxkρui

Equation 15 becomes

d

dt

∫
d3xxkρui = 2Tjk + Πjk +Wjk (16)

With a bit more effort, the left hand side can be related to the moment of inertia tensor.
The resulting tensor virial equation is

1

2

d2Ijk
dt2

= 2Tjk + Πjk +Wjk (17)

In steady state, there is a relationship between the gravitational potential energy which
depends on shape, the velocity dispersion and the bulk motion or rotation. Elongated non
rotating galaxies tend to have anisotropic velocity dispersions. Rotating galaxies tend to
be flatter.

Taking the trace of the steady state equation, the tensor virial theorem becomes

2K +W = 0

which is the scalar version of the virial theorem.

3.2 Applications of Jean’s equations

The velocity moments of the collisionless Boltzmann equation are called Jeans equations.
One application is known as asymmetric drift. Consider a disk of stars all in circular

orbits about the center a galaxy and all confined to a single plane. The velocity dispersion
is small. In a local region the average velocity is tangential and is equal to the circular
velocity.

Now consider a similar disk of stars but the stars have some ellipticity to their orbits and
undergo radial oscillations. The orbits have random phases so the stars do not move in and
out together. The velocity dispersion arises from the radial oscillations of the orbits. What
is the mean tangential velocity component? It must be slightly lower than the rotation
velocity. This makes sense looking at the tensor virial equations. The difference between
the mean tangential velocity and that of a star in a circular orbit is known as asymmetric
drift.

Using Jeans equation in polar coordinates, it is possible to show that

va ≡ 〈vφ〉 − vc ≈
〈v2R〉
2vc

[
σ2φ
〈v2R〉

− 1−
∂ ln(n〈v2R〉)
∂ lnR

− R

〈v2R〉
∂(〈vRvz〉)

∂z

]
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Another application of Jean’s equations is similar to hydrostatic equilibrium giving a
relation between the velocity dispersion and density in the z direction and the gradient of
the potential. Repeating Jeans equations (equation 8)

∂uj
∂t

+ ui
∂uj
∂xi

+
∂Φ

∂xk
+

1

n

∂(nwij)

∂xi
= 0 (18)

We assume steady state and drop the first term. We assume symmetry about the galactic
plane, no vertical bulk or average motion and take the z component. The result is this:

1

n

∂(n〈v2z〉)
∂z

= −∂Φ

∂z

Using Poisson’s equation
∂2Φ

dz2
= 4πGρ

Putting these two together we find

∂

∂z

[
1

n

∂(n〈v2z〉)
∂z

]
= −4πGρ

The left hand side can be measured using vertical velocity measurements for stars as a
function of distance above and below the Galactic plane and placing a constraint on the
mass distribution. This has been used to estimate the fraction of dark matter in the vicinity
of the Sun.

3.3 Tremaine-Weinberg method for measuring pattern speeds

The continuity equation in Cartesian coordinates

∂n

∂t
+ ∇ · (nu) = 0

where n(x, y, z, t) is the stellar number density. Assume that the density of a flat galaxy
in 2D rotates at a fixed and steady pattern speed Ω, n(r, θ−Ωt) in polar coordinates. We
assume that the density distribution does not vary in a frame rotating with the pattern.

The continuity equation in 2D Cartesian coordinates becomes

−Ω

(
x
∂n

∂y
− y∂n

∂x

)
+
∂(nux)

∂x
+
∂(nuy)

∂y
= 0

Consider integrating the continuity equation along the y axis. This is as if we are
integrating along a slit that is oriented along the y axis. The first term∫

dy Ωx
∂n

∂y
= 0
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because n→ 0 at large y. The second term is∫
dy Ωy

∂n

∂x
= Ω

∂

∂x

∫
dy yn(x, y)

The third term ∫
dy

∂(nux)

∂x
=

∂

∂x

∫
dy nux(x, y)

The fourth term ∫
dy

∂(nuy)

∂y
= 0

because n→ 0 at large y. Putting this together

∂

∂x

(
Ω

∫
dy yn(x, y) +

∫
dy nux(x, y)

)
= 0

Integrating this

Ω

∫
dy yn(x, y) +

∫
dy nux(x, y) = C

where C is a constant. This relation must be true for any x value and C cannot depend
on x. This means that it must be true at large x and we can let the constant C be zero.
This gives the relation

Ω = −
∫
dy nux(x, y)∫
dy yn(x, y)

The estimate for the pattern speed depends on the mean velocity component in the
direction perpendicular to the slit, ux. The denominator weights the stellar density by the
distance along the slit. The estimate for the pattern speed is also valid if the number density
is replaced by the light density. The light density would also be a conserved quantity, but
again we assume that the density is fixed in a frame rotating with the pattern.

The galaxy is likely inclined with respect to the viewer. When measuring the mean
velocity component ux with a spectrum and using a Doppler shift, you would need to
correct for galaxy inclination to get the full size of the in-plane velocity component.

This technique has been used to measure bar pattern speeds in some barred galaxies.
We made a few assumptions. There is only a single pattern speed and the galaxy is nearly
steady state. Both of these might be violated as galaxies can be changing shape and barred
galaxies often also host spiral arms which may move at different or even varrying pattern
speeds. Bars tend to have high surface brightness compared to spiral arms, making it easier
to measure a mean velocity from a spectrum.

16



4 Jeans Theorem

It is possible to switch variables f(L,E) for example, depending upon quantities that
are conserved in a spherically symmetric gravitational potential, angular momentum L
and energy E. Alternatively one can write or f(I,θ, t) where I,θ are pairs of action
angle variables. The collisionless Boltzmann can be evaluated similarly with advective
derivatives. If the potential is fixed and the system relaxed, the phase space distribution
function only depends on the actions.

5 Problems

• Problem 1

Show that in a frame that rotates with constant angular velocity Ω the collisionless
Boltzmann equation is

∂f

∂t
+ (v ·∇) f −

[
∇
(

Φ− 1

2
(Ω× r)2

)
+ 2Ω× v

]
·∇vf = 0

Note that acceleration a′ = v̇ in a rotating frame is

a′ = a + Ω× (Ω× r) + 2Ω× v

It is helpful to use vector identities to evaluate the gradient operator.

• Problem 2 (B+T 1-rst edition problem 4.9

Consider a spherically symmetric system with an isotropic velocity distribution. The

orbits are not circular. The rms speed in a local region is
√

3
2vc where vc is the speed

of a particle in a circular orbit about the center of the system. We can assume that
vc is independent of radius.

Now consider a different spherically symmetric system. Here all stars are on circu-
lar orbits (about the origin) with velocity vc, however all the orbits are randomly
orientated w.r.t to each other.

Assume that the two systems have identical density distributions.

How are these systems consistent with the virial theorem?

The rms speed is 〈v2〉 and is equal to the velocity dispersion as by symmetry there
is no bulk motion.

• Problem 3
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Consider a phase space density distribution that depends on time in the following
way f(x−ut, y, z, vx, vy, vz) where u is the velocity of a wave that passes through the
distribution of stars.

a) Show that the density distribution (that independent of velocities) depends on
x− ut and so exhibits a traveling wave.

b) Show that the collisionless Boltzman equation resembles

−u∂f
∂x

+ v ·∇f + ∇vf ·∇Φ = 0

c) Show that at a peak in the velocity distribution (where ∇vf = 0) that

u =
v ·∇f
∂f
∂x

If there is a peak in the velocity distribution function, it is possible to estimate the
pattern speed from the spatial gradients of the distribution function.

This is related to the Weinberg-Tremaine method for measuring pattern speeds of
bar or spiral wave like patterns in disk galaxies.

• Problem 4: Averaging over z

The collisionless Boltzmann equation in cylindrical coordinates R,φ, z is

∂f

∂t
+vR

∂f

∂R
+vz

∂f

∂z
+
vφ
R

∂f

∂φ
+

(
v2φ
R
− ∂Φ

∂R

)
∂f

∂vR
−
(
vRvφ
R

+
1

R

∂Φ

∂φ

)
∂f

∂vφ
− ∂Φ

∂z

∂f

∂vz
= 0

(19)

a. Consider integrating the collisionless Boltzmann equation over vz. Why would
this be true? ∫

dvz
∂Φ

∂z

∂f

∂vz
= 0

b. Consider integrating the collisionless Boltzmann equation over z. Why would this
be true? ∫

dzvz
∂f

∂z
= 0

c. In two dimensions we can describe the problem in terms of a distribution function
f(x, y, vx, vy, t) or in polar coordinates f(R,φ, vR, vφ, t). The collisionless Boltzmann
equation in 2D polar coordinates is the same as equation 19 except lacking those
terms that depend on z, vz or their gradients.

∂f

∂t
+ vR

∂f

∂R
+
vφ
R

∂f

∂φ
+

(
v2φ
R
− ∂Φ

∂R

)
∂f

∂vR
−
(
vRvφ
R

+
∂Φ

∂φ

)
∂f

∂vφ
= 0 (20)
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Using parts a, b, argue that by integrating in z and vz we derive the same equation.
In other words if f3(R,φ, z, vR, vφ, vz, t) satisfies equation 19 then

f(R,φ, vR, vφ, t) =

∫
dz dvzf3(R,φ, z, vR, vφ, vz, t)

satisfies equation 20.
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