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1 The Hyperbolic orbit

1.1 Two bodies, velocity changes

The center of mass Xcom

Xcom =

∑
i xi∑
imi

The center of velocity Vcom = Ẋcom is found by taking the time derivative of Xcom

Vcom = Ẋcom =

∑
i ẋi∑
imi

Two bodies, M,m with velocities vm,vM and relative velocity

v = vM − vm

mvm +MvM = constant = (m+M)Vcom

mvm +MvM −Mvm +Mvm = constant

(m+M)vm +Mv = constant (1)

vm = − M

m+M
v + constant (2)

vM =
m

m+M
v + constant (3)

Velocity changes

∆vm = − M

m+M
∆v (4)

∆vM =
m

m+M
∆v (5)

1.2 The two body problem

Two bodies M1,M2 with positions r1, r2 and velocities v1,v2.

E = M1
v21
2

+M2
v22
2

− GM1M2

|r1 − r2|
(6)

E = (M1 +M2)
V2

com

2
+ µ

v2

2
+
G(M1 +M2)µ

|r|
(7)
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The first term is a coasting body of total mass M = M1 +M2 with a constant velocity
Vcom corresponding to the velocity of the center of mass. The reduced mass

µ =
M1M2

M1 +M2

The second two terms in 7 are a Keplerian system of reduced mass µ in orbit about a large
mass M = M1 +M2. For the Keplerian system, the coordinate is the relative position
r = r1 − r2 with relative velocity v = v1 − v2.

1.3 Angular momentum in polar coordinates

A single body at position r with velocity v. Together tho vectors r,v give us a plane for
the orbit. Coordinate

r = rr̂

Velocity

v = vxx̂+ vyŷ (8)

= vrr̂+ vθθ̂ (9)

where we take x, y to be coordinates spanning the plane containing both r and v.

vθ = rθ̇

where θ is an angle on the xy plane.
Angular momentum per unit mass

L = r× v (10)

= rvθẑ

= r2θ̇ẑ (11)

The angular momentum is only sensitive to the tangential velocity component.

1.4 Conservation of Angular momentum

With a radial force law the force on a particle i associated with a particle j is Fij ∝ ri−rj is
proportional to the vector between the two particles. Let us adopt Fij(ri, rj) = aij(ri−rj)
with aii = 0. The force on particle i is opposite to that on particle j and this implies that
aij is symmetric. The total angular momentum L =

∑
imiri × vi where we are summing

over particles.
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The change in angular momentum

L̇ =
∑
i

mi (ṙi × vi + ri × v̇i)

=
∑
i

mi

vi × vi + ri ×
∑
j

Fij/mi


=

∑
i,j

ri × Fij

=
∑
i,j

ri × aij(ri − rj)

=
∑
i,j

−aijri × rj

= 0 (12)

Here aij is symmetric but ri × rj = −rj × ri and is antisymmetric. For every pair i, j the
coefficients aij and aji have the same sign, but the cross product factors have opposite signs
and so the two terms cancel. As a consequence L̇ = 0 making the total angular momentum
L a conserved quantity.

When forces are only applied along vectors connecting particles, angular momentum
conservation is assured. Potentials that are two-body interactions of functions of interpar-
ticle distance fall into this category.

1.5 Keplerian orbit

Radial force with r the vector between two masses

d2r

dt2
= −G(M +m)

r2
r̂ (13)

r̈ − rθ̇2 = −G(M +m)

r2
(14)

Angular momentum per unit mass

h ≡ r2θ̇ = L

It is useful to work with inverse radius

u ≡ 1

r

u̇ = − ṙ

r2
(15)
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We cannot find r(t) but we can find r(θ).

u̇ =
du

dθ
θ̇ (16)

=
du

dθ

h

r2
(17)

where I have used angular momentum per unit mass h which is conserved to get rid of θ̇.
Putting these together

du

dθ

h

r2
= − ṙ

r2

du

dθ
h = −ṙ

du̇

dθ
h = −r̈ (18)

where on the last step I took the time derivative and h is a constant. Now insert equation
17

−r̈ =
d

dθ

(
du

dθ

h

r2

)
h (19)

r̈ = −d
2u

dθ2
h2u2 (20)

Now we go back to equation 14 and start replacing r with u.

rθ̇2 =
h2

r3
= h2u3

G(M +m)

r2
= G(M +m)u2

Inserting these two relations into equation 14 and using equation 20 we find

d2u

dθ2
+ u =

G(M +m)

h2
(21)

This has a solution

r =
p

1 + e cos(θ −ϖ)
(22)

p ≡ h2

G(M +m)
(23)

where ϖ is the longitude of pericenter and sets the angle of mininum r. The parameter p
is called the semi-lattice rectum and e is the orbital eccentricity.
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The orbits are conic sections.
Ellipses: 0 < e < 1, and p = a(1 − e2). Pericenter radius is q = a(1 − e). Semi-major

axis a > 0.
Hyperbolas e > 1, and p = |a(e2 − 1)|. Pericenter radius is q = |a(e − 1)|. Sometimes

negative a is used so that energy per unit mass is positive with E = −GM
2a (and that makes

sense as the orbit is not bound).
Parabolas e = 1, and p = 2q where q is pericenter.

p = |a(1− e2)| for e ̸= 1 (24)

p = 2q for e = 1 (25)

Our orbits are described by 3 parameters (see equation 23), a unitless eccentricity e,
an orientation angle for the angle of pericenter ϖ, and the semi-lattice rectum p. The
constant p is the only one that has units and it is in units of length. But note that it
involves a ratio of the square of the angular momentum and G(M +m). We should not
be surprised that p is related to a, e and so can be written in terms of orbital energy and
angular momentum.

In terms of a, e, the orbital energy per unit mass

E = −G(M +m)

2a
. (26)

Equations 23, 24 then gives the angular momentum per unit mass

h =
√
G(M +m)|a(1− e2)| (27)

1.6 True anomaly

r =
p

1 + e cos(θ −ϖ)
(28)

=
p

1 + e cos f
(29)

where f is the true anomaly. Heliocentric coordinates

x = r cos f (30)

y = r sin f (31)

Angles from pericenter are anomalies (see Figure 1), whereas angles from a fixed reference
direction are longitudes.

6



Figure 1: The true anomaly gives the angle of the test mass in the orbital plane with
respect to percenter for a test particle in orbit about a larger mass.

Figure 2: A gravitational encounter with impact parameter b and relative velocity V0. The
orbit is hyperbolic. The angle ϕ is also the true anomaly. Here the angular momentum per
unit mass h = bV0.

7



1.7 Energy and semi-major axis for a Hyperbolic encounter

Impact parameter b. Incoming velocity of mass m is V0 coming toward initially fixed mass
M . Hyperbolic orbit. See Figure 2. What is the velocity of the center of mass?

Vcom =
m

m+M
V0 (32)

It is positive.

Initially the energy is kinetic only. The total energy is E =
mV 2

0
2 . This is equal to the

sum of the kinetic energy of the center of mass and the total Keplerian energy of the two
body system.

The total energy

E =
mV 2

0

2
= (m+M)

V 2
com

2
− GMm

2a

Note G(M +m)µ = GMm. Insert the center of mass velocity (equation 32) and solve for
semi-major axis a

a = −G(M +m)

V 2
0

(33)

Note, no factor of 2 here is correct. Here I am using the convention E = −GMm
2a > 0 and

a < 0 for a hyperbolic (unbound) orbit.

1.8 Angular momentum and Eccentricity for a Hyperbolic encounter

Impact parameter b and mass m and velocity V0 angular momentum per unit mass

h = bV0 (34)

We had two ways to write the semi-lattice rectum (equations 23, 24)

p =
h2

G(m+M)
= |a(e2 − 1)|

Insert the expression for h and solve for e2

e2 − 1 =
b2V 4

0

G2(M +m)2

and convention e > 1 for a hyperbolic orbit.
Notice that we see G(M+m)/b in the expression. Let us define a gravitational velocity

scale

Vg ≡
√
G(M +m)

b
. (35)

8



Then

e2 = 1 +
V 4
0

V 4
g

For V0 > Vg the eccentricity is large and the orbit strongly hyperbolic. For V0 small the
orbit approaches e→ 1 and the orbit is nearly parabolic.

Figure 3: Gravitational focusing

1.9 Gravitational focusing

For a hyperbolic encounter the semi-major axis

|a| = G(M +m)

V 2
0

(36)

and eccentricity

e2 = 1 +
b2V 4

0

G2(M +m)2
= 1 +A−2 (37)

with

A =
G(m+M)

bV 2
0

=

(
Vg
V0

)2

, (38)
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and where the gravitational velocity scale is defined in equation 35. The pericenter radius
q = |a(e− 1)|. Inserting a, e into the equation for pericenter we find that

q = b
(√

1 +A2 −A
)

(39)

The pericenter is a minimum distance between the masses m,M during the encounter. For
V0 > Vg the encounter has q ∼ b where as for V0 < Vg the pericenter distance q is much
smaller than b.

When V0 > Vg, the parameter A < 1 and pericenter q ∼ b.
When V0 < Vg, the parameter A > 1. In the limit of V0/Vg → 0, pericenter q approaches

0 (becomes smaller and smaller). Approximating this for small A−1,

q

b
=

√
1 +A2 −A = A

(√
A−2 + 1− 1

)
(40)

∼ A
(
1 +A−2/2− 1

)
∼ A−1/2 (41)

or

q ∼ b

2

(
V0
Vg

)2

=
b

2

V 2
0 b

G(M +m)
. (42)

What does the pericenter distance have to do with gravitational focusing? The peri-
center sets the cross section for collisions.

To discuss collisions we consider a mass M passing through a sea of smaller particles
of mass m. I am flipping the picture (M vs m) because nothing we did above depends on
which of the two particles was more massive. It makes more sense to use notation M > m
and have M be the moving particle. The mass M has velocity V0 with respect to the fixed
particles m. We ignore the radius of the m particles assuming that they are small.

A collision happens if M passes within a distance R of a smaller particle m where R
would be the radius of M . A collision happens if the pericenter distance of the encounter
q < R. We have introduced a new scale R to the problem. With a sea of particles the
collision rate is set by all collisions with impact parameter b such that q(b) < R. Let us
define bR to be the impact parameter such that q(bR) = R. If the encounters are slow then
bR > R whereas if the encounters are fast then bR = R. As bR > R in the slow setting, the
collision rate is higher than in the fast setting. This effect is known as gravitational focusing
because the encounters themselves pull trajectories towardM , increasing the collision rate.
Gravity focuses in the sense that many more trajectories are encounters than estimated
using the body’s radius alone to estimate the cross section.

Given a velocity V0, masses M,m and radius R what is the ratio bR/R?
We need to solve the equation q(bR) = R for bR. Taking equation 39 we can rewrite it

as
q2 + 2Abq = b2
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Now let q = R and insert A = G(m+M)
bV 2

0
(equation 38)

R2 +
2G(m+M)R

V0

2

= b2R

We solve for bR finding

bR = R

(
1 +

2G(M +m)

V 2
0 R

) 1
2

(43)

It may be useful to define a new quantity

VR ≡
√
G(M +m)

R

bR
R

=

(
1 +

2V 2
R

V 2
0

) 1
2

(44)

By introducing a scale R we have also introduced a new velocity scale, VR. If VR > V0
then gravitational focusing is a large effect, otherwise bR ∼ R.

In the slow V0 velocity limit

b2R ∼ R2V
2
R

V 2
0

∼ GMR

V 2
0

Collision probability can be estimated from the cross section∫
2πb db = πb2R

Accretion rate depends on the number density of planetesimals n, their masses m, and
relative velocity V0

Ṁ ∼ nmπb2RV0 ∼ nm
GMR

V0

Using R ∼M
1
3 ρ

− 1
3

body

Ṁ ∼ mn

ρ
1
3
body

GM
4
3

V0

A timescale for increasing mass is

tM =
M

Ṁ
∝M−1/3

and is very short for high mass objects. As higher mass objects double their mass faster
than lower mass objects, accretion favors growth of a few high mass objects.
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Figure 4: Deflection angle, θ, in terms of the initial true anomaly, ϕ0, for a hyperbolic
orbit. θ = 2ϕ0 − π.

1.10 Deflection angle for the hyperbolic orbit

Looking at Figure 4 the deflection angle

θ = 2ϕ0 − π

where ϕ0 is the angle measured between initial velocity and pericenter. This angle is
equivalent to the initial true anomali. Recall that an angle between the line connecting M
to m and a reference direction aligned with M and m at pericenter is the true anomaly.
Going back to our orbit equation

r =
p

1 + e cos f

When f = 0 we are at pericenter. So we can take f = ϕ0 equal to the initial true anomaly.
The radius goes to infinity at an angle where the denominator vanishes or

1 + e cos f = 1 + e cosϕ0 = 0

or
secϕ0 = −e

Because 1 + tan2ϕ = sec2ϕ we find

e2 = 1 + tan2ϕ0 (45)

and this happens at angles f = ±ϕ0. Using equation 37

e2 = 1 + tan2ϕ0 = 1 +
b2V 4

0

G2(M +m)2
. (46)
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We should notice that this implies that

tanϕ0 =
bV 2

0

G(M +m)
(47)

Inspection of Figure 5 helps us relate the changes in the relative velocity components
to the deflection angle.

∆V⊥ = V0 sin θd (48)

∆V∥ = −V0(1− cos θd) (49)

Here parallel is along the initial direction of the m and the perpendicular is perpendicular
to this direction but in the plane containing the two masses and their trajectories. We can
keep the signs straight if we remember that ∆V∥ must slow down the initially moving mass
and ∆V⊥ is in the direction toward the other mass. With V = Vm −VM , and m the one
initially moving with positive V0 then ∆V∥ is negative and ∆V⊥ is m moving toward M .

Using some trig identities

sin θd = sin(2ϕ0 − π)

= − sin(2ϕ0) = −2 sinϕ0 cosϕ0

= −2 tanϕ0 cos
2 ϕ0

= − 2 tanϕ0
1 + tan2 ϕ0

(50)

1− cos θd = 1 + cos 2ϕ0

= 2 cos2 ϕ0

=
2

1 + tan2 ϕ0
(51)

1.11 Parallel and perpendicular velocity changes

Putting these trig functions (equations 47, 50, 51) together with equation 52 and equation
46,

∆V⊥ = −V0 sin θd = − 2bV 3
0

G(M +m)
e−2

∆V∥ = V0(1− cos θd) = 2V0e
−2 (52)

with

e2 = 1 + tan2 ϕ0 = 1 +
b2V 4

0

G2(M +m)2
. (53)
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Now we need to get out of the center of mass frame using equations 5. So far there is no
dependence on which mass is the one initially moving. Taking M initially fixed and m the
one that is initially moving if we want to know the change to M we need to multiply ∆V
by m/(m+M) giving

∆VM⊥ =
2mbV 3

0

G(M +m)2
e−2 (54)

∆VM∥ =
2mV0
M +m

e−2 (55)

With ∆VM∥ in the same direction as m’s initial velocity (M is sped up) and ∆VM,⊥ in the
direction toward m at pericenter.

Figure 5: Components of the velocity change due to the encounter in terms of the deflection
angle θd.

14



2 Applications

2.1 Dynamical friction

The number density of stars with mass m is f . The rate that a star with mass m impact
parameter b and velocity v has an encounter with M

2πb db V0f.

Here V0 is the relative velocity. Let us assume that M is moving at a velocity V0 with
respect to a sea of particles with mass m. To find the total rate of change in ∆VM∥ we
integrate over all impact parameters

d

dt
∆VM∥ =

∫ ∞

0
db 2πbV0f∆VM∥(b) (56)

=

∫ ∞

0
db 2πbV0f

2mV0
(M +m)

[
1 +

b2V 4
0

G2(M +m)2

]−1

(57)

where I have used equation 55 for VM∥. If the field of stars is uniform then we can neglect
∆V⊥ as it should cancel to zero when we integrate.

Figure 6: Dynamical Friction. Illustrating how a large mass, moving through a sea of
particles accumulates a wake behind it due to gravitational scattering. The wake slows the
mass down, causing the frictional force known as dynamical friction.
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We notice that the integral in equation 57 is dominated by encounters at large impact
parameter b. Let us simplify the integral taking this into account, and setting density
ρ = fm, the mass density of our sea of particles with mass m;

d

dt
∆VM∥ ∼

∫ ∞

0
db 2πbV0ρ

2V0
M +m

G2(M +m)2

b2V 4
0

(58)

=

∫ ∞

0
db

4πρG2(M +m)

bV 2
0

(59)

This integral diverges so we can’t let impact parameter b → ∞. We can consider a maxi-
mum impact parameter bmax typical of our system. G(M+m)/V 2

0 is in units of length and

this is the transition regime were the denominator in equation 57 is 1. Let u =
bV 2

0
G(M+m) ,

with db = du
V 2
0

G(M+m) .

d

dt
∆VM∥ ∼ 4πρG2(M +m)

V 2
0

∫ bmax

0

db

b

∼ 4πρG2(M +m)

V 2
0

∫ bmaxV 2
0

G(M+m)

1

du

u

=
4πρG2(M +m)

V 2
0

ln

(
bmaxV

2
0

G(M +m)

)
(60)

It is customary to define a Coulomb log

Λ ≡ bmaxV
2
0

G(M +m)
(61)

The change in velocity is in the same direction as M is moving so

V̇M ∼ −4πρG2(M +m) lnΛ

V 3
M

VM (62)

For M > m the change in velocity is proportional to M . As the acceleration is pro-
portional to M the actual force is proportional to M2. The change in velocity depends
on the velocity so this is a dissipative force and that is why it is called dynamical friction.
The formula diverges for small VM only because we did not correctly estimate the integral
(because we took the limit of large impact parameter).

A similar formula taking into account the integral over relative velocities was derived
by Chandrasekkar. In this case we would take f(v) a distribution function and integrate
over d3v. The change in velocity depends on the relative velocity so we would integrate
over v − VM .
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With an isotropic Maxwellian velocity distribution the integral over all encounter ve-
locities

dVM

dt
= −4π ln Λ G2Mρ

V 3
M

(
erf(X)− 2X√

π
e−X2

)
VM (63)

where σ is the velocity dispersion and X ≡ vM
2σ .

As a mass M (globular cluster, black hole) passes through a sea of stars, it leaves a
gravitational wake behind it of focused stars and this wake slowly pulls M backwards
slowing it down.

Insert picture here!

2.2 Gravitational stirring and heating

With dynamical friction we primarily took into account the drag force from the component
of the parallel component of the velocity change in a hyperbolic orbit.

We now think about the other components.
Each encounter gives a random change in velocity. So while perpendicular velocity

changes do average to zero, they also cause random motions. The expectation of ⟨∆V ⟩ = 0
However ⟨∆V 2⟩ is not zero. We can think of the problem with a random walk or diffuse
like behavior.

The effect is gravitational stirring or gravitational heating.
Diffusion coefficients come from integrating components of ∆V over the velocity field.

For mass M

D(∆v∥) =
4πG2ρ(M +m) lnΛ

σ2
G(X) (64)

D(∆v2∥) =
4
√
2πG2ρm ln Λ

σ

G(X)

X
(65)

D(∆v2⊥) =
4
√
2πG2ρm ln Λ

σ

(
erf(X)−G(X)

X

)
(66)

G(X) =
1

2X2

[
erf(X)− 2X√

π
e−X2

]
(67)

X ≡ vM
2σ

(68)

Here D(∆v∥) gives a drift, whereas D(∆v2∥), D(∆v2⊥) are diffusive, giving random mo-
tions. Statistics can be described in terms of an advective diffusion equation. A star moving
through the galaxy is primarily heated by the diffusive terms, whereas a globular cluster
moving through a sea of stars would be primarily slowed down by the advective or drift
term. A star on a trajectory, is one of a bunch of possible randomly chosen trajectories.
The distribution of trajectories widens due to heating and this is described by the diffusive
terms. Gravitational heating is described by the diffusive terms whereas dynamical friction
is described by the drift term. When the two balance we have equipartition.
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Focusing on units only

D(∆v2⊥) ∼ G2ρmσ (69)

∆v2⊥
∆t

∼ t−2
ρ

Gm

σ2
σ (70)

∼ t−2
ρ Rmσ (71)

∆v⊥ ∼ (∆tRmσ)
1
2 t−1

ρ (72)

where tρ = (Gρ)−1/2 and Rm = Gm
σ2 .

2.3 Equipartition

The kinetic energy of a single particle of mass M

E =
∑
i

Mv2i
2

where i is over x,y,z. Diffusion in energy

D(∆E)

M
=

∑
i

viD(∆vi) +
1

2

∑
i

D(∆v2i ) (73)

= vD(∆v∥) +
1

2

(
D(∆v2∥) +D(∆v2⊥)

)
(74)

where convention is that perpendicular part takes into account both components of per-
pendicular part.

The parallel part is negative because this is dynamical friction. This is a cooling
term. The other two terms are heating terms. Looking at equation 64, D(∆v∥) ∝ M/σ2

with σ the velocity dispersion of the masses m. Looking at equation 65, D(∆v2∥) and

D(∆v2⊥) ∝ m/σ. Setting a balance with D(∆E)
M = 0. The two terms in equation 74 are

equivalent with
VMM

σ2
∼ m

σ

or when
MVM ∼ mσ.

When two different masses are present the heating and cooling term balance giving what
is called equipartition.
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2.4 Eccentricity and Inclination evolution in a circumstellar disk

Gravitational heating of planetesimals or dust particles in a circumstellar disk is due to
scattering from the larger masses in the disk.

d⟨e2⟩
dt

=
Ωr2σ∗M

−2
∗√

π(⟨e2∗⟩ − ⟨e2⟩)
1
2 (⟨i2∗⟩ − ⟨i2⟩)

1
2

[
BJem∗ + 1.4AHe

(
m∗⟨e2∗⟩ −m⟨e2⟩

⟨e2⟩+ ⟨e2∗⟩

)]
(75)

From Stewart and Ida 2000, Icarus 143, 28.
Ω is angular rotation rate about M∗. σ∗ is surface mass density of particles m∗ and

σ is mass density of particles with mass m. Two heating terms and one damping term.
Dynamical friction is negative so is a cooling term.

Inclination evolution is the same except one half the size and this is consistent with
velocity isotropy. Here B, Je, A,He are all terms of order unity. The ones subscripted with
e depend on whether the system is in a dispersion or shear dominated regime. Observed
debris disks are not in the shear dominated regime, whereas cold ring systems might be,
but in that case there would also be cooling due to collisions and that is not taken into
account here.

2.5 Relaxation timescale in a star cluster

Consider a star cluster of mass M with N stars so M = Nm where m is the mass of each
star in the cluster. The cluster has a radius R and a typical velocity scale

V =

√
GM

R
=

√
GNm

R
(76)

which is also approximately the velocity dispersion in the cluster.
What time does it take for a star in the cluster to lose memory of its orbit? This is

known as the relaxation time.
A gravitational encounter with impact parameter b gives a velocity kick in the perpen-

dicular direction of order

δv ∼ Gm

bV

Our star undergoes a random walk due to these velocity kicks. During a crossing time,
our star experiences N kicks and the velocity kicks add in quadrature as they would on
average all cancel when added. The number of stars per unit area is N/R2 but each kick
is due to an encounter with a different impact parameter. The total velocity change after
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passing through the cluster once (and having an encounter with every star in the cluster)

∆v2 ∼
∫ bmax

bmin

2πb db
N

R2
(δv)2

∼
∫ bmax

bmin

2πb db
N

R2

(
Gm

bV

)2

∼ N

R2
2π
G2m2

V 2

∫ bmax

bmin

db

b

∼ N

R2
2π
G2m2

V 2
ln

∣∣∣∣bmax

bmin

∣∣∣∣ (77)

Define

Λ ≡ bmax

bmin
(78)

and use equation 76 to remove R

∆v2

V 2
=

2π

N
ln Λ (79)

Losing memory of the initial velocity happens when ∆v2/V 2 ∼ 1. The number of crossing
times required to lose all memory of initial conditions is

nrelax ∼ N

6 lnΛ
. (80)

It makes sense that the maximum impact parameter bmax = R. The minimum impact
parameter we can estimate from a gravitational sizescale bmin ∼ Gm/V 2. Taking the ratio

bmax

bmin
=
RV 2

Gm
∼ M

m
∼ N

and giving

nrelax ∼ N

6 lnN
(81)

To estimate a relaxation timescale

trelax = nrelaxtcross (82)

with the crossing timescale

tcross ∼
R

V
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2.6 Stochastic behavior, ergodicity and chaos

When we discuss gravitational heating in terms of diffusion or gravitational relaxation we
assume that gravitational encounters are a stochastic phenomena. Stochastic here means
involving random behavior. This contrasts with a Keplerian system which is analytically
solvable. N-body systems are deterministic in the sense that trajectories are integrated
and they are not chosen from a random distribution in any way. However for N ≥ 3 an
N-body system is likely to be chaotic. Our assumption of stochastic behavior rests in the
way that N-body systems behave ergodically. With the word ergodic here meaning acting
as if we can model the system as if it were random.

3 Problems

1. Maximum deflection of a space craft near a planet

(M+D problem 2.3).

A test particle approaches a planet of mass M and radius R from infinity with initial
speed v∞ and impact parameter b. The test particle’s mass m
M .

a) Use the particle’s energy, angular momentum and orbit to show that eccentricity

e = 1 + 2
v2∞
v2esc

where vesc is the escape velocity at pericenter q.

Hints: you need the following three equations Energy per unit mass

E =
1

2
v2∞ = −GM

2a

Pericenter in terms of semi-major axis and eccentricity

q = a(1− e)

and an equation for the escape velocity at pericenter

vesc =
2GM

q

b) Show that the deflection angle of deflection ψ of the test particle satisfies

sin(ψ/2) =
1

e

c) Given that q < R to avoid collision, calculate the maximum orbital deflection angle
for a space craft skimming Jupiter with v∞ = 10 km/s.
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2. Lagrangian and Jacobi coordinates for the 3 body system

From Valtonen and Karttunnen Chapter 2.

In the three body system we have 3 coordinates r1, r2, r3 and three massesm1,m2,m3.
In the Lagrangian formulation, the equations of motion can be written in terms
of coordinate differences. Differences in positions r12 = r1 − r2 and similarly for
velocities and accelerations and different pairs of masses.

The equations of motion using differences are:

r̈12 = Gm3W −GM
r12
r312

(83)

W ≡ r12
r312

+
r23
r323

+
r31
r331

(84)

In the Jacobi coordinate system, the three body system is instead described hierar-
chically. The three body system is describe with two bodies in a compact binary
and the third body orbiting the center of mass of the compact binary. The binary
is described with distance between the two masses r = r21 = r1 − r2. The center of
mass of the binary is rB. The coordinate of the third body from the binary center of
mass is R3 = r3 − rB.

The total angular momentum for the three body system in the center of mass frame

Lcm = m1r1 × ṙ1 +m2r2 × ṙ2 +m3r3 × ṙ3 −Mrcm × ṙcm

Here

M = m1 +m2 +m3

rcm =
1

M
(m1r1 +m2r2 +m3r3)

ṙcm =
1

M
(m1ṙ1 +m2ṙ2 +m3ṙ3)

The angular momentum is a conserved quantity!

a. Show that the total angular momentum in Lagrangian coordinates (in the center
of mass frame) is

Lcm =
m1m2m3

M

(
r12 × ṙ12
m3

+
r23 × ṙ23
m1

+
r31 × ṙ31
m2

)
.

b. Show that the total angular momentum in Jacobi form (in the center of mass
frame) is

Lcm = µ12r× ṙ+ µ3BR3 × Ṙ3
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where reduced masses are

µ12 =
m1m2

m1 +m2

µ3B =
m3(m1 +m2)

m1 +m2 +m3

3. On accretion rate and gravitational focusing

Consider a planetary embryo of mass M and radius R moving through a sea of
planetesimals of mass m and number density n. Assume that M is moving with
velocity V0 with respect to the planetesimals and M > m. The velocity dispersion
of the planetesimals is σ. Assume that anything that hits M is added to M so that
M increases in mass. What is the accretion rate Ṁ and how does it depend on M?
Consider the time-scale M/Ṁ . How does this depend on M?

There are three velocities in this problem,
√
GM/R, σ, V0. Discuss the possible

regimes.

Here is the beginning list of regimes ....

• V0 <
√
GM/R < σ

• V0 < σ <
√
GM/R

4. The impulse approximation as a limit

We computed the following velocity changes for M following an encounter by m with
relative initial velocity V0.

∆VM,⊥ =
2mbV 3

0

G(M +m)2
e−2 (85)

∆VM,∥ =
2mV0
M +m

e−2 (86)

with

e2 = 1 +
b2V 4

0

G2(M +m)2
. (87)

Show that the large V0 limit gives the impulse approximation with

∆V⊥ → 2Gm

bV0
(88)

∆V∥ → 0 (89)

Note: The limit for the parallel component is actually to a higher negative power of
V0.
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Figure 7: A fast encounter by a star, Ms passing through the ecliptic causes a change in
eccentricity of the planet Mp in orbit about star M∗.

5. Excitation of eccentricity from a gravitational encounter

Consider a planet of mass Mp at zero orbital inclination and in a circular orbit with
semi-major axis ap in orbit about its host star M∗.

A star of mass Ms moving at a very high speed, V0, passes through the ecliptic plane
that contains the planet’s orbit. The star’s trajectory is perpendicular to the ecliptic
orbital plane. It passes through the ecliptic at a radius rs from the host star. At
the moment that the star Mb passes through the ecliptic, it is a distance d from the
planet. The point at which it passes through the ecliptic, is described by angle θs as
shown in Figure 7.

We assume that d < ap where ap is the semi-major axis of the planet.

a. Using the impulse approximation, estimate the size and direction of the velocity
kick given to the planet?

b. What is the planet’s and semi-major axis after the encounter?

c. What is the planet’s eccentricity after the encounter?

d. Is it possible to change the orbital energy (or semi-major axis) without affecting
the eccentricity of the orbit?

6. Impulse approximation for something other than a point mass. Cluster
evaporation
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The impulse approximation assumes that the trajectory of a particle is not perturbed
during a gravitational encounter. The velocity change ∆V ∼ F∆t where F is a force
and ∆t is the timescale of the encounter. A somewhat more accurate approximation
estimates

∆V =

∫ ∞

−∞
F(t)dt

integrated over the linear trajectory during the encounter.

Consider a disk galaxy with mass surface density Σ and vertical scale height h and
a globular cluster of mass Mc passing through the disk on a vertical trajectory with
velocity V0.

What is the tidal force from the disk on the cluster as it passes through the galactic
disk? Estimate this during the encounter at a radius r from the center of the globular
cluster.

What size velocity kick is given to a star at radius r as the cluster passes through
the galactic disk?

At what radius does the star become unbound to the cluster?

Is this effect important for young clusters moving through spiral arms? Do we expect
evaporating streams to be left behind every time a young cluster passes through a
spiral arm?

7. Stream broadening

Consider a star of mass m in a cold stream of stars in the Galaxy (such as Palomar
5). Each star in the stream has a similar velocity and they all lie along a single orbit
but differing in position along the orbit.

The stream is embedded in a sea of black holes of mass M with velocity dispersion
σ and density ρBH .

First consider the trajectory of the star in the absence of any black hole perturbers.

How fast does the star diverge from its original trajectory due to gravitational en-
counters with black holes?

Consider two nearby stars in the cold stream of stars. How fast do their trajectories
diverge?

Instead of black holes consider dark matter halos and a stream in the Galactic halo.

Instead of a stream in the Galactic halo consider a stream from a cluster in the
galactic disk and molecular clouds or spiral arms as perturbers.

8. Debris Disk Thickening

The Beta Pictoris dusty disk has aspect ratio h/r ∼ 0.05 and the star is about 108

years old. Here the disk thickness is h at radius r. The aspect ratio h/r ∼
√
⟨i2⟩
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is related to the inclination distribution of dust particles. Here i is the inclination.
Assume that planetesimals embedded in the disk midplane have thickened the disk in
108 years. Place a constraint on the mass and surface density of these planetesimals.
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