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ABSTRACT
We contrast high inclination bodies captured into corotation resonances with Neptune
during migration with low inclination bodies.

1 INTRODUCTION

A number of mechanisms have been proposed for capture
of objects (Trojans) into corotation or 1:1 resonance with a
giant planet or orbits orbiting the L4 or L5 (or both) La-
grange points (for a review see Marzari et al. 2002). The cap-
ture efficiency is highest (up to 50%) for a capture scenario
where nearby planetesimals are captured into resonance as
the planet becomes more massive as the resonance widens
and strengthens (e.g., Fleming & Hamilton 2000; Marzari &
Scholl 1998). Once trapped as a Trojan, the libration am-
plitude of a planetesimal continues to shrink under the in-
fluence of the growing Jupiter. We must keep in mind that
long term stability must be considered after capture.

Chaotic capture: The capture of Jupiter Trojans in the
Nice model occurs during discrete episodes when the co-
orbital region is swept by secondary resonances associated
with mean-motion commensurabilities between Jupiter and
Saturn Morbidelli et al. (2005); Marzari & Scholl (2007);
Robutel & Bodossian (2009); Nesvorny & Vokrouhlicky
(2009). This process, called chaotic capture, might explain
how Neptune acquired its Trojans via resonances between
Uranus and Neptune (Nesvorny & Vokrouhlicky 2009) as
Neptune and Uranus migrated. Recent numerical simula-
tions of Neptune’s migration through a primordial disk have
shown that high inclination objects are preferentially cap-
tured and retained as Trojans (Parker 2015; Chen et al.
2016).

After capture into corotation resonance, planet migra-
tion can cause objects to escape the corotation resonance.
Kortenkamp et al. (2004) showed that Trojan particles es-
cape the corotation region when they are swept by secondary
resonances associated with mean-motion commensurabilities
of Uranus with Neptune. These secondary resonances arise
when the circulation frequencies, of critical arguments for
Uranus and Neptune mean-motion near-resonances are com-
mensurate with harmonics of the libration frequency of the
critical argument for the Neptune-Trojan 1:1 mean- motion
resonance. As these resonances involve three bodies, the Tro-

jan, Neptune and Uranus they can also be called three-body
resonances.

2 THREE BODY RESONANCES

We first make an approximate model for libration of Trojan
type objects in the corotation region of an outer planet. We
then consider how an external planet is perturbed due to
a mean motion resonance with an internal planet. We then
modify the libration model to take into account the induced
perturbations of the outer planet. The model is a three-body
resonance model (e.g., Murray et al. 1998; Nesvorný & Mor-
bidelli 1998a; Quillen 2011; Quillen & French 2014). In this
case the corotating Trojan object is perturbed by Neptune
which is perturbed by resonance with Uranus. Our goal is
to understand why lower inclination objects might prefer-
entially escape the corotation region. With an estimate of
the strength of the three-body resonances we can determine
the likelihood that a drifting system (Uranus migrating with
respect to Neptune) will allow capture of a Trojan into the
three-body resonance (employing the order of magnitude ap-
proach by Quillen 2006).

2.1 Libration near corotation

We first consider an approximate model for libration about
an L4 or L5 Lagrange point following the framework given
by Tabachnik & Evans (2000) (see their section 2). We work
in Poincaré coordinates and consider the restricted problem
of three bodies (Sun, planet and planetesimal). The Hamil-
tonian in a non-rotating heliocentric frame for the asteroid

H = −k
2

2a
−mpk

2R (1)

where k is the Gaussian gravitational constant, a is the as-
teroid’s semi-major axis, mp is the mass of the planet in
solar masses and R is the disturbing function. Setting units
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so that k = 1 and in Poincaré coordinates (the conjugate
momenta and angles)

H(Λ,Γ, Z;λ, γ, z) = − 1

2Λ2
−mpR (2)

Here Poincaré angles γ = Ω + ω = −$ and z = −Ω with
Ω the longitude of the ascending node and ω is argument
of pericenter and $ is the longitude of pericenter. The mo-
menta Γ =

√
a, Γ ≈

√
ae2/2 and Z ≈

√
a(1 − cos i) with

e and i the eccentricity and inclination of the planetesimal.
The disturbing function depends on the momenta and an-
gles as well as the coordinates of the planet. The semi-major
axis for corotation a = ap with ap the semi-major axis of the
planet. Hereafter quantities subscripted with p refer to the
planet. Expanding near corotation Λ = Λp+l with Λp =

√
ap

H(l,Γ, Z;λ, γ, z) ≈ − 1

2Λ2
p

+
l

Λ3
p

− 3

2

l2

Λ4
p

−mpR (3)

The disturbing function can be expanded in orders of
eccentricity and inclination of asteroid and planet. It can
also be expanded in Fourier components of angles. Often
it is helpful to consider a model where only some Fourier
components (those with slowly varying angles) are retained.
An alternative approach is to average over a fast angle.
Tabachnik & Evans (2000) averages the disturbing function
over the planet’s mean anomaly, Mp, 〈R〉 =

∫ 2π

0
RdMp (see

their equation 4). The resulting averaged disturbing func-
tion shows minima near φ∗ ∼ ±π/3, the L4 and L5 Lagrange
points, as expected (see their Figure 2 and Figure 1) where
φ ≡ λ−λp and λ and λp are the mean longitudes of asteroid
and planet.

2.2 Fourier coefficients of the averaged disturbing
function near corotation

Tabachnik & Evans (2000) show an a second order expansion
of the averaged disturbing function. The zero-th order (in
eccentricity) term is

U0 = (a2 + a2
p − 2aap cos2 i

2
cosφ)−

1
2 − a

a2
p

cos2 i
2

cosφ (4)

(equation by Tabachnik & Evans 2000). In Figure 1 we plot
U(φ) for a = ap = 1 and for i = 1◦ and i = 40◦. The shape
is similar to that shown in Figure 2 by Tabachnik & Evans
(2000) and has the characteristic two minima for L4 and L5
Lagrange points.

We expand the averaged disturbing function in Fourier
components

〈R〉(φ) =
∑
m

bm cos(nφ) (5)

We see from Figure 1 that the zero-th order term of the av-
eraged disturbing function has a steeper slope near φ = 0 at
lower inclination than at higher inclination. This follows as
the first term in equation 4 has a discontinuity at φ = 0 at
zero inclination, corresponding to a close approach of par-
ticle and planet. The steeper slope for U0 implies that that
high m Fourier coefficients are stronger at low inclination
than at high inclination.

We numerically compute the Fourier components of U0

for inclinations i = 1, 5, 10, 20, 30, 40◦ and they are plotted
on a log scale as a function of m in Figure 2 for a = ap = 1.

Figure 1. The zero-th order term of the disturbing function U0

plotted for inclinations i = 1◦ in blue and i = 40◦ in green.

Figure 2. The Fourier components of U0 for a = ap = 1

are plotted as a function of Fourier index m. We plot log bm,

the cosine amplitude for (from top to bottom) inclinations i =
1, 5, 10, 20, 30, 40◦. The strength of the component decays expo-

nentially with m and the decay rate is faster at higher inclination.

The reflection symmetry of U0 implies that we need only
consider the cosine amplitudes (the sine coefficients vanish).
Figure 2 shows that the Fourier components decay exponen-
tially and faster (with m) at higher inclination. To a good
approximation

bm ∝ e−sbm (6)

with slope sb(i). The exponential form and rate of decay
is likely related to the width of analytical continuation in
the complex plane of the function U0 (see Quillen 2011 on
approximating Laplace coefficients).

From the points plotted in Figure 2 and for each inclina-
tion we fit a slope sb(i) assuming equation 6. The measured
slopes are plotted as a function of inclination in Figure 3.
We find that the slopes are well approximated by sb ≈ 0.76i
with inclination i in radians.

We have estimated the decay rate of the Fourier coeffi-
cients of the averaged disturbing function using the zero-th
order term U0 finding cosine coefficients bm ∝ e−sbm with
sb(i) = 0.76i. Hereafter we assume that the same exponen-
tial scaling holds for the entire averaged disturbing function.

In Figure 4 we plot b2 as a function of inclination, again
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Figure 3. The slopes sb measured from the points in Figure 2

are plotted as a function of inclination along with a linear fit.

Figure 4. The m = 2 Fourier coefficient, b2 measured from U0

as a function of inclination, shown as points, with a line given by
equation 7

measured from U0. A reasonable fit to this is shown as a
black like on the plot and is given by

bm(i) ∼ 30i
1
4 e−mi (7)

Inserting this function into the Hamiltonian in equation
3 gives us an approximate model for libration that includes
the high m Fourier coefficients;

H(l,Γ, Z;λ, γ, z) ≈ l

Λ3
p

− 3

2

l2

Λ4
p

(8)

−mp

ap
30i

1
4
∑
m

e−mi cos(m(λ− λp))

where we have dropped the constant term. We did approx-
imations using a = ap and we have restored an estimate
for the dependence on ap using the first term in U0 that
likely controls the exponential decay of the high m Fourier
coefficients. We have checked that the exponential scaling
bm ∝ e−mi holds for the the derivative of U0 with respect to
a.

3 PERTURBATION OF NEPTUNE BY
URANUS NEAR 2:1 MEAN MOTION
RESONANCE

Following Murray & Dermott (1999) section 6.9.2 but for an
internal perturber the relevant part of the averaged disturb-
ing function for the 2:1 mean motion resonance contains two
terms

R =
mU

aN
[C4eU cos(2λN − λU −$U ) (9)

+(C5 − 1
2
)
a2
N

a2
U

eN cos(2λN − λU −$N )

]
(10)

with

C4 = 1
2

[−4− αD] b
(2)
1
2

(α) (11)

C5 = 1
2

[3 + αD] b
(1)
1
2

(α) (12)

using q = 2 and f27 and f31 in appendix of M+D and αUN =
aU/aN near the 2:1 resonance and b

(2)
1
2

a Laplace coefficient.

Here D ≡ d
dα

Lagrange’s equation for ȧN give

ȧN = 2
nNaN

∂R
∂λN

= − 4mU

nNa
2
N

[
C4eU sinφU + (C5− 1

2α2 )eN sinφN
]

(13)

using shorthand

φU ≡ 2λN − λU −$U

φN ≡ 2λN − λU −$N . (14)

Integrating this we find excursions in semi-major axis from
the resonance

∆aN ∼ 4mU

nNa
2
N

[
C4eU

2nN−nU−$̇U
cosφU

+(C5 − 1
2α2 ) eN

2nN−nU−$̇U
cosφN

]
(15)

Lagrange’s equation for λ̇N give

λ̇N = − 2

nNaN

∂R

∂aN

= − 2mU

nNa3
N

[(1 + αD)C4eU cosφU

+
(
(1 + αD)C5 + 1

2α2

)
eN cosφN

]
(16)

Integrating this we get an excursion in mean longitude due
to resonance

∆λN ∼ − 2mU

nNa3
N

[
(1 + αD)C4

2nN − nU − $̇U
eU sinφU

+
(1 + αD)C5 + (2α2)−1

2nN − nU − $̇N
eN sinφN

]
(17)

Evaluating coefficients near the 2:1 resonance

C4 = −1.2 (18)

C5 = 1.7 (19)

C5x = (C5 − 1
2
)
a2
N

a2
U

= 0.4 (20)

C4y = (1 + αD)C4 = −4.5 (21)

C5y = (1 + αD)C5 + (2α2)−1 = 6.0 (22)

The only one of these that is extremely sensitive to semi-
major axis ratio is the third one, C5x. For α = 0.6 it is only
C5x = 0.16 whereas for α = 0.65 it is C5x = 0.6.
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Defining

AU ≡ 4mU

nNa2
N

C4eU
2nN − nU − $̇U

(23)

AN ≡ 4mU

nNa2
N

4C5xeN
2nN − nU − $̇N

(24)

BU ≡ − 2mU

nNa3
N

C4yeU
2nN − nU − $̇U

(25)

BN ≡ − 2mU

nNa3
N

C5yeN
2nN − nU − $̇N

(26)

(27)

equations 15 and 17 are written

∆λN ∼ AU cos(2λN − λU −$U ) +AN cos(2λN − λU −$N ) (28)

∆aN ∼ BU sin(2λN − λU −$U ) +BN sin(2λN − λU −$N ) (29)

3.1 Three body resonance

We recall equation 8 here but replacing ap with aN and
similarly for other elements

H(l,Γ, Z;λ, γ, z) ≈ l

Λ3
p

− 3

2

l2

Λ4
N

(30)

−mN

aN
30i

1
4
∑
m

e−mi cos(m(λ− λN ))

We insert aN = aN0 + ∆aN and λN = nN t+ ∆λN0 + ∆λN
into the last term, retaining first order terms

x = mN

a2
N0

∆aN30i
1
4
∑
m e
−mi cos(m(λ− λN ))

+mN
aN

30i
1
4
∑
m e
−mi sin(m(λ− λN ))m∆λN (31)

= mN
aN0

30i
1
4
∑
m e

mi (32)

We retain only first order terms so close!

4 MEAN MOTION RESONANCE BETWEEN
TWO PLANETS

Because both planets have mass we must use Poincaré co-
ordinates including the body masses. For planet with in-
dex i, the momentum Λi = mi

√
ai and similarly for Γi ≈

mi
√
aie

2
i /2 and Zi. The Hamiltonian is

H = − m
3
i

2Λ2
i

−
m3
j

2Λ2
j

+Rij (33)

where Rij is the disturbing function coming from the grav-
itational interaction between planets.

A first order q − 1 : q mean motion resonance between
two planets can be modeled with Fourier components from
the low eccentricity expansion of the disturbing function (fol-
lowing equation 32-34 by Quillen & French 2014)

V i cos(qλj+(1−q)λi−$i)+V j cos(qλj+(1−q)λi−$j) (34)

with

V i = −mimj

aj
eif27(αij , q) ≈ −

mim
3
j

Λ2
j

(
2Γi
Λi

) 1
2
f27(αij , q)

V j = −mimj

aj
ejf31(αij , q) ≈ −

mim
3
j

Λ2
j

(
2Γj

Λj

) 1
2
f31(αij , q)

(35)

with αij = ai/aj and we assume that ai < aj . We are pri-
marily interested in how the resonance causes perturbations
to the mean longitude of the outer planet, here λj (as equa-
tion 8 contains an angle which depends on λp).

Taking derivatives of the Fourier components (of the
disturbing function)

λ̇j =
∂H

∂Λj
= nj +

∂V i

∂Λj
cosφi +

∂V j

∂Λj
cosφj (36)

with φi = qλj+(1−q)λi−$i and φi = qλj+(1−q)λi−$j .

∂V i

∂Λj
=

mim
3
j

Λ2
j

(
2Γi
Λi

) 1
2

2

[
f27

Λj
+ f ′27

Λ2
i

Λ3
j

]
(37)

= minj2ei

[
f27 + f ′27

m2
i

m2
j

αij

]
(38)

∂V j

∂Λj
=

mim
3
j

Λ2
j

(
2Γj
Λj

) 1
2
[

5

2

f31

Λj
+ 2f ′31

Λ2
i

Λ3
j

]
(39)

= minjej

[
5

2
f31 + 2f ′31

m2
i

m2
j

αij

]
(40)

We can integrate 36 to estimate

λj = njt+ (qnj + (1− q)ni)−1

[
∂V i

∂Λj
sinφj +

∂V j

∂Λj
sinφj

]
(41)

For short we will refer to

εi = (qnj + (1− q)ni)−1 ∂V
i

∂Λj
(42)

εj = (qnj + (1− q)ni)−1 ∂V
j

∂Λj
(43)

giving

λj = λ0 + εi sinφi + εj sinφj (44)

with λ0 = njt. We expect the two perturbation strengths
εi, εj are not large.

We will use the terms proportional to sinφi and sinφj
to construct a three-body resonance using equation 8.

We need to add indirect term for 2:1 resonance

4.1 Three body resonance

Substituting into equation 8 using λj = λp. We consider
argument

cos(2(λ− λp)) ≈ cos(2(λ− λ0)) + sin(2(λ− λ0))(2εi sinφi + 2εj sinφj) (45)

Picking up resonant arguments that look like this

εi cos(2(λ− λp)± φi) + εj cos(2(λ− λp)± φj) (46)

Putting back into Hamiltonian the three body reso-
nance looks like this

H = l2 + ω2
libεi cos(2(λ− λp)± φi) + εj cos(2(λ− λp)± φj) (47)

The frequency of the ith three body resonance is

ω3 ∼ ωlib
√
εi

Note We used only λp but actually the libration fre-
quency depends on ap also and that is varying during res-
onance. We can neglect eccentricity ep and $p variations
probably.
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4.2 What?

The width and libration amplitude in 1:1 resonance are
somewhat sensitive to inclination (as shown in expan-
sion;Tabachnik & Evans 2000) and as shown by the sen-
sitivity of libration frequency to orbital inclination (Zhou et
al. 2011). Zhou et al. (2011) measured a libration frequency
of 1.13, 1.01, 0.88 for inclinations of 5, 35, 55◦ respectively,
in units of 10−42πyr−1 (see their equations 1, 8, 13, for zero
eccentricity and with semi-major axis in the center of the
corotation resonance).

Zhou et al. (2011) uses f2:1 = 2λN − λU . We might
want to define φ2:1 = 2λN − λU −$x Which body? It’s not
necessarily the one you think because of the cancellation by
the indirect term!

Resonances in the form jfσ ∼ kφ2:1 with integers j, k,
are probably important, (Kortenkamp et al. 2004) (and are
in the class called C type by Zhou et al. 2011). To satisfy
a d’Alembert rule additional factors of secular precession
frequencies must be added (see equation 5 are associated
discussion by Zhou et al. 2011).

These resonances can be considered 3-body resonances
because they involve an angle constructed from xxx
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