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ABSTRACT

We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems,
at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis
that dynamical evolution in outer planetary systems is controlled by a combination of planet–planet scattering
and planetary interactions with an exterior disk of small bodies (“planetesimals”). Our results are based on 5000
long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a
planetesimal disk containing 50 M⊕ from 10 to 20 AU. For large planet masses (M � MSat), the model recovers
the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in
models with disks is far greater than that which is seen in isolated planet–planet scattering. Common outcomes
include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven
by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the
distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial
system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution
(derived primarily from planets at a � 3 AU) is consistent with isolated planet–planet scattering. We explain
the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering
models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger
radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity
distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure
signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with
K ≈ 5 m s−1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present
an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in
mean-motion resonances (MMRs). We show that, if there are systems with ∼ Jupiter-mass planets that avoid
close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate
(50%–80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all
three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.

Key words: celestial mechanics – planet–disk interactions – planetary systems – planets and satellites: dynamical
evolution and stability – planets and satellites: formation
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1. INTRODUCTION

Observations of planetary systems containing massive planets
suggest that the final architecture of planetary systems is
often determined by evolutionary processes that occur after
the planets have formed and accreted much of their mass. In
the solar system, strong evidence for early evolution comes
from the orbits of small bodies in the Kuiper Belt (Jewitt &
Luu 1993), many of which occupy mean-motion resonances
(MMRs) with Neptune (Chiang et al. 2007). The only known
explanation for this unusual distribution of orbital properties
involves the resonant capture (Goldreich 1965) of Pluto and
other Kuiper Belt Objects (KBOs) by Neptune in the course
of a slow expansion of its orbit during the early history of
the solar system (Malhotra 1993, 1995). In extrasolar planetary
systems, inward orbital migration is required in order to explain
“hot Jupiters,” massive extrasolar planets with orbital radii
a � 0.1 AU (Mayor & Queloz 1995), whose existence is
inconsistent with in situ giant planet formation (Bodenheimer
et al. 2000). Even more striking is the fact that extrasolar planets

with a � 0.1 AU display a broad distribution of eccentricities
(Marcy et al. 2005) that is at odds with the expectation that
planets form in near-circular orbits. In addition to these general
properties, the unusual characteristics of individual systems
such as XO-3, whose orbital plane does not coincide with the
stellar equator (Hébrard et al. 2008; Winn et al. 2009), and
the existence of resonant multiple planet systems such as GJ
876 (Marcy et al. 2001), demand explanation in terms of post-
formation dynamical evolution.

The action of three physical mechanisms: gas disk migration,
planetesimal disk migration, and planet–planet scattering, can
lead to large-scale changes in planetary orbital elements (the
semimajor axis a, eccentricity e, and inclination i). The basic
physics underlying each of these processes is now moderately
well understood (for reviews, see, e.g., Papaloizou & Terquem
2006; Armitage 2010). Gas disk migration is mediated by the
exchange of energy and angular momentum between a planet
and the gas disk at Lindblad resonances and in the co-orbital
region (Goldreich & Tremaine 1980). In the regime relevant
to massive planet migration, the coupling is strong, and the
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end result is that the planet’s semimajor axis changes on a
timescale given to order of magnitude by the viscous timescale
of the protoplanetary disk (Lin & Papaloizou 1986). Modest
eccentricity growth may accompany decay of the semimajor axis
(Ogilvie & Lubow 2003; Goldreich & Sari 2003; D’Angelo et al.
2006; Moorhead & Adams 2008), while any mutual inclination
between planet and disk is damped (Lubow & Ogilvie 2001).7

Planetesimal disk migration occurs due to the scattering or
ejection of a collisionless population of small bodies8 by a
planet (Fernandez & Ip 1984; Hahn & Malhotra 1999). The
sense of migration can be inward (if the planet predominantly
ejects planetesimals) or outward (if the planet scatters bodies
from an exterior disk onto lower angular momentum orbits),
and occurs at a rate that depends upon the surface density of
the planetesimal disk (Ida et al. 2000; Gomes et al. 2004; Kirsh
et al. 2009). Planetary eccentricity is damped (Murray et al.
2002). Finally, planet–planet scattering occurs when an initially
unstable system of N planets relaxes under the action of purely
gravitational forces. Typically such a system evolves chaotically
up to the development of orbit crossing, which results in the
ejection of (or collisions between) some of the planets. The
survivors have a broad distribution of e, non-zero i, and have
moved closer to the star as a consequence of the loss of energy
(Rasio & Ford 1996; Weidenschilling & Marzari 1996; Lin &
Ida 1997).

Direct observational evidence for the importance of these pro-
cesses is limited. For the solar system, the structure of the Kuiper
Belt (Chiang et al. 2003; Levison & Morbidelli 2003; Hahn &
Malhotra 2005; Murray-Clay & Chiang 2005; Levison et al.
2008) and of the main asteroid belt (Minton & Malhotra 2009)
is broadly consistent with predictions based on planetesimal
disk-driven migration. Planetesimal-driven planetary migration
can also provide plausible explanations for otherwise puzzling
features of the solar system such as the large inclinations of
Jupiter’s Trojan asteroids and the composition (and possibly the
timing) of the Late Heavy Bombardment on the Moon (Tera
et al. 1974; Strom et al. 2005; Tsiganis et al. 2005; Morbidelli
et al. 2005; Gomes et al. 2005). Taken together the evidence
clearly suggests a dominant dynamical role for planetesimal
scattering in the early history of the outer solar system. For
extrasolar planetary systems, on the other hand, even the best
evidence is circumstantial. It is now well established that the
eccentricity distribution of massive extrasolar planets matches
the predictions of planet–planet scattering models (Ford et al.
2003; Adams & Laughlin 2003; Chatterjee et al. 2008; Jurić &
Tremaine 2008; Raymond et al. 2008a; Thommes et al. 2008b).
This does not rule out the possibility that significant eccentric-
ity excitation occurred during gas disk migration, but it supports
the contention that the progenitors to today’s observed systems
were dynamically unstable. The relative role of gas disk mi-
gration and planet–planet scattering in setting up the observed
radial distribution of extrasolar planets is harder to determine.
If planet–planet scattering occurred in most systems, the ac-
companying change in a of the innermost planet could have

7 Damping is predicted for a single planet migrating through a gas disk. If
two planets are simultaneously migrating resonant perturbations between the
planets can overcome the damping and lead to an increase in i (Thommes &
Lissauer 2003; Lee & Thommes 2009).
8 For convenience we dub these small bodies “planetesimals,” although they
could be substantially smaller or larger than the 10–100 km planetesimals
conventionally envisaged as the first stage of planet formation. The actual
physical size is of little import provided that the bodies are neither so small
that they behave as a collisional fluid, nor so large that individual scattering
events significantly perturb the orbit of a planet.

populated much of the observed extrasolar planet region from
a parent population beyond the snow line, especially if N were
moderately large (Papaloizou & Terquem 2001). More com-
monly, however, it is assumed that the present semimajor axes
of not just the hot Jupiters (Lin et al. 1996), but also the bulk
of known extrasolar planets, are the result of gas disk migra-
tion (Trilling et al. 1998). Models of planetary migration within
evolving disks can be constructed that match the observed dis-
tribution of planets (Armitage et al. 2002; Armitage 2007), but
theoretical knowledge of disks falls some way short of allowing
an unambiguous determination of the importance of migration
to be made.

Existing dynamical studies of extrasolar planets have largely
focused on explaining the properties of planets observed at
small radii (a � 5 AU), where gas disks may be important
but the mass in small bodies is assuredly negligible.9 Our
goal in this paper is to study the dynamics of extrasolar
planetary systems at larger orbital radii, where dynamical effects
associated with planetesimal disks become important. We aim to
map out the final architecture of planetary systems that form in
marginally unstable configurations at radii where interactions
with a planetesimal disk can occur. At the outset, we must
recognize that neither the typical number of massive planets
that form in a young planetary system, nor the typical mass
or radial extent of planetesimal disks, is well constrained by
observations. To keep the calculations manageable, we assume
here that the properties of the planetesimal disks are “universal”
(and comparable in terms of mass to the values inferred for
the solar system), and study how different planetary systems
evolve under the joint action of planet–planet and planetesimal
scattering. We fix the number of massive planets at N = 3, but
consider a wide range of planetary mass distributions, including
some modeled after the observed exoplanet mass function and
others that approximate simplified models of the outer solar
system. We follow the evolution of these systems using an
extremely large ensemble of N-body simulations, which allows
us to reduce the statistical error on predicted quantities below
that which is currently possible observationally.

The first results from this project were presented in Raymond
et al. (2009a). In that paper, we analyzed a subset of the full set
of runs, with the focus being on the predicted eccentricity dis-
tribution and abundance of MMRs. In this paper, we expand our
analysis of these topics, and also extend our study to cover other
aspects of planet–planet–disk interactions. The organization is
as follows. In Section 2, we present the details of the numerical
simulations. In Section 3, we study the subset of simulations that
were dynamically unstable: the time to the onset of instability,
typical outcomes, timescales for planet–planetesimal disk inter-
actions, eccentricity and inclination distributions, and planetary
system packing. In Section 4, we study MMRs in both stable
and unstable simulations. In Section 5, we discuss how the ec-
centricity distribution of extrasolar planets can be understood,
both at small orbital radii (as currently observed) and further
out. Finally, we discuss our results and present our conclusions
in Section 6.

2. SIMULATIONS

Our interpretation of the observations of the outer solar
system, and of extrasolar planetary systems, is that the typical
outcome of the planet formation process—shortly after the

9 An exception is the work of Murray et al. (1998), who considered inward
migration of massive planets within an extremely massive planetesimal disk.
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Figure 1. Illustration of the initial conditions of our N-body simulations. Conceptually, we envisage three radial zones: an inner terrestrial planet formation zone, an
intermediate region in which gas and ice giants form, and an outer disk composed of small bodies that fail to form large planets prior to the dispersal of the gas disk.
Our specific realization of this model assumes that three planets form with an orbital spacing that is close to the threshold for dynamical instability in the absence of
an exterior disk. We additionally assume that the properties of the small body disk are fixed across systems, and do not model the terrestrial planet region.

dispersal of the gas disk—resembles that shown in Figure 1.
We envisage that two or more giant planets form, beyond
the snow line, with a separation such that the system will be
dynamically active. Beyond the outermost giant planet lies a
region of the disk that successfully formed planetesimals, but
which was unable to form giant planet cores on a timescale
comparable to the gas disk lifetime. At smaller radii lies
the zone of terrestrial planet formation, where again (but for
different reasons) planet assembly proceeds too slowly to allow
significant capture of primordial gas. We do not model the
formation of the terrestrial planets in the current work, though
the dynamics of the outer planets can have important effects on
their growth. We also note that while we have motivated these
initial conditions observationally—by reference to models of
exoplanet eccentricities and the Kuiper Belt—formation of a
system qualitatively akin to Figure 1 is predicted by standard
accretion models.

2.1. Initial Conditions

We adopt a simple and well-defined version of the conceptual
model shown in Figure 1 as the initial conditions for our
scattering simulations. We assume that three planets form
randomly separated by 4–5 mutual Hill radii RH,m,

RH,m = 1

2
(a1 + a2)

(
M1 + M2

3 M�

)1/3

. (1)

Here, a is the orbital semimajor axis, M is the planetary mass,
M� is the stellar mass (fixed at 1 M�), and subscripts 1 and 2
refer to the inner and outer planet, respectively. The spacing of
4–5 RH,m, which is common across all but one of our sets of runs,
was chosen to yield systems that are unstable on a 105–106 year
timescale (Chambers et al. 1996; Marzari & Weidenschilling
2002; Zhou et al. 2007; Chatterjee et al. 2008). The exception
is our ensemble of runs with three 3 MJ planets, for which the
number of unstable cases was so small that we adjusted the
spacing to be 3.5–4 RH,m and re-ran the simulations (we still
use the set of more widely spaced, mostly stable simulations in
our analysis of MMRs in Section 4).

The outermost planet of the three planets was placed two
(linear) Hill radii,

RH = a

(
M

3M∗

)1/3

, (2)

interior to 10 AU. We then chose a single random variable,
uniformly distributed in the range between 4 and 5, to define
the interplanetary spacing. The two additional planets were
placed on the appropriate orbits, moving toward the (solar-mass)
star. Planets were given zero eccentricity and randomly chosen
mutual inclinations of less than 1◦. We performed 10 sets of
simulations, varying the planetary mass distribution in each set.
For our two largest sets (1000 simulations each), we randomly
selected planet masses according to the observed distribution of
exoplanet masses (Butler et al. 2006),

dN

dM
∝ M−1.1. (3)

In the Mixed1 set, we restricted the planet mass Mp to be
between a Saturn mass MSat and three Jupiter masses MJup.
For our Mixed2 set, the minimum planet mass was decreased to
10 M⊕.10

Although, strictly, we have little knowledge of the actual
mass function of extrasolar planets at orbital radii beyond 5 AU,
we regard the runs set up with the mass function observed at
smaller radii as the most realistic. To gain additional insight
into the behavior of more idealized systems, we performed
four additional sets of simulations with equal-mass planets
(500 simulations each), and four sets that included radial mass
gradients (250 simulations each). These sets are named with
the appropriate planet masses, starting with the closest to
the star outward; for example, in the 3J-J-S set the three
Jupiter-mass (3 MJ) planet is closest to the star, followed by
a Jupiter-mass planet and a Saturn-mass planet. The eight sets
are: 3J-3J-3J, 3J-3J-3J, S-S-S, N-N-N, 3J-J-S, S-J-3J,

10 In Paper I (Raymond et al. 2009a), the Mixed1 simulations were referred to
as highmass and the Mixed2 as lowmass.
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J-S-N, and N-S-J, where 3J refers to a planet mass of 3 MJ,
J is MJ, S is a Saturn mass MS, and N is 30 M⊕ (the “N” is
intended to refer to Neptune, although the mass is augmented
by just under a factor of 2 from Neptune’s true mass of 17 M⊕
to maintain roughly a factor of 3 between the different planet
masses).

Each of our ∼5000 simulations was run twice: once with
just the three planets and once also including an external
planetesimal disk. The simulations without disks were presented
in Raymond et al. (2008a, 2009b) and are used in this paper
only as a comparison sample. Simulations with disks included
1000 planetesimal particles distributed between 10 and 20 AU
following a radial surface density profile Σ ∝ r−1, roughly
consistent with submillimeter observations of outer disks around
young stars (Andrews & Williams 2007). In all cases, the total
mass of the disk was 50 M⊕. We note that the inner edge of
the disk lies interior to the radius where a test particle in the
restricted three-body problem would be stable, so the disk is in
immediate dynamical contact with the outer planet.

2.2. Integration

Each simulation was integrated for 100 Myr using the
hybrid integrator in the Mercury simulation package (Chambers
1999) with a 20 day time step. There is the potential for
significant numerical error in the integration for objects with
small perihelion distances, which is usually manifested in terms
of a secular increase in energy for close-in particles (Rauch &
Holman 1999; Levison & Duncan 2000). With our time step
of 20 days, the conventional wisdom that at least 10 steps are
required per orbit implies that we would expect to be able to
resolve the orbit of a body at 0.67 AU. In fact, a more detailed
test using a test particle being forced into the star by a giant
planet via the Kozai mechanism shows that the integration error
remains less than 10−4 down to a perihelion distance of about
0.4 AU.

We gauged the fidelity of the outcome of each of our
simulations based on the simple energy criterion dE/E < EX,
where EX is an energy threshold. For the simulations without
disks, we used the value of Barnes & Quinn (2004), who showed
that EX = 10−4 is adequate to test for dynamical stability
of multi-planet systems. For the simulations with disks, the
typical simulation error was actually dE/E ∼ 10−4, even for
cases in which the planets were stable and experienced very
little orbital evolution. By sifting through a large number of
examples and looking at the energy conservation of individual
bodies, it appeared that an error threshold of EX ≈ 10−3 was
adequate to yield reliable results. We therefore set a threshold
EX = 5 × 10−4. Runs that failed to meet our energy criterion
were either rerun or rejected. For the Mixed1 and Mixed 2
sets, all runs with dE/E > EX were re-run with smaller time
steps: 5 days for simulations with no planetesimal disks and
10 days for simulations with disks. Tests showed that limits
of 5 (10) days sufficed to accurately resolve orbits down to
perihelion distances of 0.15 (0.25) AU. In each set, some of the
re-run simulations (typically 15–35) still did not meet our energy
criterion and were discarded from the sample. For the remaining
sets of simulations, our finite computational resources did not
allow us to re-run those simulations with disks that failed the
energy test. In these cases, we discarded the examples with poor
energy conservation based on the initial 20 day time step runs.
We do not believe that this introduced any substantial bias in our
sample because certain expected outcomes occurred reliably;
for example, the eccentricity distributions for the J-J-J and
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Figure 2. Location of the 2:1, 3:2, and 5:3 mean motion resonances (MMRs)
for two planets in the parameter space of the sum of the two planets’ masses
and their separation in mutual Hill radii (see Equation (1)). Across a range of
masses, the initial separations we consider often imply proximity to one of these
resonances.

3J-3J-3J simulations are virtually identical with and without
disks.

2.3. Discussion of the Initial Conditions

The details of our planetary initial conditions are motivated
primarily by considerations of simplicity, and by the desire to
pick planetary separations that are not grossly unstable. Our
spacing of 4–5 RH,m would, however, be broadly consistent with
models in which planets became temporarily trapped in MMRs
during the gaseous disk phase (Snellgrove et al. 2001; Lee &
Peale 2002; Thommes et al. 2008a). Figure 2 shows the location
of the 2:1, 3:2, and 5:3 MMRs as a function of the summed
mass of the planets involved. These are resonances that might
be commonly populated during the gas disk phase, with the 5:3
MMR being generally unstable once the gas dissipates (Kley
et al. 2004; Pierens & Nelson 2008). For a range of planet masses
between 0.5 MJ and 5 MJ, at least one of these resonances lies
in the range probed by our simulations. We observe, of course,
that a model based specifically on the idea of resonance trapping
followed by release would differ in detail from ours, since in this
case the planetary spacing in units of mutual Hill radii would
correlate with the planetary masses.

Our choices of disk mass and radial extent are also somewhat
arbitrary. A disk mass of 50 M⊕ is similar to that used in
successful outer solar system models, such as the Nice model
(Gomes et al. 2005), and it is also comparable to the summed
core masses that one would expect for three giant planets. It is
thus roughly consistent with the idea that planetesimals in a disk
with a continuous surface density distribution accreted to form
cores inside some characteristic radius, while failing to do so
further out. Our inner disk radius of 10 AU, on the other hand,
is no more than a guess. It could typically be larger, in which
case all of the disk-driven effects discussed in this paper would
only be manifest for planets further out.

3. STATISTICAL DISTRIBUTION OF OUTCOMES

Our initial conditions start with planets on orbits that are
widely enough separated that few systems show substantial
dynamical evolution on very short timescales (103 years). On
longer timescales, the dynamical effect of the disk can be
important, and either stabilize or destabilize the system against
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Table 1
Scattering Simulations

Set N (No Disks) Unstable-frac N (Disks) Unstable-frac

Mixed1 965 569–0.590 979 442–0.451
Mixed2 982 744–0.758 986 521–0.528
3J-3J-3Ja 368 241–0.655 152 55–0.362
J-J-J 452 232–0.513 380 96–0.253
S-S-S 390 362–0.928 324 196–0.605
N-N-N 357 355–0.994 212 142–0.670
3J-J-S 250 150–0.600 216 55–0.255
S-J-3J 245 219–0.894 229 147–0.642
J-S-N 250 206–0.824 247 43–0.174
N-S-J 245 221–0.902 177 148–0.836

Note.
a Recall that we ran an extra set of 3J-3J-3J simulations (with disks) in which
the planets were more closely spaced than our initial set of ∼500 simulations
(3.5–4 mutual Hill radii as opposed to 4–5). The more closely spaced simulations
are listed here and used in the analysis of Section 3. The more widely spaced
case contained 498 simulations of which only two (0.4%) were unstable—those
simulations are used in our analysis of mean motion resonances in Section 4.

close encounters. To analyze our results, we separately consider
the subsets of our runs that were “stable” versus those that were
“unstable.” In this context, we define a stable system as one
in which no close encounters between planets occurred over
100 Myr. A close encounter occurs when any two planets enter
their mutual Hill sphere. An unstable system is thus one in which
any two planets underwent at least one close encounter. Table 1
lists the fraction of each set of simulations that was stable with
and without disks.

The above definition of stability, while precise and easily
measured from the simulations, fails to capture the full range
of behavior seen in runs with planetesimal disks. We therefore
introduce a different classification in Section 3.3, where we
consider how the characteristic timescale for evolution of the
joint planet–disk system correlates with the presence of close
encounters and architectural re-arrangement.

3.1. Instability Timescales

Given the spacing of 4–5 mutual Hill radii, we expect that
the typical instability timescale in our simulations should be
105–106 years (Marzari & Weidenschilling 2002; Chatterjee
et al. 2008). Indeed, the median time for the first close encounter
between planets in the cases without disks ranged from 58,000
years (S-S-S) to 3.1 Myr (3J-3J-3J). Instabilities typically
set in earlier for systems containing less massive planets (see
Chambers et al. 1996), and when the planet mass increases
outward (i.e., N-S-J simulations went unstable more quickly
than J-S-N simulations).

Dynamically unstable systems tend to stabilize by destroying
one or more planets, usually via collision with another planet
or hyperbolic ejection. Systems with equal-mass planets tend to
undergo far more close encounters over a much longer timespan
than systems with significant mass differences between planets.
The planets that survive in systems with equal-mass planets have
much larger eccentricities than those in unequal-mass systems
(Ford et al. 2003; Raymond et al. 2008a). The duration of
instability is also mass dependent: systems with low but equal-
mass planets remain unstable for longer periods than systems in
which the planet masses are scaled up.

Figure 3 shows the cumulative distribution of (1) the timescale
from the start of each simulation to the first close encounter

between planets (shown in black) and (2) the duration of the
system instability, i.e., the time from the first to the last close
encounter. We plot all 10 sets of runs, both with and without
planetesimal disks. For this unstable subset of runs, the 100 Myr
duration of the simulations is sufficient to observe the onset and
full duration of the instability in almost all cases.

With the sole exception of the N-S-J runs, the onset of
instabilities in systems with disks occurs sooner than in those
without disks (Figure 3). One important effect of the presence
of the planetesimal disks is clearly to stabilize systems that
might otherwise be unstable on long timescales. This effect is
most pronounced in systems with low-mass outer planets (e.g.,
the J-S-N cases). The reason for this is likely related to the
mass dependence of the migration rate of a planet through a
planetesimal disk, which is a strongly decreasing function of
planet mass once the mass exceeds the mass of planetesimals
within a few Hill radii (Ida et al. 2000; Kirsh et al. 2009). This
migration can cause two planets (usually the outer two) to cross
a low-order mutual MMR (see Figure 2). MMR crossings lead to
an increase in planetary eccentricities (e.g., Chiang et al. 2002;
Tsiganis et al. 2005), and trigger an instability that leads to close
encounters.

Disks also reduce the duration of the unstable phase, but
only in systems containing lower-mass outer planets. The most
dramatic example are the N-N-N simulations, for which the
typical period of close encounters was reduced by a factor of
more than 100 (Figure 3). This occurs because the orbits of
high-eccentricity planets are circularized via dynamical friction
with the planetesimal disk (e.g., Thommes et al. 1999), and this
process is faster and more efficient for lower-mass planets. As
scattered planets are re-circularized by the disk, their periastron
distances are increased, they are removed from the region of
scattering and future encounters between planets do not occur.
In contrast, the planetary dynamics in systems with a massive
planet adjacent to the planetesimal disk are effectively shielded
from the effects of the planetesimal disk such that the duration
of instabilities is the same as for simulations with no disks.

3.2. Characteristic Evolution

In planetary systems with no dissipation, once an instability
occurs the endpoint is almost inevitably a violent event: a
planet–planet collision, a planet–star collision, or a hyperbolic
ejection from the system.11 However, in systems with dissipation
from gaseous or planetesimal disks, the situation changes and
the number of potential outcomes increases. The key new
processes that arise from the presence of a planetesimal disk
occur primarily for planets whose masses are similar to the
planetesimal disk mass. Given our disk mass of 50 M⊕, it is
the simulations that include at least one roughly Saturn-mass
or smaller planet that are affected. Interactions between the
planetesimal disk and lower-mass planets can lead to angular
momentum exchange and radial migration (Fernandez & Ip
1984). In addition, dynamical friction from the planetesimal disk
can re-circularize the orbit of a scattered planet. Both of these
processes feature prominently in recent models of the dynamical
evolution of the solar system’s giant planets (Malhotra 1995;
Thommes et al. 1999; Tsiganis et al. 2005; Ford & Chiang
2007).

11 Ford et al. (2001) found that “quasi-stable” configurations could arise in
which no planet was destroyed but the orbits were chaotic. We also found
several such systems, but each one ended up being unstable if integrated for a
long enough interval. It is conceivable that a small fraction of systems may end
up on such orbits and be observed before they become unstable.
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Figure 4 shows the range of outcomes of the unstable
simulations for each giant planet configuration. The number
of planets surviving per system increases for simulations with
disks, but only for cases that contain a low-mass planet. The
most dramatic difference is seen in the N-N-N simulations, for
which the number of planets per unstable system increased from
1.98 to 2.87, meaning that only one out of every 7.5 unstable
simulations with disks destroyed a planet. The pie charts in
Figure 4 show what happened to the destroyed planets in each
case. For almost all cases, the dominant destruction mechanism
was ejection from the system, which accounted for at least 3/4

of the destroyed planets in all configurations except S-S-S and
N-N-N. In the N-N-N simulations without disks, ejection and
collisions played a comparable role, which is not surprising
given that the ratio of the escape speed from the planet to
the escape speed from the planetary system (sometimes called
the “Safronov number,” Θ), is the smallest for any system,
only about 2 (Ford et al. 2001; Goldreich et al. 2004). In the
N-N-N simulations with disks, gravitational kicks during close
encounters were not strong enough to eject a single planet in
any simulation. The reason for this is twofold. First, dynamical
friction efficiently circularizes the orbits of low-mass planets
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(A color version of this figure is available in the online journal.)

such that the typical encounter speed is low. Second, dynamical
friction is also effective at effectively capturing scattered planets
in the disk since the total disk mass actually exceeds the planet
mass (30 M⊕) in this case.

3.3. Timescales for Planet–Planetesimal Disk Interactions

We have seen that the planetesimal disk can have a strong
influence on the planets’ dynamical evolution. The planets have
a back-reaction on the disk itself, pumping up planetesimal ec-
centricities via dynamical friction and removing planetesimals
from the system via dynamical ejection or collision. The number
and strength of planet–planetesimal interactions depend most
strongly on the planetary orbits. If the planets’ orbits remain
circular then the planets can interact with only a fraction of the
disk and encounter velocities depend mainly on the planetes-
imal eccentricities. If, however, planetary orbits are eccentric
then the planets can interact with a larger fraction of the disk
and encounter speeds will be larger, resulting in more frequent
ejection of planetesimals. Thus, the perturbations felt by the
planetesimal disk will correlate with the planetary orbits and
therefore the dynamical stability of the planets.

Figure 5 shows the timescale for the destruction of a given
fraction of the planetesimal disk for all of the Mixed1 simu-
lations, where each curve corresponds to a single simulation.
Here, we have subdivided the “stable” simulations, which never
experience close encounters, into moderately stable and stable
subsets. We define a moderately stable system as one which
never experienced a close encounter between planets but for
which the final mass-weighted planetary eccentricity is larger
than 0.025. These systems have thus experienced significant
planet–planet perturbations despite the absence of close plane-
tary encounters.

The unstable Mixed1 systems destroy the majority of their
planetesimal disks on a 105–106 year timescale (Figure 5),
although late-onset instabilities can be seen as nearly vertical
lines at later times. There is often a delay for the destruction

of the last 10% of planetesimals because in most cases these
have large inclinations such that the close encounters with the
planets needed to reach zero energy are less frequent. In fact,
many unstable cases do not destroy the entire planetesimal disk.
Moderately stable systems can have a range in the timescale
and amount of planetesimal destruction depending on the planet
masses and evolution. For relatively massive planets, the sudden
eccentricity increase that accompanies a resonance crossing
leads to a corresponding jump in the eccentricities of many or
most disk particles, leading to orbit crossings, close encounters
and ejection. For less massive planets, secular perturbations are
weaker so less of the disk is destabilized during such events. One
configuration that is quite efficient at clearing out planetesimals
is a lower-mass outer planet and a high-mass middle planet. The
outer planet’s low mass allows it to migrate outward somewhat
due to planetesimal scattering. The scattered planetesimals, in
turn, are quickly ejected by encounters with the high-mass
middle planet.

The stable Mixed1 systems, which are relatively high mass,
destroy only a relatively small portion of the planetesimal disk.
The outer planet interacts directly with planetesimals within the
stability boundary and also may excite planetesimals that happen
to be in resonances onto planet-crossing orbits. These directly
interacting planetesimals can be ejected by the outer planet or
can be “passed” inward to interact with the inner planets, which
typically eject the planetesimals. Thus, the inner planetesimal
disk is quickly cleared out and interactions between the planets
and the planetesimal disk become infrequent, with 50%–75%
of the disk remaining.

The evolution of the planetesimal disks in our simulations
offers a rich data set to understand the connection between
planetary dynamics and disk structure. In a future paper, we
will correlate the planetary and planetesimal components of
each system and calculate the infrared detectability of these
disks for each case. For the remainder of this paper, we restrict
ourselves to the planetary dynamics.

3.4. Eccentricity Distributions

Figure 6 shows the cumulative eccentricity distributions for
the innermost and outermost planets in all of our unstable
simulations, with and without disks. We also plot the observed
exoplanet eccentricity distribution, excluding planets inside
0.1 AU which are likely to have had their orbits altered by
tides (Jackson et al. 2008). We note that, since our simulations
start with planets at fairly large radii, we do not populate
the full radial range across which the observed distribution
is determined. Currently, however, the evidence for any radial
dependence to the eccentricity distribution is marginal (Ford
& Rasio 2008), so the comparison between the observed and
simulated distributions is justifiable.

Although the result is now well established (Chatterjee et al.
2008; Jurić & Tremaine 2008), it is still startling to see from
Figure 6 how easily planet–planet scattering can reproduce
the observed eccentricity distribution. With just the simple
assumption that planets have the observed mass distribution
and form on marginally unstable orbits (i.e., the Mixed1
simulations), we can produce a statistical match to the observed
distribution. The planet–planet scattering model appears to be a
very robust and simple way to explain the observed systems.

As expected, the difference between planetary eccentricities
for simulations with and without disks is strongly mass de-
pendent and clearly seen in a comparison between the Mixed1
and Mixed2 simulations. The effect of the planetesimal disk
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is clear for Mp � MS, and for the lowest-mass case, N-N-N,
orbital re-circularization from planet–planetesimal disk interac-
tions is so strong that there are no high-eccentricity planets at
all—the most eccentric planet in all the N-N-N simulations with
disks is just 0.06. As seen in previous work, scattering among
equal-mass planets produces larger eccentricities than scattering
among planets with different masses (Ford et al. 2003; Raymond
et al. 2008a), and this is clearly seen in Figure 6.

Variations between the eccentricities of inner and outer
planets are caused by two different effects: scattering from
other planets and eccentricity damping from the planetesimal
disk. For the Mixed1 simulations, there is very little difference
between the inner and outer eccentricity distributions because
there is no planetary mass gradient and the planet masses are
too large to be significantly affected by the planetesimal disk.
For the Mixed2 simulations with disks, outer planets have lower
eccentricities. This offset is not seen for the simulations without
disks. Thus, the lower-eccentricity outer planets are due to
damping from the planetesimal disk. For simulations with equal-
mass planets, there is a modest inner versus outer eccentricity
difference because of disk damping but only for the S-S-S
cases, as the Jupiter-mass planets (J-J-J) barely feel the disk
and 30 M⊕ planets (N-N-N) are all quickly circularized. For
systems with radial gradients in planet mass, there is an inner
versus outer eccentricity difference caused by the simple mass
dependence of the recoil velocity during a planetary encounter.
During instabilities involving different-mass planets, this leads
to more massive planets having smaller eccentricities than less
massive planets. For systems with negative mass gradients
(3J-J-S and J-S-N), this causes the outer planets to have higher
eccentricities than the inner planets, and the effect is reversed for
systems with positive mass gradients (S-J-3J and N-S-J). For
the lower-mass cases with mass gradients (J-S-N and N-S-J),
the effects of preferential eccentricity damping of outer planets
by the planetesimal disk are also clearly seen.

In Figure 7, we show the eccentricity of the innermost (and
thus most easily detectable) planet as a function of the final
total mass of the planetary system, using just the Mixed1 and
Mixed2 simulations. In the presence of disks, there is a strong
correlation between these quantities (Raymond et al. 2009a).
For systems with total masses of less than ∼1 MJ, circular or
near-circular orbits dominate. For higher system masses, on
the other hand, planetary eccentricities display a large range,
from near zero to >0.8. This correlation is much weaker if
we plot, instead, planetary eccentricity against individual planet
mass for all surviving planets (Figure 8). As is obvious from
the cumulative distributions, disks do act to circularize low-
mass planets more than high-mass planets, but there is no sharp
transition between the two regimes. We interpret this difference
as being due to the fact that it is the total mass of the planetary
system that determines the disk lifetime and the ability of the
disk to damp eccentricities, rather than any individual planet
mass (see discussion in Section 3.6).

3.5. Detectability of a Transition to Low e at Large Orbital
Radii

The semimajor axis, beyond which our model predicts a tran-
sition to low-eccentricity orbits for M < MJ planets, depends
upon the characteristic inner radius of the primordial planetesi-
mal disk (note that the mass at which the transition occurs will
also vary with this quantity). This is a free parameter, which
we have fixed at 10 AU. If, in reality, planetesimal disks do
typically extend in to about 10 AU, our results suggest that
the transition to the low-eccentricity regime may be observable
with feasible extensions of existing radial velocity surveys (if
the inner extent of planetesimal disks is at substantially larger
radii astrometry or direct imaging may offer better prospects).
To quantify this, we have calculated the radial velocity
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amplitude K,

K = 1√
1 − e2

(
M

M∗

) √
GM∗

a
sin i, (4)

for the innermost surviving planet for all of the Mixed1 and
Mixed2 runs. The distribution of e as a function of K is shown
in Figure 9, assuming M∗ = M� and (for simplicity) that
sin i = 1. Since the detectability of a planet via radial velocity
measurements depends upon the period as well as the amplitude,
the points are further coded to indicate relatively short-period
(P < 2000 days), intermediate-period (2000 days < P <
4000 days), and long-period (P > 4000 days) planets.

A measurement of e(K) for the innermost planet provides no
information as to the total mass of the planetary system, and as
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a consequence the transition to lower eccentricities at lower K
resembles that shown in Figure 8 (e as a function of individual
planet mass) rather than the sharper transition seen in Figure 7 (e
as a function of the final total system mass). Nonetheless, we see
a clear trend to lower eccentricities that sets in for radial velocity
amplitudes K � 10 m s−1. Although there are high e outliers
at all values of K, for K = 1–5 m s−1 the typical eccentricity
lies in the 10−2–0.1 range, whereas for K > 10 m s−1 values
e > 0.1 are obtained. Comparing the results with and without
disks makes clear that this difference is caused by the damping
effects of planetesimals.

Detection of planets with radial velocity amplitudes K <
10 m s−1, although not easy, is already possible (almost 40
such systems are currently known). The primary obstacle to
observational study of the outer planet region, where the
dynamical effects of planetesimal disks should become evident,
is rather the long periods of planets. As is clear from Figure 9,
essentially all of the low-mass planets, whose orbits have been
partially circularized by interaction with planetesimals, have
periods in excess of 4000 days. High precision radial velocity
measurements, capable of finding planets with K ≈ 5 m s−1 and
periods in excess of 10 years, are therefore required in order to
start probing the dynamics discussed in this paper.

Inspection of Figure 9 suggests a second observational
signature of planetesimal disk dynamics: the existence of
extremely low eccentricity planets. In the presence of disks,
a small but measurable fraction of even massive planets (with
K = 10–30 m s−1) end up with e < 10−2, whereas such systems
are rare in the absence of disks. Extremely precise measurements
of eccentricity, capable of detecting an excess (above the
predictions of pure scattering models) of truly circular orbits,
would therefore be valuable even if such observations were only
available for massive planets. The interpretation of an excess of
circular orbits, however, would likely be more ambiguous than a
measurement of the full e(K) distribution, since it could reflect
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small amounts of gas damping or an admixture of systems that
only formed one planet, as well as the dynamical influence of
planetesimals.

3.6. Inclination Distributions

Planet scattering can lead to large mutual inclinations between
the surviving planetary orbits, as well as misalignment with
respect to the initial plane of the planets (Chatterjee et al. 2008;
Jurić & Tremaine 2008). Mutual inclinations between the orbital
planes of planets in multi-planet systems can be detected via
astrometry (e.g., Bean & Seifahrt 2009), while any misalignment
between the orbital plane and the plane perpendicular to the
stellar spin axis can be detected directly for transiting planets
via the Rossiter–McLaughlin effect (Gaudi & Winn 2007; Winn
et al. 2005). Another interesting consideration is that the initial
planetary plane coincides with the plane of the planetesimal disk
and presumably also with the plane of the dust disk that should
be produced by collisional grinding of planetesimals (e.g., Wyatt
2008).

Figure 10 (dashed lines) shows the distribution of inclina-
tions with respect to the initial orbital plane for the unstable
systems in all 10 sets of simulations, both with and without
planetesimal disks. As was the case for eccentricities, larger
inclinations are generated in systems with equal-mass plan-
ets than in systems with large mass ratios. Inclinations in the
few to ∼15◦ range are common in most sets of simulations,
but only the equal-mass systems are able to generate larger
inclinations. Unlike the eccentricity distributions for which
higher-mass planets have higher eccentricities, all four equal-
mass systems (without disks) have virtually identical inclination
distributions.

As expected, the simulations with disks yielded smaller
inclinations than the simulations without disks, and the effect
was stronger for lower-mass planets. Figure 11 shows the
inclination of the innermost planet, which as in the case of
eccentricity is controlled by the total planetary mass rather
than the individual planet masses. The same sharp break at

  

0

15

30

45

60

  

0

15

30

45

60
With Disks

0.1 0.3       1  3

Total Mass (M
JJJ
)

0

15

30

45

 I
n
cl

in
a
tio

n
 o

f 
In

n
e
rm

o
st

 P
la

n
e
t 
(d

e
g
)

0.1  

Total Mass (M )

0

15

30

45

No Disks
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plane as a function of the total mass in surviving planets for the Mixed1 (black
dots) and Mixed2 (gray dots) simulations.

Mtot ≈ 1 MJ is seen to divide planets with small inclinations
versus those with a large range in inclination.

The mutual inclination Δi between two planetary orbits with
inclinations i1 and i2 is given by

cos Δi = cos i1 cos i2 + sin i1 sin i2 cos (Ω1 − Ω2), (5)

where Ω1 and Ω2 refer to the longitudes of ascending node.
Figure 10 shows the distributions of the mutual inclination
Δi between the innermost and the adjacent planet in unstable
systems for which two or more planets survived (solid lines).
The Δi values are consistently larger than the inclinations with
respect to the initial orbital plane. During a close planetary
encounter, if one planet is scattered in the ẑ-direction, then
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the other planet must receive a kick in the −ẑ-direction.
For a single encounter that dominates the planets’ motion
in the vertical direction, such a kick would also cause the
two planets’ longitudes of ascending node to be offset by
roughly 180◦, depending on their eccentricities. Thus, the
instantaneous mutual inclination will be close to the sum of
the two planets’ inclinations with respect to their initial plane
(Equation (5)). Although the alignment of the two planets’
nodes will change in time due to secular perturbations, angular
momentum conservation requires that the mutual inclination
remains relatively large.

As for the case of inclination with respect to the initial orbital
plane, equal-mass planets yield much larger Δi values than
planets with large mass ratios. However, in this case the lower-
mass equal-mass systems have higher mutual inclinations than
the higher-mass cases. Ten percent of the unstable planets in
the equal-mass systems without disks had inclinations larger
than 35◦ (3J-3J-3J), 39◦ (J-J-J), 42◦ (S-S-S), and 49◦
(N-N-N), compared with 26◦ for the Mixed1 simulations.
The larger inclinations in lower-mass equal-mass planetary
systems are caused by the ease with which the high-mass
planets can eject each other. The higher-mass systems for
which two planets survive have undergone far fewer close
encounters than the lower-mass systems with two surviving
planets: the median number of encounters in the unstable
3J-3J-3J, J-J-J, S-S-S, and N-N-N systems for which two
plants survived was 81, 175, 542, and 1871, respectively.
However, the mass-weighted eccentricities of the two-planet
equal-mass systems were slightly higher for the higher-mass
planets. Thus, large planetary eccentricities are linked with the
strength of encounters between planets while large inclinations
are linked with a large number of scattering events. Note that
the number and strength of close encounters in systems with
significant mass ratios are far less, thus explaining their lower
eccentricities and inclinations (see Raymond et al. 2009b).

As seen in Figure 3, the duration of the close encounter phase
(as well as the total number of encounters) is reduced for the
simulations with planetesimal disks. Therefore, we expect lower
inclinations for simulations with planetesimals—this is indeed
clearly seen in Figure 10. The extreme damping for the N-N-N
simulations is again seen in terms of their very low inclinations
and mutual inclinations in systems with planetesimal disks.

3.7. An Angular Momentum Argument for the Transition Mass

What sets the boundary between typically eccentric (and
inclined) and typically circular (and coplanar) planets, which
we have determined empirically lies at a total system mass of
about Mtot ≈ 0.7 MJ? Plausibly, this transition mass may be set
simply by the reservoir of disk angular momentum that is able
to interact with the planet and circularize its orbit.

To illustrate the point, we construct an (over)simple model of
the circularization process. Let us assume that scattering (with
or without disks) typically yields a single planet with some
characteristic semimajor axis a, eccentricity e, and inclination
i. The orbital angular momentum deficit (AMD) quantifies the
difference between the orbital angular momentum for a circular
orbit as compared to an eccentric and inclined one at the same
semimajor axis. The AMD is given by

AMD = M
√

GM∗a
(

1 − cos i
√

1 − e2
)

. (6)

To fully circularize the planet, we need to add this much angular
momentum via planetesimal interactions. If these interactions

occur primarily at or near apocenter in a disk with surface density
profile,

Σ = Cr−1, (7)

with C being a constant, the mass of the disk within a radial
zone of half-width n Hill radii (at the apocenter distance) is

ΔMdisk = 4πnC

(
M

3M∗

)1/3

a(1 + e). (8)

Assuming the planetesimals to have circular orbits, the total
angular momentum of the disk that interacts with the planet is,
approximately,

ΔLdisk � ΔMdisk

√
GM∗a(1 + e). (9)

By equating the available angular momentum to the AMD, we
find that the disk can circularize planets for masses,

M � (4πnC)3/2

(3M∗)1/2

(1 + e)9/4

(1 − cos i
√

1 − e2)3/2
a3/2. (10)

This is an analog of the usual isolation mass, except here in the
case of circularization rather than accretion. One should note
that the factor involving e is not of order unity—typically it is
quite large (∼102).

This analysis is quite crude, but it does predict transition
masses that are of the same order of magnitude as those
observed. For example, substituting our disk parameters and
adopting planetary orbital elements of a = 8 AU, e = 0.4, and
i = 10◦, we obtain (for n = 2) a transition mass M ≈ 0.6 MJ.
This suggests that we should interpret the transition mass as
being a consequence of the finite angular momentum, within
the disk, available to circularize planets. So, why is it that
the eccentricity is controlled by the total planet mass rather
than the individual planet mass (e.g., Figures 7 and 8)? The
answer appears to be that it is the total mass which regulates the
eccentricity excitation, which in turn determines the amount of
damping by scattering disk particles.

3.8. Radial Mass Distributions

Planet–planet scattering tends to segregate systems by mass,
with more massive planets closer-in and less massive planets
farther out (Chatterjee et al. 2008). We expect this effect to be
magnified in systems with planetesimal disks because the disk
can “trap” low-mass planets that would otherwise be ejected
from the system. To look at the radial mass evolution of our
simulations, we restrict ourselves to the Mixed1 and Mixed2
cases which did not start with pre-defined radial mass gradients.

Figure 12 shows the median planet mass as a function of
orbital distance for the unstable Mixed1 and Mixed2 systems,
with and without disks (also shown is the 10%–90% range of
planet masses in a given radial bin). For the Mixed1 systems,
there is a clear segregation of high-mass planets to the inner
system and low-mass planets in the outer system, with very little
difference for the simulations with and without planetesimal
disks. The most massive planets tend to reside at 4–9 AU, close
to the starting initial orbits.

Radial mass segregation is also clear in the Mixed2 simu-
lations but there are additional subtleties. As for the Mixed1
cases, high-mass planets are confined within 10 AU and low-
mass planets outside 10 AU. There is a large peak in the median
Mixed2 planet mass between 8 and 9 AU, both with and without
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Figure 12. Radial mass distribution of scattered planets for the Mixed1 and
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beyond 20 AU. The dashed horizontal lines show the median planet masses for
the ensemble of all scattered planets in a given set. Note that the simulations
with disks are offset by 0.2 AU for clarity.

planetesimal disks. There are actually 2–3 times more planets
in this 1 AU-wide bin than in adjacent bins for the Mixed2
simulations with and without disks. Perhaps surprisingly, any
differences in mass segregation caused by disks appear to be
modest even for the Mixed2 simulations.

Scattering tends to spread planetary systems out. We can
quantify this by looking at the planetary separations at the end of
the simulations in units of mutual Hill radii RH,m (recall that all
simulations started separated by 4–5 RH,m). Figure 13 shows the
separation of the two inner planets as a function of the total mass
in surviving planets for the Mixed1 and Mixed2 simulations,
with and without disks. There are several interesting pieces of
information in Figure 13. First, the typical interplanetary spacing
is ∼4–30 RH,m, showing that most systems have indeed spread
out. Second, the interplanetary spacing decreases significantly
for larger system masses, although there remains a large spread
for any given mass. This general trend can be explained by the
much larger number of scattering events undergone by lower-
mass systems before the destruction (usually by ejection) of a
planet.12 The spread in separation is due in part to stochastic
variations in scattering events from simulation to simulation
and in part to variations in planetary mass ratios—the larger
number of scattering events for equal-mass systems causes
them to be more widely spaced than systems with larger mass
ratios. Third, there is an abrupt break between the separations
of lower-mass systems with and without planetesimal disks. For
Mtot � 0.7 MJ, systems with disks are much more compact than
systems without disks. This is a result of the damping of the
planetesimal disk: low-mass planets on wide orbits have their
eccentricities efficiently damped and their perihleion distances
increased such that they avoid additional close encounters with
the inner planet. This is evidenced by the fact that the break

12 The separations in Figure 13 were calculated using the orbital semimajor
axes. A more important criterion in terms of dynamical stability is the closest
approach distance between the two planets, i.e., the difference between the
outer planet’s perihelion distance and the inner planet’s aphelion. We have
looked at that distribution and the negative slope is much less steep than in
Figure 13, indicating that eccentricity plays a significant role.
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Figure 13. Final planetary separation in units of mutual Hill radii for unstable
Mixed1 and Mixed2 simulations, with (black and gray) and without (blue and
red) planetesimal disks. Only systems with two or more surviving planets are
shown—for systems with three surviving planets only the separation between
the inner two planets is included. The shaded horizontal line shows the two-
planet stability limit of 3.46 RH,m (Marchal & Bozis 1982; Gladman 1993).

(A color version of this figure is available in the online journal.)

between the simulations with and without disks occurs at the
same total planet mass as for the eccentricity and inclination
distributions (see Figures 7 and 11).

For systems in which three planets survive, the outer two
planets tend to be more widely spaced than the inner two.
Figure 14 shows the separation of each pair of planets for
unstable systems which preserved all three planets. In the bulk of
cases, the outer pair of planets are indeed more widely spaced
than the inner pair. However, there do exist many cases for
which the outer planets are more compact, as well as a few
cases in the Hill unstable region which are likely to be unstable
on slightly longer timescales. Systems with a more compact
outer pair of planets tend to be those with lower-mass middle
planets. As the outer planet scatters planetesimals inward, a
massive middle planet can eject them from the system, causing
the planet to move inward and leading to a compact inner system
but a spread out outer system. In contrast, a low-mass middle
planet cannot generally eject the scattered planetesimals and so
simply scatters them toward the inner planet, causing the middle
planet to move outward, yielding a compact outer system and a
more spread out inner system.

3.9. Planets at Large Orbital Separations

Planet–planet scattering creates a population of high-
eccentricity planets with large apocenter distances (Veras et al.
2009; Scharf & Menou 2009). For the vast majority of cases,
these planets, which can have semimajor axes as large as
�10,000 AU, represent a transient phase on the path to dy-
namical ejection.13 These planets are of interest because
they represent the source of the so-called free-floating plan-
ets. In some cases, their large separations mean that they could
be good targets for direct detection, although they probably

13 In a few cases, the planets can be stabilized by external torques such as
from the potential of the galactic disk (Veras et al. 2009).
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Table 2
Scattered Planets at Large Orbital Distances (Aphelion Q > 25[50] AU)

No Disks With Disks

Set Frac Stable Frac Transitional 〈t〉 (Myr) Frac Stable Frac Transitional 〈t〉 (Myr)

Mixed1 0.14 [0.03] 0.44 0.64 [0.10] 0.17 [0.03] 0.45 0.92 [0.15]
Mixed2 0.15 [0.03] 0.59 2.55 [0.54] 0.03 [0.00] 0.23 0.46 [0.03]
3J-3J-3J 0.23 [0.05] 0.23 0.69 [0.01] 0.29 [0.07] 0.29 2.60 [0.01]
J-J-J 0.29 [0.06] 0.49 0.77 [0.03] 0.29 [0.04] 0.53 1.88 [0.02]
S-S-S 0.34 [0.07] 0.64 1.36 [0.28] 0.18 [0.04] 0.46 2.19 [0.28]
N-N-N 0.32 [0.08] 0.63 7.58 [1.69] 0.00 [0.00] 0.00 0.00 [0.00]
3J-J-S 0.06 [0.01] 0.31 0.67 [0.08] 0.11 [0.04] 0.29 0.19 [0.01]
S-J-3J 0.00 [0.00] 0.14 0.01 [0.01] 0.00 [0.00] 0.11 0.01 [0.00]
J-S-N 0.13 [0.02] 0.59 1.99 [0.33] 0.05 [0.02] 0.33 2.45 [0.66]
N-S-J 0.05 [0.00] 0.59 0.16 [0.06] 0.12 [0.03] 0.41 1.30 [0.14]

Notes. The first column (“frac stable”) represents the fraction of scattered systems containing a planet on a long-term stable orbit
with aphelion distance Q larger than 25 (50) AU. The second column (“frac transitional”) shows the fraction of scattered systems
for which at least one planet spent at least one output interval of 105 years with Q > 25 AU during a transitional ejection phase. The
third column shows the mean time 〈t〉 in Myr during which a planet had Q > 25 (50) AU for the transitional systems. Note that 〈t〉
is averaged over all scattered systems, including a fraction that did not undergo a transitional outer planet phase.
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(A color version of this figure is available in the online journal.)

only exist for the first 10–100 Myr of a star or star cluster’s
lifetime.

In our simulations, we imposed an ejection radius of 100 AU,
so we were unable to probe very distant planets. Nonetheless,
we can study planets that ended up on transient, or in some
cases stable, orbits beyond the initial radial extent of our initial
conditions. To address the issue of planets on widely separated
orbits, we kept track of the time spent by each planet in each
simulation with an aphelion distance in radial bins of 25–50 AU,
50–75 AU, and 75–100 AU. We also characterized planets in
each of those bins as either being in a transitional state (usually
on the path to ejection) or on stable orbits. Inspection of the
final eccentricity as a function of semimajor axis distributions,
plotted in Figure 15, shows immediately that a large number of
scattered planets survived on stable orbits with large aphelion
distances.

Table 2 shows the statistics of planets at large orbital sep-
arations in our simulations. The table includes information
about both stable and transitional planets with aphelion dis-
tances Q > 25 AU and Q > 50 AU. First of all, we see that
scattering among equal-mass planets is far more efficient at
producing stable planets with large orbital radii than scattering
among planets with mass gradients. This is simply because of
the much larger number of scattering events that occur in equal-
mass systems. Next, we see that this trend does not hold for
the fraction of systems which experience a transitional, high-Q
phase. Lower-mass planets have a higher probability of experi-
encing this transitional phase. We interpret this as an ejection
timescale issue—the number of encounters and duration of the
instability phase increases dramatically for lower-mass systems
(see Section 3.1) such that the typical ejection is very drawn out.
In contrast, for higher-mass planets a smaller number of scatter-
ing events is needed to eject a planet. Our analysis only includes
outputs every 105 years; thus, ejections which occur in less than
that time are not registered or counted in Table 2. For equal-mass
and mixed systems, the mean time during our 100 Myr simula-
tions for which a planet could be observed with Q > 25 [50] AU
correlates with the fraction of transitional systems, with typical
observable probabilities of a couple of percent (the probabil-
ity is here calculated as 〈t〉 divided by the 100 Myr simulation
length). For the mass gradient simulations, 〈t〉 is longer for neg-
ative mass gradients (for 3J-J-S and J-S-N). This is because
the most massive planet is closer-in in those cases, deeper in the
star’s potential well, such that a larger number of encounters is
needed to reach the system’s escape velocity.

As expected, the higher-mass systems are barely affected by
the presence of planetesimals disks in terms of the fraction of
orbits which are at large distances and the fraction that appear in
the transitional phase. However, the duration of the transitional
ejection phase is lengthened by a factor of a few for the equal-
mass cases, meaning that the time required to eject those planets
is increased due to the damping from the disk. For the lower-
mass planets, there are fewer planets at large orbital distances
in terms of both stable and transitional configurations. This
is simply due to the disk’s ability to “trap” planets by orbital
circularization. This circularization occurs within the disk, so
trapped planets are generally confined to orbits within the outer
edge of the disk, at 20 AU.
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Figure 15. Orbital eccentricity vs. semimajor axis of scattered systems with (in gray) and without (in black) planetesimal disks, for each of our 10 initial mass
distributions.

Can observations of long-period planets tell us anything
about the inner planets that spawned them? Assuming that
outer planetesimal disks are ubiquitous, equal-mass and higher-
mass planetary systems are more likely to populate distant
stable orbits than lower-mass systems or those with large mass
ratios between planets. However, a wide range of configurations
produces long-lived transient planets on large orbits that are
generally on their way toward dynamical ejection. We suspect
that combining observations of long-period planets with infrared
observations of the outer planetesimal disk may constrain
the problem, but that is beyond the scope of the current
paper.

3.10. Planetary System Packing

A more dynamically sophisticated way to interpret the radial
distribution of planets in multiple planet systems is to measure
their separation in terms of the minimum required for Hill
stability. This approach incorporates eccentricity and inclination
information consistently and, if there are only two planets in the
system, connects to the formal definition of Hill stability that
has been proven for that case (Marchal & Bozis 1982; Gladman
1993). Observationally, the known two-planet exosystems are
known to cluster close to the Hill stability boundary (Barnes &
Greenberg 2006). This motivates the hypothesis that all multiple
planet systems may be dynamically “packed,” in the sense that
additional planets could not exist between the known planets on
stable orbits (see Barnes et al. 2008 or Raymond et al. 2008b).
The corollary of such a “packed planetary system” hypothesis
(Barnes & Raymond 2004; Raymond & Barnes 2005; Raymond
et al. 2006; see also Laskar 1997), of course, is that when
planetary systems are observed not to be packed we should
seek an additional “missing” (normally lower mass) planet in
what appears to be an empty stable orbit.

It is easy to test numerically whether an observed multiple
planet system is packed (e.g., Rivera & Lissauer 2000; Jones
et al. 2001; Menou & Tabachnik 2003; Asghari et al. 2004;
Raymond et al. 2008b; Kopparapu et al. 2009). In one interesting

case, the HD 74156 system was dynamically mapped to reveal
a narrow zone between the two known planets that was stable
for Saturn-mass test planets but not for Jupiter-mass test planets
(Raymond & Barnes 2005). Subsequently, Bean et al. (2008)
presented evidence for a third planet in the system, in the
stable zone and with a mass of 1.4 Saturn masses (Bean et al.
2008; Barnes et al. 2008).14 In a previous paper, we showed
that pure planet–planet scattering naturally reproduces the
observed distribution of dynamical configurations (Raymond
et al. 2009b). Given the significant effects that planetesimal disks
can have on planetary evolution, here we investigate whether
this is still true at radii where the dynamical influence of disks
is significant.

For two planets with masses M1 and M2 orbiting a star, it
can be shown analytically that long-term dynamical stability
requires

−2(M∗ + M1 + M2)

G2(M1M2 + M∗M1 + M∗M2)3
c2h �

1 + 34/3 M1M2

M
2/3
∗ (M1 + M2)4/3

− M1M2(11M1 + 7M2)

3M∗(M1 + M2)2
, (11)

where c and h represent the total orbital angular momentum
and energy of the system, respectively (Marchal & Bozis 1982;
Gladman 1993; Veras & Armitage 2004; note that this definition
assumes that M1 > M2). Following Barnes & Greenberg (2006),
we refer to the left side of Equation (11) as β and the right side
as βcrit. The quantity β/βcrit therefore measures the proximity
of a pair of orbits to the Hill stability limit of β/βcrit = 1.
It is important to note that our β/βcrit analysis only applies
for two-planet systems, because perturbations from additional
companions can shift the stability boundary to values other
than 1.

14 Note that a recent analysis of Hobby-Eberly Telescope data by Wittenmyer
et al. (2009) failed to confirm the presence of HD 74156 d, hence the current
status of this planet is unclear.
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Figure 16. Cumulative β/βcrit distributions for the unstable simulations from each of our 10 simulation cases, with (solid lines) and without (dashed lines) planetesimal
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In Raymond et al. (2009b), we calculated β/βcrit by “observ-
ing” each system from a wide range of viewing angles, then
using Equation (11) to calculate β/βcrit distributions. Although
the β/βcrit value is sensitive to both the inclination between the
planetary orbital plane and the line of sight, I, and the mutual
inclination between the planets’ orbits, Δi, we found that the
effect of these angles was at the few percent level at most, i.e.,
negligible for our purposes. Additional tests have showed that
a simple application of Equation (11) with no knowledge of
viewing angle agrees remarkably well with the true and ob-
served β/βcrit values as well as the cumulative distribution from
a range of viewing angles. Thus, in this analysis we do not
include the effects of viewing geometry.

Figure 16 compares the cumulative β/βcrit distributions for
our unstable simulations with the observed two-planet extrasolar
systems.15 As seen in Raymond al. (2009b), β/βcrit values from
systems with equal-mass planets are far larger than those from
systems with planetary mass ratios. This appears to be caused
by the vastly larger number of encounters among equal-mass
planets before a planet is destroyed.

For the simulations with the most realistic mass distributions
(i.e., the Mixed1 and Mixed2 cases), the effect of disks on the
β/βcrit is small. Disks do not alter the prediction that scattering
yields packed systems. Where there are differences they are
in a surprising direction—after an instability, systems with
planetesimal disks remain closer to the stability boundary (i.e.,
have lower β/βcrit values) than systems with no planetesimal
disks. Since planetesimal disks damp eccentricities, they appear
to leave the surviving planets in more dynamically compact

15 Data taken from http://www.astro.washington.edu/users/rory/
research/xsp/dynamics/ on 2009 June 24. We excluded three systems for which
the inner planet was interior to 0.1 AU and therefore had probably undergone
tidal evolution, thereby increasing the effective separation between the planets
and therefore the β/βcrit value. Our total exoplanet sample includes 19
systems. For the simulations without disks, we only applied the analysis to
systems with two surviving planets, but for the simulations with disks we
included unstable systems with two or three surviving planets; for the case of
three surviving planets, we use the β/βcrit value calculated by assuming
detection of only the two inner planets.

configurations. This is true even for the low-mass systems such
as N-N-N, for which planetesimal scattering almost always
induces the migration of one planet out into disk. However,
although the outer planet often migrates outward in N-N-N-type
cases, the orbits of the inner planets are often compressed by
scattering planetesimals outward. So, if we just consider the
inner two planets in any system, they appear to end up closer
together in the cases with planetesimal disks.

Without disks, the Mixed1, S-S-S and N-N-N simulations all
provide good fits to the β/βcrit distribution—Table 3 contains
p values from Kolmogorov–Smirnov (K–S) tests for each case.
However, none of the sets provides a good match for β/βcrit � 1:
the S-S-S and N-N-N cases are contaminated by systems which
are themselves unstable on timescales longer than our 100 Myr
integration time (these were removed by hand in Raymond et al.
2009b, but not here). With disks, the S-S-S simulations provide
the best match to the known systems and the Mixed1 and J-J-J
simulations also provide good fits. In addition, several sets match
the distribution very well for β/βcrit � 1 with disks while they
failed without disks. The cause of this increase in low-β/βcrit
systems is the presence of MMRs. Systems in resonance tend
to have β/βcrit < 1 (Barnes & Greenberg 2007), and these are
preferentially set up in systems with planet masses comparable
to MJ such as the Mixed1 and J-J-J simulations (see Section 4).

4. MEAN MOTION RESONANCES (MMRs)

A significant fraction of the known exoplanet systems are
thought to lie in MMRs. Marcy et al. (2008), for example, quote
a resonant fraction of 18% (four out of 22 systems). These num-
bers are currently uncertain because confirmation that systems
near resonance are actually librating is often hard to obtain—
indeed apparently resonant systems are sometimes revised to be
nonresonant (e.g., Fischer et al. 2008). The most likely origin
of resonant planets at small orbital radii is convergent migration
in gaseous protoplanetary disks (Snellgrove et al. 2001; Lee &
Peale 2002; Kley et al. 2004). If this identification is correct,

http://www.astro.washington.edu/users/rory/research/xsp/dynamics/
http://www.astro.washington.edu/users/rory/research/xsp/dynamics/
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Table 3
p Values from K–S Tests of Observations versus Scattering Simulations

No Disks With Disks

Set p p p p p p
(tot) (β/βcrit � 1) (β/βcrit > 1) (tot) (β/βcrit � 1) (β/βcrit > 1)

Mixed1 0.175 0.005 0.074 0.226 0.818 0.091
Mixed2 0.015 – 0.005 – 0.005 –
3J-3J-3J – – 0.016 – 0.012 0.010
J-J-J 0.015 0.012 0.195 0.470 0.111 0.378
S-S-S 0.292 0.425 0.936 0.476 0.328 0.215
N-N-N 0.439 0.438 0.284 – 0.089 –
3J-J-S – – – 0.002 0.313 –
S-J-3J – 0.012 – – 1.000 –
J-S-N – 0.007 – – 0.008 –
N-S-J – – – – 0.183 –

Note. The majority of p values of “–” indicate p < 10−3, and in a few cases insufficient data (e.g., none of the 3J-3J-3J
simulations had β/βcrit � 1).

it places bounds on the strength of turbulence within the disk,
since even rather modest fluctuations in the disk surface density
should destroy resonant alignment (Adams et al. 2008; Lecoanet
et al. 2009). Here, we investigate gas-free routes to the establish-
ment of resonance due to either pure planet–planet scattering or
scattering augmented by the dynamical effect of planetesimals.
These channels might contribute to the population of resonance
systems at small radii, and potentially dominate it further out
where the effects of planetesimal disks are strong.

In previous work related to planet–planet scattering, we stud-
ied two mechanisms that can lead to MMRs. First, scattering
in isolation (without disks) populates a variety of resonances
including high-order MMRs (up to 11th order in our simula-
tions; Raymond et al. 2008a). Second, the planetesimal disk
can effectively act as a damping force on planets’ orbits to
induce planetary orbits to align into MMRs and sometimes
MMR chains (e.g., 4:2:1) with a high efficiency (Raymond
et al. 2009a). In this section, we study MMRs that arose in
both our unstable simulations (via scattering) and our sta-
ble simulations (via planet–planetesimal effects). We first in-
troduce the theory of MMRs in Section 4.1, then examine
resonances in unstable (Section 4.2) and stable (Section 4.3)
systems.

4.1. Definition of Mean Motion Resonances

For MMR p + q : p, resonant arguments θi (also called
“resonant angles”) are of the form

θ1,2 = (p + q)λ1 − pλ2 − q�1,2, (12)

where λ are mean longitudes, � are longitudes of pericenter, and
subscripts 1 and 2 refer to the inner and outer planet, respectively
(e.g., Murray & Dermott 2000). Resonant arguments measure
the angle between the two planets at the conjunction point—if
any argument librates rather than circulates, then the planets
are in resonance. In fact, the bulk of resonant configurations
are characterized by only one librating resonant argument
(Michtchenko et al. 2008). Frequently, libration occurs around
equilibrium angles of zero or 180◦, but any angle can serve as
the equilibrium. Different resonances have different numbers
of resonant arguments, involving various permutations of the
final terms in Equation (12). The order of a resonance is given
simply by q. For example, the 3:1 MMR (q = 2, p = 1) is a

second-order resonance that has three resonant arguments:

θ1 = 3λ1 − λ2 − 2�1,

θ2 = 3λ1 − λ2 − 2�2, and

θ3 = 3λ1 − λ2 − (�1 + �2). (13)

In Raymond et al. (2008a), we found MMRs by targeting
systems close to commensurabilities, then looking at individual
resonant angles. In this paper, we take an automated approach.
We devised a simple analysis script to analyze each of our
simulations (with and without disks) and calculate all resonant
angles for MMRs of up to fourth order. This includes the 2:1,
3:2, 3:1, 5:3, 5:2, and 4:1 MMRs. The script then determined
which resonant angles were librating during the last 50 Myr of
each simulation. This script is simple and reliable, but it misses
the small fraction of cases that enter resonance between 50 and
100 Myr because it requires θ values to librate for the full interval
(50–100 Myr). We impose a cutoff on the libration amplitude
A of A � 150◦ to avoid false positives, which eliminates some
additional systems that are just barely resonant.

4.2. MMRs in Unstable Systems

In previous work, we found that a few to 10% of unsta-
ble systems could end in MMRs (Raymond et al. 2008a). The
resonant fraction depends on the initial planetary mass distribu-
tion: MMRs were much more common in systems with radial
mass gradients than in simulations that started with equal-mass
planets. MMRs are populated by scattering simply because the
density of resonant orbits is non-zero. In other words, the last
close encounter leading to the destruction of one planet deposits
the surviving planets onto orbits which have a chance of be-
ing resonant. This mechanism can populate high-order MMRs
that are not populated by convergent migration in gaseous disks
(Snellgrove et al. 2001; Lee & Peale 2002). The libration am-
plitudes of resonances populated by scattering are large, which
also contrasts with the convergent migration scenario. Thus,
as the population of resonant exoplanet systems increases, we
may be able to differentiate MMRs caused by scattering versus
convergent migration.

Figure 17 shows an example of an MMR caused by planet–
planet scattering in a simulation that included a planetesimal
disk. After 30,000 years, a close encounter with the outer
(1.8 MJ) planet threw the lower-mass (0.4 MJ) planet outward
into the planetesimal disk, where it remained on a stable but
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Figure 17. 5:2 mean motion resonance set up by scattering. The top panel shows
the evolution of the three planets’ semimajor axes a, perihelion distances q, and
aphelion distances Q. The middle and bottom panels show two resonant angles
for the 5:2 MMR: θ2 = 5 λ1 − 2 λ2 − 3 �2 and θ4 = 5 λ1 − 2 λ2 − 2 �2 − �1.

(A color version of this figure is available in the online journal.)

chaotic orbit for about 10 Myr. A final close encounter caused the
lower-mass planet to be ejected and placed the surviving (1.9 and
1.8 MJ) planets in 5:2 MMR. In fact, the two surviving planets
are in a special type of resonance called an apsidal corotation
resonance in which all resonant angles librate and so does the
apsidal alignment (Beaugé et al. 2003). This simulation was
unusual because the entire planetesimal disk had been destroyed
by the outer planet by the time of the last planetary scattering
event such that the behavior was similar to simulations without
disks.

Most MMRs that occur in unstable systems with disks arise
via a different mechanism. Usually, an instability occurs early
in the simulation, removing one planet and placing the two
surviving massive (Mp ∼ MJ) planets close to resonance.
Subsequent interactions with the planetesimal disk act as a
damping force that aligns the planetary orbits into MMR. In
these cases, the outer surviving planet is massive enough to
eject most of the planetesimals that it encounters, leading to
some inward migration and a compression of the system. In
fact, this mechanism has more in common with the generation
of MMRs and MMR chains via planetesimal disk interactions
(see Section 4.3) than MMRs from pure N-body scattering.

The frequency of MMRs from scattering is greatly reduced
by the presence of the planetesimal disk (Table 4). In fact, only
a small fraction of the MMRs with disks from Table 4 are
even due to pure scattering—the majority are caused by disk
damping as described above. The reason for the absence of
MMRs in unstable systems with planetesimal disks is that the
low-order MMRs populated by scattering occur preferentially
in systems with high-mass ratios (for example, almost 10% of
the unstable N-S-J simulations yielded 2:1 MMRs), meaning
that one planet in the system was relatively low mass (usually
∼MS) and subject to radial migration by planetesimal scattering
after the instability placed the planets in resonance.

Thus, scattering appears to be a viable mechanism to populate
resonances but its efficiency is reduced in regions which are
strongly affected by planetesimal disks. Given that the observed
exoplanets do not yet show an obvious signature of planetesimal

scattering (see Section 5), some of the known systems could
indeed have been populated by this mechanism (Raymond
et al. 2008a). However, as we show below, interactions with
planetesimal disks in systems that do not experience close
encounters and scattering events are vastly more efficient at
generating resonant systems.

4.3. MMRs in Stable Systems

We now consider the generation of MMRs in stable systems
that do not experience close encounters between the planets.
An empirical argument can be made that such systems are rare
amongst the progenitors of currently observed systems, since
the good agreement with the observed eccentricity distribution
requires that a large fraction of systems are unstable. At larger
radii, however, stable systems could be present and perhaps
common. In stable systems with relatively massive planets
(Mp � MJ), the planetesimal disk can act as a damping force
and induce planets to align into MMRs. This mechanism is
not efficient for low-mass planets because the planetesimal
disk has enough angular momentum to cause excessive radial
migration and drive the planets apart. However, gentle migration
for Mp ∼ MJ is very effective at forming resonant chains
reminiscent of the Galilean satellites of Jupiter (Paper I—
Raymond et al. 2009a).

Figure 18 (left panel) shows one example of a 4:2:1 resonant
chain for aMixed1 simulation with three ∼ Jupiter-mass planets.
The θ1 resonant argument is librating with a small amplitude for
both the inner and outer pairs of planets, and for the inner pair
θ2 begins to librate after ∼20 Myr and its libration amplitude
decreases over the next 10–20 Myr. The damping effect of the
planetesimals is clearly seen as the system moves deeper into
the resonance with time, i.e., the libration amplitude of the two
resonant arguments decreases. The right panel of Figure 18
shows the same system with no planetesimal disk. It is clear
that this system started with both pairs of planets close to the
2:1 MMR (see Figure 2) but without the disk the planets do not
evolve into the resonance.

Table 5 shows the number of resonances and resonant
chains that were set up in each set of stable simulations with
planetesimal disks, and that number as a fraction of the total
number of stable simulations. For systems with planet masses
MS � Mp � 3 MJ, between roughly 50% and 75% of all stable
systems ended up with at least one MMR. In addition, up to 40%
of systems were in resonant chains involving all three planets.
Recall that our definition of resonance requires at least one
resonant argument to librate with an amplitude A � 150◦. The
second row for each set of simulations shows the number and
fraction of systems that were deep in resonance, with A � 60◦.
Roughly half of the MMRs were deep in resonance, independent
of their configuration in the system: both pairs of resonant
planets were deep in resonance for about one quarter of the
resonant chains.

The vast majority of resonant systems are in the 2:1 MMR,
although for lower masses the 3:2 MMR is also common.
This is simply because of the location of strong resonances
in initial planetary separations versus mass (Figure 2). More
(less) massive planets start closer to the 2:1 (3:2) MMR, and
so given the limited amount of radial migration, tend to end
up in that same resonance. The second-order MMRs were
comprised almost exclusively of the 5:3 MMRs, although those
were much rarer than first-order MMRs. Depending on the
case, about half or slightly less of the resonances were deep,
meaning that the libration amplitude was 60◦ or less. Systems
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Figure 18. Example of a 4:2:1 resonant chain in a system of three planets plus an exterior planetesimal disk. Shown are the resonant angles θ1 = 2 λ1 − λ2 − �1 and
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Table 4
Mean Motion Resonances in Scattered Systems

No Disks With Disks

Set First Order Second Order Third Order First Order Second Order Third Order
(frac) (frac) (frac) (frac) (frac) (frac)

Mixed1 10 (0.018) 9 (0.016) 3 (0.005) 5 (0.011) 2 (0.005) 1 (0.002)
Mixed2 25 (0.034) 13 (0.017) 8 (0.011) 9 (0.017) 2 (0.004) 1 (0.002)
3J-3J-3J 3 (0.012) 2 (0.008) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )
J-J-J 1 (0.004) 0 ( · · · ) 2 (0.009) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )
S-S-S 8 (0.022) 3 (0.008) 4 (0.011) 1 (0.005) 1 (0.005) 0 ( · · · )
N-N-N 10 (0.028) 4 (0.011) 4 (0.011) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )
3J-J-S 1 (0.007) 1 (0.007) 2 (0.013) 1 (0.018) 0 ( · · · ) 0 ( · · · )
S-J-3J 1 (0.005) 13 (0.059) 2 (0.009) 0 ( · · · ) 6 (0.041) 2 (0.014)
J-S-N 2 (0.010) 4 (0.019) 4 (0.019) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )
N-S-J 16 (0.072) 4 (0.018) 3 (0.014) 8 (0.054) 1 (0.007) 0 ( · · · )

Notes. The resonance order is given by q in Equation (12). The first-order MMRs are 2:1 and 3:2, second-order are 3:1 and 5:3,
and third-order are 4:1 and 5:2. The values in parentheses represent the fraction of unstable simulations that ended up in each set of
MMRs.

that were extremely deep in the resonance, however, were rare:
indeed only a single case with A < 10◦ was found in the entire
ensemble of simulations. This is of interest since dynamical
modeling of the GJ 876 system shows that one of the resonant
angles librates with an amplitude that is, at most, θ = 7◦ ± 2◦
(Laughlin et al. 2005). Taken at face value, one concludes that
capture into resonance due to gas disk migration is not only
the favored explanation for the origin of the GJ 876 system
itself, but that gas rather than planetesimal effects would also be
needed to explain hypothetical analogs of GJ 876 that might
be discovered very deep in resonance at large orbital radii.
We caution, however, that we have not demonstrated that the
distribution of libration amplitudes is independent of numerical
details of our simulations, and in particular that it is independent
of the mass of particles used to represent the disk. Further
simulations would be needed to study the predicted distribution
of A in more detail.

What causes the resonances in these systems? Figure 19
shows the semimajor axis shifts of the planets in the stable
Mixed1 and Mixed2 systems: positive values indicate conver-
gence and negative indicate divergence. There is a much more
limited range of parameter space for convergence than diver-
gence, since for massive planets the stability limit is located
in the vicinity of the 3:2 MMR. Planet pairs were limited to

converging �0.1 AU, but divergence was unlimited, at least for
the outer pair of planets (too much divergence of the inner pair
could impinge on the outer planet).

Table 5 shows that MMRs generally occur at a higher fre-
quency in systems that converge rather than diverge. However,
for most giant planet configurations, systems for which all three
planets converge are rare. The exception are the systems with
positive mass gradients (S-J-3J and N-S-J), for which almost
half the stable systems converged. This is because they con-
tain a very massive outer planet capable of quickly ejecting
planetesimals rather than scattering them inward, thereby mi-
grating slightly inward. In contrast, systems with negative mass
gradients (3J-J-S and J-S-N) favor divergence because the in-
nermost planet is the ejector and the outer two preferentially
scatter planetesimals inward and migrate outward. For massive
equal-mass planets (J-J-J and 3J-3J-3J), it is often the case
that the inner two planets converge while the outer two diverge.
This is caused simply by the outer planet scattering planetesi-
mals in to the middle planet. With higher relative velocities the
middle planet can more easily eject the planetesimals, causing
it to migrate inward, away from the outer planet but toward the
inner one.

Among the simulations with radial mass gradients, MMRs
are more common in systems with a more massive outer planet
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Table 5
Mean Motion Resonances and Resonant Chains in Stable Systems

Set MMRs (frac) 2:1 3:2 Second Order MMR Chains 4:2:1 Chains
Deep Deep Deep Deep Deep Deep

Mixed1 379 (0.706) 335 (0.624) 58 (0.108) 20 (0.037) 197 (0.367) 157 (0.292)
190 (0.354) 174 (0.324) 12 (0.022) 7 (0.013) 50 (0.093) 47 (0.088)

Mixed2 162 (0.348) 127 (0.273) 47 (0.101) 13 (0.028) 54 (0.116) 28 (0.060)
77 (0.166) 61 (0.131) 16 (0.034) 5 (0.011) 13 (0.028) 6 (0.013)

3J-3J-3J 351 (0.708) 351 (0.708) 0 ( · · · ) 0 ( · · · ) 60 (0.121) 59 (0.119)
122 (0.246) 122 (0.246) 0 ( · · · ) 0 ( · · · ) 3 (0.006) 3 (0.006)

J-J-J 217 (0.764) 213 (0.750) 0 ( · · · ) 6 (0.021) 114 (0.401) 113 (0.398)
103 (0.363) 101 (0.356) 0 ( · · · ) 2 (0.007) 18 (0.063) 18 (0.063)

S-S-S 61 (0.477) 3 (0.023) 60 (0.469) 1 (0.008) 15 (0.117) 0 ( · · · )
22 (0.172) 2 (0.016) 22 (0.172) 1 (0.008) 1 (0.008) 0 ( · · · )

N-N-N 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )
0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )

3J-J-S 92 (0.571) 92 (0.571) 1 (0.006) 0 ( · · · ) 1 (0.006) 0 ( · · · )
73 (0.453) 73 (0.453) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )

S-J-3J 76 (0.927) 76 (0.927) 21 (0.256) 11 (0.134) 37 (0.451) 5 (0.061)
63 (0.768) 63 (0.768) 4 (0.049) 3 (0.037) 7 (0.085) 0 ( · · · )

J-S-N 24 (0.118) 24 (0.118) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )
12 (0.059) 12 (0.059) 0 ( · · · ) 0 ( · · · ) 0 ( · · · ) 0 ( · · · )

N-S-J 23 (0.793) 11 (0.379) 13 (0.448) 11 (0.379) 7 (0.241) 0 ( · · · )
8 (0.276) 2 (0.069) 6 (0.207) 5 (0.172) 3 (0.103) 0 ( · · · )

Notes. Each column is the number, and in parentheses the fraction, of a systems in a given resonance that occurred for each set of
stable simulations. Resonances are defined to exhibit libration of at least one resonant argument with libration angle A < 150◦. For
each set of simulations, the second row represents the same resonance but requiring that the system be deep in the resonance, with
A < 60◦.
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Figure 19. Semimajor axis shifts (i.e., final minus starting values) for the planets
in the stable Mixed1 and Mixed2 systems. Positive shift values indicate a
convergence of the two planets and negative values indicate a divergence; i.e.,
positive y-axis values indicate that the middle and outer planets converged over
the course of the simulation, and positive x-axis values mean that the inner and
middle planets converged. Filled circles are systems that contain at least one
pair of resonant planets, and open circles are nonresonant systems.

(those with positive mass gradients, S-J-3J and N-S-J). This is
because the massive outer planet confines the planetary system,
and the planetesimal scattering causes the system to converge,
as a whole or for one pair of planets, much more frequently
than for a lower-mass outer planet. Indeed, the frequency of
MMRs as a whole correlates with the fraction of systems which
converge rather than diverge (see Tables 5 and 6). Nonetheless,
many MMRs are created in divergent systems, simply because
planets were initially placed near strong MMRs (Figure 2).

5. MODELS FOR THE OBSERVED DISTRIBUTIONS OF
EXTRASOLAR PLANETS

In this section, we investigate quantitatively whether the ob-
served distributions of extrasolar planets can be reproduced from
our scattering simulations. We focus primarily on the eccentric-
ity distribution, since this is the most accurately measured sta-
tistical property of extrasolar planetary systems. At the outset,
we observe that we are not claiming that our model can explain
both the radial distribution and eccentricity of observed plan-
ets. Roughly half of the observed planets orbit at radii less than
1 AU, which is a region of semimajor axis space that is not heav-
ily populated by our simulations (Figure 15). Our systems do,
however, overlap with those planets known at radii of a few AU,
and these planets appear to share roughly the same eccentricity
distribution as planets at smaller radii (Ford & Rasio 2008).

5.1. The Problem of the Mass–Eccentricity Correlation

For the Mixed1 simulations, we generated planet masses
by sampling the observed planetary mass function randomly
and independently, using mass limits of MSat < M < 3 MJ.
Since the eccentricity distribution that results from these initial
conditions matches the data closely (Figure 6)—irrespective
of whether we include disks or not—it might appear as if
there is no further problem to solve. This ignores the fact
that the observed exoplanet eccentricity distribution is also
mass dependent: lower-mass planets have lower eccentricities
than higher-mass planets (Ribas & Miralda-Escudé 2007; Ford
& Rasio 2008; Wright et al. 2009). The evidence for this
correlation appears to be strong. If we divide the sample of
known extrasolar planets into low-mass (Mp sin i < MJ) and
high-mass (Mp sin i > MJ) bins, we find a K–S probability p of
only 0.002 that they are drawn from the same distribution.

Assuming that this trend is real we have a clear problem:
scattering does not predict that low-mass planets should be less
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Table 6
Sources of MMRs in Stable Systems

Set MMRs Conv–Conv Conv–Div Div–Conv Div–Div
(frac) (frac) (frac) (frac)

Mixed1 392 0.11 (0.86) 0.24 (0.79) 0.24 (0.77) 0.41 (0.58)
Mixed2 184 0.05 (0.90) 0.05 (0.78) 0.27 (0.58) 0.63 (0.16)
3J-3J-3J 351 0.23 (0.65) 0.35 (0.73) 0.24 (0.69) 0.18 (0.75)
J-J-J 218 0.29 (0.78) 0.38 (0.75) 0.22 (0.75) 0.10 (0.79)
S-S-S 65 0.00 ( · · · ) 0.07 (1.00) 0.19 (0.67) 0.73 (0.34)
N-N-N 0 0.00 ( · · · ) 0.00 ( · · · ) 0.00 ( · · · ) 1.00 (0.00)
3J-J-S 93 0.00 ( · · · ) 0.07 (0.92) 0.13 (0.71) 0.80 (0.52)
S-J-3J 84 0.43 (0.97) 0.33 (0.81) 0.22 (1.00) 0.02 (1.00)
J-S-N 24 0.00 ( · · · ) 0.00 ( · · · ) 0.00 ( · · · ) 1.00 (0.12)
N-S-J 39 0.45 (0.62) 0.38 (0.82) 0.10 (0.67) 0.07 (1.000)

Notes. Each column containing “conv” or “div” denotes the fraction of stable simulations in which the planets are either converging
or diverging. The first “conv”/“div” refers to the inner pair of planets and the second to the outer pair. The fraction in parentheses
denotes the fraction of those cases which ended up with at least one pair of resonant planets.

eccentric than high-mass ones. Figure 20 shows eccentricity
distributions for the Mixed1 and Mixed2 simulations divided
into the same low-mass (Mp < MJ) and high-mass categories
for cases with and without disks. The predicted trend is opposite
to that observed. Indeed, once the sample has been split into
mass bins it becomes clear that the good agreement of the
overall distribution is somewhat fortuitous. It occurs because—
for the Mixed1 simulations—the low-mass simulations match
the observed high-mass curve and vice versa. Changing the
lower-mass limit for the mass function sampling to 10 M⊕
only makes matters worse. For the simulations with no disks,
the more massive planets are even less eccentric than for the
Mixed1 simulations simply because the typical mass ratio in a
given scattering event is larger for the Mixed2 simulations. It is
interesting to note that for the Mixed2 simulations with disks the
high- and low-mass planets have virtually identical eccentricity
distributions, meaning that the tendency for low-mass planets to
acquire large eccentricities during scattering is almost exactly
balanced by the eccentricity damping of the disk.

5.2. A Solution from Planet Mass Correlations

The above problem raises a simple question, is it possible to
simultaneously match the observed constraints on (1) the total
eccentricity distribution, (2) the mass–eccentricity correlation,
and (3) the mass function using a scattering model? Although
our data are not able to provide a rigorous answer we contend
that solutions are possible, either with or without appealing to
the existence of planetesimal disks. In the absence of disks, the
key assumption that we must drop is that planet masses in the
same system are chosen independently from the overall mass
function. If, instead, we allow for correlations between planet
masses, the extra degree of freedom allows us to match what is
seen observationally.

For a disk-free solution, we start with the equal-mass simu-
lations and choose a weighted combination of the 3J-3J-3J,
J-J-J, and S-S-S simulations that matches the observed mass
distribution (i.e., that contains correspondingly more low-mass
than high-mass systems). By construction this matches the mass
distribution, and does a reasonable job at matching the total ec-
centricity distribution (the K–S p value is 0.09). However, this
combination does not match the mass–eccentricity distribution;
both the high-mass and low-mass planets have large eccentrici-
ties, and in fact, both provide a match to the Mp > MJ exoplan-
ets. The high-mass planets have slightly higher eccentricities

than the low-mass planets (see Figure 6) but the difference is
small because the highest-eccentricity systems (3J-3J-3J) are
very weakly weighted to match the observed mass distribution.
Note that we count Jupiter-mass planets in both the high-mass
and low-mass bins.

We now mix in systems for which low-mass planets have
lower eccentricities than high-mass planets. In the absence of
disks, this can be done if we assume that high-mass and low-
mass planetary systems are fundamentally different. Specifi-
cally, we assume that high-mass systems form roughly equal-
mass planets yielding large eccentricities, whereas low-mass
systems form a much wider variety of systems and tend to have
lower eccentricities. To show that this works, at least approxi-
mately, we assume that the J-S-N and N-S-J simulations yield
an eccentricity distribution that is representative of the scatter-
ing among unequal-mass low-mass planets (with masses up to,
but not beyond, MJ). We then add J-S-N and N-S-J simula-
tions to the total and low-mass eccentricity distributions, but
not to the high-mass distribution. We gave the J-S-N/N-S-J
systems the same abundance as the S-S-S systems such that
the low-mass systems are equally divided between equal- and
unequal-mass cases (except for a small contribution from the
J-J-J simulations).

The upshot of this cookery is shown in Figure 21. The
blended distribution, which is roughly consistent with the mass
function, provides a decent match to both the total eccentricity
distribution and to the mass–eccentricity distributions. The K–
S test p values are 0.25 (for the total distribution), 0.09 (for
the low-mass planets), and 0.20 (for the high-mass planets). It
is evident that matching the low-mass planets is by no means
easy, and in fact our “solution” is close to being statistically
unacceptable. Nonetheless, it is clearly possible to reverse the
natural tendency of scattering to generate larger e for low-mass
planets by strongly correlating the masses of planets. We further
believe—though we do not have the data to demonstrate it—that
the magnitude of the observed mass–eccentricity correlation lies
within the range that could be accurately reproduced by fine
tuning the mix of initial conditions used.

5.3. A Solution from Disk Damping

An entirely different solution to the mass–eccentricity prob-
lem invokes the damping effects of planetesimal disks. Disks
referentially damp the eccentricities of the smallest planets
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(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

(Figure 8), but, as we have noted, the effect correlates most
strongly with the total system mass rather than that of individ-
ual planets. We therefore consider the equal-mass cases, and
(as before) blend the 3J-3J-3J, J-J-J, and S-S-S simulations
such as to approximate a three-bin version of the mass function.
We assume that a fraction F = 1/2 of the systems are affected
by disks, while the rest are not. This combination provides
reasonable matches for both the total eccentricity distribution
(p = 0.08) as well as the low-mass (p = 0.02) and high-mass
(p = 0.44) planets (red curves in Figure 21). The match for the
low-mass planets can be improved by slightly increasing F, at
the expense of the fit to the overall distribution.

Do the two weighted distributions match other observations?
Using the same combination of different sets of simulations,
we generated weighted distributions of β/βcrit to compare with
observations, seen in the third panel of Figure 21. Remarkably,
both combinations of simulations provide excellent fits to the
distribution of separations in two-planet systems. The weighted
case with disks was a better fit to the β/βcrit distribution (K–S
p values of 0.20 with no disks and 0.72 with disks), largely
because the cases with disks were able to fit the distribution of
values at β/βcrit � 1 which are dominated by resonant systems.
Thus, the β/βcrit distribution cannot differentiate between the
two weighted combinations of simulations we have constructed.

However, it is interesting that both weighted distributions can
match all of the currently well-observed constraints.

5.4. Discussion

What can we conclude from this proof-of-principle exercise?
First, correlations between planet masses in the same system
can qualitatively alter some of the predictions of scattering
models. Although we have here allowed ourselves complete
freedom to impose whatever correlations we need, our disk-free
solution in fact involves physically conceivable variations in
the outcome of planet formation in different disks. A massive
disk of gas and solids would be expected to form several
cores that go on to accrete substantial envelopes, such that the
outcome is usually a system with several very massive planets.
A less massive disk, on the other hand, may only form one
relatively low-mass gas giant together with a number of low-
mass core-dominated planets. Second, the effects of planet–
planet scattering with mass correlations, and the effects of
planetesimals, can be almost indistinguishable, at least for the
distributions we have considered. This should be borne in mind,
especially as observations probe larger orbital radii where it is
more probable that planetesimal disks play a dynamical role.

Notwithstanding the formal degeneracy of our solutions, the
disk-free solution is favored as the origin of currently observed
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eccentricities. The reason is simply that the current sample
includes many planets at radii that are simply too small to
have experienced damping from plausible planetesimal disks
(note that our inner disk radius of 10 AU is already smaller
than is often assumed). The match is not perfect but this is not
surprising, since the comparison is not entirely fair. Both the
observed and predicted eccentricities depend upon the Safronov
number, defined as the ratio of the escape speed from a planet’s
surface to the escape speed from the planetary system at that
location,

Θ2 =
(

Mp

M�

)( a

R

)
, (14)

where Mp and M� are the planetary and stellar mass, a is
the orbital distance and R is the planetary radius (Ford &
Rasio 2008). Our simulations probe the region at somewhat
larger a than is currently observed, such that the Θ values are
correspondingly higher. Only at higher planetary masses are
the Θ values large enough that the variations in Θ between our
simulations and the observed planets are too small to affect the
eccentricities, and it is reassuring that our weighted fits match
the high-mass planets quite well. Another point to bear in mind
is that although the selection function of radial velocity surveys
is approximately independent of eccentricity (Cumming et al.
2008), there are almost certainly systematic errors to add to the
purely statistical errors that we have used (e.g., Shen & Turner
2008).

We do not expect the degeneracy between disks and mass
correlations to persist to arbitrarily large orbital radii. Disk
damping becomes increasingly more important as the semimajor
axis increases, and as the planet mass decreases. For very low-
mass planets, the resulting reduction in eccentricity is greater
than could be explained by any plausible blend of simulations
with different conditional mass functions. An ongoing trend to
lower eccentricities for low-mass planets, as the orbital radius
increases, would thus be a strong sign of dynamical influence
from planetesimal disks.

6. DISCUSSION AND CONCLUSIONS

We have presented an extensive study of the dynamics of
planetary systems that evolve under the joint action of planet–
planet and planetesimal disk scattering. The model is founded
on the assumption that giant planets form in marginally stable
configurations interior to substantial disks of small bodies that
failed to form planets or cores. Persuasive (but circumstantial)
observational and theoretical arguments suggest generically
similar initial conditions, and physical mechanisms, describe
the evolution of typical outer planetary systems subsequent
to gas disk dispersal. We have simulated the evolution using
a large set of N-body integrations, designed such that the
statistical errors on the model predictions remain smaller than
the uncertainty in observed data. Achieving this level of fidelity
is still relatively easy for models that invoke only planet–planet
scattering, but requires substantial investment of computing
resources (amounting to several million core hours in our case)
once disks are included.

The main conclusions of our study are as follows.

1. Dynamical models for the outer solar system such as the
Nice model, in which small body scattering dominates
(Tsiganis et al. 2005), and pure planet–planet scattering
models for eccentric exoplanets, are limiting cases of a
joint model that includes both scattering processes. Future

extrasolar planet surveys are likely to uncover systems in
which the two processes were of comparable importance.

2. The past dynamical effects of planetesimal disks are ob-
servable statistically as a trend toward lower eccentricities
for low-mass planets at larger orbital radius. The strongest
trend is predicted to be a correlation between eccentricity
and the total mass of surviving planets in the system. The
transition radii and masses at which the effects of disks
should become apparent are not known. Our specific model
predicts clear effects for ≈0.5 MJ planets at 5–10 AU. Ob-
servations in this region of parameter space will provide
important constraints on the typical properties (the mass
and inner radius) of outer planetesimal disks. Useful con-
straints would be possible from radial velocity surveys ca-
pable of detecting planets with radial velocity amplitudes
K ≈ 5 m s−1 and periods in excess of 10 years.

3. Planetary inclination with respect to the initial orbital plane,
and the mutual inclination in multiple planet systems, is
damped by disks in the same way as is eccentricity. Our
initial conditions (with the number of planets fixed at
N = 3) can yield significant inclinations when disks are
unimportant (30◦ is not uncommon), but do not form polar
or retrograde systems.

4. Planet–planet scattering can reproduce the eccentricity dis-
tribution of known extrasolar planets (Chatterjee et al. 2008;
Jurić & Tremaine 2008), given only the additional assump-
tion that the initial conditions were unstable to close plan-
etary encounters (this is a subset of our initial conditions).
Planetesimal disks do not destroy this agreement for planet
masses and orbital radii characteristic of the currently ob-
served sample.

5. The observed variation of the eccentricity distribution with
planet mass (Ford & Rasio 2008; Wright et al. 2009) is
in the opposite sense to that predicted by simple planet–
planet scattering models. The observed trend can probably
be reproduced if we postulate strong correlations between
planet masses in the same system. Specifically, we require
that one set of systems must preferentially form massive
planets of comparable masses, while the rest form lower-
mass planets with a wider range of masses. This implies
that the planetary mass function is a global quantity that
does not apply on the level of single systems.

6. At radii modestly larger than those currently probed by
observations, the effects of planetary mass correlations
and planetesimal disks on the eccentricity distribution can
be almost identical. Additional constraints are required to
break the degeneracy and thereby determine which physical
processes are at work.

7. Scattering forms dynamically packed planetary systems, in
which the final separation of two-planet systems clusters
close to the Hill stability boundary (Raymond et al. 2009a).
The presence of planetesimal disks causes the final systems,
on average, to be even more closely packed, at least when
only the innermost pair of surviving planets are considered.

8. It is probable that the formation of planets at intermediate
and large radii (beyond 5 AU) yields an admixture of stable
initial conditions (those that do not result in close planetary
encounters). Stable systems with ∼Jupiter-mass planets
should produce an abundance of low-order MMRs. In many
cases, there should exist resonant chains analogous to the
4:2:1 Laplace resonance among Jupiter’s Galilean satellites.
Although the observed orbital arc is short, stability analyses
suggest that the HR 8799 system (Marois et al. 2008) may
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be the first example of such a resonant chain in the exoplanet
population (Fabrycky & Murray-Clay 2010; Reidemeister
et al. 2009). We expect a large fraction of outer, high-mass
giant planets to be discovered to be in resonance, especially
if their orbits display the low-eccentricities indicative of
stable systems.

9. The predicted number of high-mass planets on highly ec-
centric orbits with large apocenter distances is unaffected
by the presence of planetesimal disks. The number of low-
mass planets on such orbits is, however, greatly reduced.
The existence of the high-mass systems is a secure pre-
diction of scattering models (Veras et al. 2009; Scharf &
Menou 2009), and provides an attractive target for direct
imaging surveys of young stars.

The initial conditions and physical processes modeled in this
work are idealized. We have assumed that the properties of the
planetesimal disk are universal, so that variations between sys-
tems arise solely due to different planetary masses and architec-
tures. To a first approximation, this is justifiable. Giant planets
can accrete vastly different envelopes—from a few Earth masses
in the case of ice giants up to many Jupiter masses at the high
end—depending upon when runaway accretion occurs relative
to the lifetime of the gas disk (Pollack et al. 1996). The dis-
persion in giant planet masses is thus plausibly larger than the
dispersion in the masses of planetesimal disks. In more detail,
however, we expect the masses and radial extent of planetesi-
mal disks to vary between systems, in a manner than is largely
unconstrained outside the solar system (where disk masses of
≈30–50 M⊕ are inferred; Tsiganis et al. 2005). A physical dis-
persion in disk properties would smooth the transition between
the planet–planet and planetesimal dominated regimes that we
have identified.

We have also assumed that purely N-body dynamics dom-
inates the evolution. Is the neglect of gas disk interactions
(including migration, accretion, and damping or excitation of
eccentricity) justified? This depends upon how the timescale
for dynamical instability compares to the local gas dispersal
timescale. Using our initial conditions the onset of dynamical in-
stability typically requires a timescale of the order of 105 years,
though there are some systems that become unstable much more
rapidly. Both observations (Simon & Prato 1995; Wolk & Walter
1996) and models (Alexander et al. 2006; Chiang & Murray-
Clay 2007) peg the global disk dispersal timescale at ∼105

years, and gas is likely to disperse locally from any particular
radius substantially more rapidly. Thus, very rapid instabilities
probably do occur in the presence of residual gas (Moeckel et al.
2008), but most take place in an almost gas-free environment.

The fact that the neglect of gas is (almost) self-consistent is, of
course, a restatement of our initial planetary separations, which
were chosen precisely to yield mostly late-onset instability. As
we have noted, the relatively widely spaced planets we start with
also yield (especially in the presence of disks) stable systems,
which have quite different dynamical properties. This causes
difficulties if we try to envisage physically motivated initial
conditions that can explain the observed properties of extrasolar
planets. Matching the eccentricity distribution requires that a
large fraction of planets start in unstable configurations, but
this can only be achieved for systems that start in configurations
slightly more compact than those we have assumed. The neglect
of gas may be harder to justify in that case. Similarly, initial
conditions that start with several planets on long-term unstable
orbits are easiest to justify if the planets experienced a period
of resonant locking before finally detaching from resonance.

However, although there are plausible mechanisms that might
first establish and then break a resonant lock (Adams et al.
2008; Lecoanet et al. 2009), it is hard to see why the lock
should typically be broken close to the epoch when the gas is
dispersed (possibly variations in the strength of turbulence when
a weak disk becomes well ionized may play a role). We have
no solutions to these puzzles, but they alert us to the possibility
that the typical properties of extrasolar planets at larger orbital
radii may be determined largely by a changing mixture of stable
and unstable initial conditions. As we have emphasized, the
presence of stable initial configurations results in a very high
resonant fraction among massive planets, and this is likely to be
the most distinctive observational signature that such systems
exist.

Finally, we note that parallel (and possibly more powerful)
constraints on models of the type we have proposed are available
via the study of dust production and debris disks (Wyatt
2008). These aspects can be studied by coupling our dynamical
simulations to a collisional evolution model (Booth et al. 2009).
We plan to study this, along with the influence of the evolution
we have described on hypothetical terrestrial planets, in future
papers.
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