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ABSTRACT
A migrating planet can capture planetesimals into mean motion resonances. However, reso-
nant trapping can be prevented when the drift or migration rate is sufficiently high. Using a
simple Hamiltonian system for first- and second-order resonances, we explore how the capture
probability depends on the order of the resonance, drift rate and initial particle eccentricity.
We present scaling factors as a function of the planet mass and resonance strength to estimate
the planetary migration rate above which the capture probability drops to less than half. Ap-
plying our framework to multiple extrasolar planetary systems that have two planets locked in
resonance, we estimate lower limits for the outer planet’s migration rate, allowing resonance
capture of the inner planet.

Mean motion resonances are comprised of multiple resonant subterms. We find that the
corotation subterm can reduce the probability of capture when the planet eccentricity is above
a critical value. We present factors that can be used to estimate this critical planet eccentricity.
Applying our framework to the migration of Neptune, we find that Neptune’s eccentricity is
near the critical value that would make its 2 : 1 resonance fail to capture twotinos. The capture
probability is affected by the separation between resonant subterms and so is also a function
of the precession rates of the longitudes of periapse of both planet and particle near resonance.

Key words: celestial mechanics.

1 I N T RO D U C T I O N

Resonances can capture particles in slowly varying dynamical sys-
tems. For example, a planet migrating outward can trap planetesi-
mals in resonances exterior to it; as Neptune trapped the Plutinos in
the Kuiper belt (e.g. Fernandez & Ip 1984; Malhotra 1995; Hahn &
Malhotra 1999; Ida et al. 2000; Chiang & Jordan 2002; Zhou et al.
2002; Levison & Morbidelli 2003; Wyatt 2003). A planet migrating
inward can trap planetesimals or planets in resonances interior to
it (e.g. Quillen & Holman 2000; Kley et al. 2004). Dust spiralling
inward under dissipational forces can become trapped in exterior
mean motion resonances with a planet (e.g. Sicardy et al. 1993;
Dermott et al. 1994; Marzari & Vanzini 1994; Liou & Zook 1997;
Liou & Zook 1999; Ozernoy et al. 2000; Wilner et al. 2002; Deller
& Maddison 2005; Moro-Martin, Wolf & Malhotra 2005).

An elegant and predictive theory of resonant capture has been
developed for adiabatically varying non-chaotic integrable resonant
systems (Yoder 1979; Henrard 1982; Henrard & Lemaitre 1983;
Malhotra 1990), and for the same systems but varying with weak
non-conservative forces (Gomes 1997). This theory was first applied
to systems of tidally locked satellites (Borderies & Goldreich 1984;
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Peale 1986; Dermott, Malhotra & Murray 1988; Malhotra 1990).
However, this theory does not apply to systems that are near or in
the non-adiabatic regime, or are chaotic. Numerical explorations of
drifting and migrating systems have revealed differences between
measured capture probabilities and those predicted by the adiabatic
theory. For dust drifting under dissipational forces, small particles
can be drifting sufficiently fast that they are in the non-adiabatic
regime. In this case, the capture probability is reduced (e.g. Gomes
1995; Liou & Zook 1999). Numerical simulations of Neptune’s
migration show that if Neptune migrates rapidly, the capture prob-
ability of resonances is reduced (Ida et al. 2000; Friedland 2001;
Chiang & Jordan 2002).

In dynamical systems, chaotic motion can arise from the overlap
of resonances (e.g. Wisdom 1980). Mean motion resonances asso-
ciated with perturbations by a planet are made up of more than one
resonant perturbative term. Holman & Murray (1996) showed how
to predict the Lyapunov times of asteroids from the overlap of these
resonant terms. The complex behaviour of chaotic resonances could
influence the way they capture particles when they are varying (e.g.
Dermott et al. 1988; Tittemore & Wisdom 1990; Sicardy et al. 1993;
Marzari & Vanzini 1994; Quillen 2001). For example, Tittemore &
Wisdom (1990) found that the drifting chaotic resonances of the
Uranian satellites exhibited different behaviour from non-chaotic
resonances.

In this paper we strive to develop a general framework that will
allow us to better predict the capture probability of resonances. We
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would like to know when they are likely to capture and how the
capture probability depends on the drift or migration rate, reso-
nance order and strength, initial particle orbital elements, and size
and separation of subresonances. Some of these parameters depend
on the planetary properties and others depend on the particle prop-
erties. We would like a flexible framework that could be used to
place constraints on migrating planetary extrasolar systems and the
properties of the planets and planetesimals residing within them.
Previous works have shown how to predict the capture probability
as a function of initial particle eccentricity in the adiabatic limit
(e.g. Henrard 1982; Borderies & Goldreich 1984; Malhotra 1990;
Murray & Dermott 1999). Here we strive to understand two regimes
that have not been well explored for mean motion resonances. We
probe the non-adiabatic regime in which the drift rate is so fast
that the resonance can fail to capture. We also explore resonances
comprised of multiple resonant subterms.

Our approach is to understand the simplest Hamiltonian model
that can illustrate the dynamics of resonance capture. In Section 2
we formulate the problem in terms of an idealized Hamiltonian with
multiple resonant terms. By rescaling, this simple model allows dif-
ferent resonant systems to be treated in a similar way. In Section 3 we
consider the system with one resonant term and measure the capture
probability as a function of drift rate and initial particle momentum.
We extend previous analytical work by Friedland (2001) for the
first-order resonances and find general expressions that account for
trends exhibited by previous simulations (e.g. Wyatt 2003). In Sec-
tion 4 we measure capture probabilities for first- and second-order
resonances containing multiple resonant terms. In Section 5 we il-
lustrate how our framework can be applied to planetary systems. A
summary and conclusion follow. Appendix A lists coefficients for
common resonances so that drift rates can be predicted and com-
pared to numerical studies. Critical drift rates for dust particles can
be estimated using relations given in Appendix B.

2 H A M I LTO N I A N F O R M U L AT I O N

We employ the Poincaré coordinates

λ = M + �, γ = −�

and their associated momenta

L =
√

G M∗a, � =
√

G M∗a(1 −
√

1 − e2)

where M∗ is the mass of the star, λ is the mean longitude, M is the
mean anomaly, � is the longitude of pericentre, a is the semimajor
axis and e is the eccentricity. These variables are those describing
the orbit of a particle or planetesimal in a plane. The Hamiltonian
for the Keplerian system in these coordinates restricted to a plane is

H (L, λ; �, γ ) = − G M∗
2L2

− R

where R is the disturbing function that depends on the coordinates
of the particle and on the coordinates of the planet. The planet’s
semimajor axis and mass are denoted ap and mp, respectively. The
planet’s other coordinates are subscripted in the same way. The mean
motion of the particle n = λ̇ where λ̇ is the derivative with respect
to the time of λ.

Hereafter, we adopt a unit convention with distances in units of
the planet’s semimajor axis, ap, at a time t0. Time is put in units of√

a3
p/G M∗. We define µ to be the mass ratio µ ≡ m p/M ∗. At low

eccentricity, �/L ≈ e2/2, relating the momentum � to the particle
eccentricity. We often give the particle semimajor axis in terms of
the variable α ≡ ap/a if a > ap (external to the planet) and α ≡
a/ap for a < ap (internal to the planet).

The unperturbed Hamiltonian or that lacking the disturbing
function

H0(L, λ; �, γ ) = − 1

2L2
.

We consider the j : j − k exterior mean motion resonance (the planet
is an interior perturber). We perform a canonical transformation
using the mixed variable generating function

F2 = I [ jλ − ( j − k)λp]

leading to new variables

I = j L, ψ = jλ − ( j − k)λp

and a new Hamiltonian

H ′
0(I , ψ ; �, γ ) = −1

2 j2 I 2
− ( j − k)I np.

We now expand around the resonance. Let

� ≡ I − I0 (1)

and

1

j2 I 3
0

= ( j − k)np(t0).

Because we have adopted units np(t 0) = 1, we find I 0 = α−1/2/ j
where α = ap/a = [( j − k)/ j]2/3 on resonance, as expected. Our
Hamiltonian now reads

K0(�, ψ ; �, γ ) = constant − ( j − k)(np − 1)� − 3�2

2 j2 I 4
0

.

We can write the unperturbed Hamiltonian as

K0(�, ψ ; �, γ ) = a�2 + b� + constant

with coefficients

a = −3

2
j2α2

b = −( j − k)(np − 1). (2)

We now recover the disturbing function that is is traditionally
expanded as a cosine series of angles in orders of planet and particle
eccentricity. We keep the terms inducing precession of the longitude
of periapse and low-order terms (in eccentricity) containing ψ . The
full Hamiltonian is

K (�, ψ ; �, γ ) = a�2 + b� + c� +
k∑

p=0

δk,p�
(k−p)/2

× cos[ψ − (k − p)� − p�p] (3)

with coefficient

c = −µ2 f2α
1/2. (4)

We have used the approximation e2 ∼ 2�/L ∼ 2�α1/2. Here the
perturbation strengths, δk,p , are functions of α, j and Laplace coef-
ficients (see Murray & Dermott 1999). The c term describes secular
precession of the longitude of periapse and depends on the func-
tion f 2 given in the appendix by Murray & Dermott (1999) and
is evaluated at α with index j = 0. As have previous studies, we
have neglected the dependence of α on time as the planet migrates,
and cosine terms from the disturbing function expansion which
are expected to average to zero near resonance (e.g. Borderies &
Goldreich 1984; Peale 1986; Holman & Murray 1996; Murray &
Dermott 1999). The perturbation strengths depend on the planet
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Reducing probability of capture into resonance 1369

mass and eccentricity as δk,p ∝ µep
p . More detailed expressions are

listed in Appendix A.
The above canonical transformations are similar to those of Hol-

man & Murray (1996) except we have focused on resonances exte-
rior to a planet rather than those interior to it. We have also explicitly
kept the b� term. A system with a migrating planet would be de-
scribed by a time-dependent b coefficient. This allows us to explore
the dynamical behaviour as particles pass through resonances.

Holman & Murray (1996) showed that the above Hamiltonian is
similar to a periodically forced pendulum and that the overlap of
the different resonant terms of equation (3) can induce large-scale
chaotic behaviour. However, most previous explorations of resonant
capture have only considered one dominant resonant term. When
the migration rate is slow, the adiabatic theory developed by Yoder
(1979), Henrard (1982), Borderies & Goldreich (1984), Malhotra
(1990) and Murray & Dermott (1999) applies. In the next section
we explore this simpler situation, but allow the migration rate to be
fast or non-adiabatic.

3 P RO BA B I L I T Y O F C A P T U R E
I N A S I N G L E R E S O NA N C E

In this section we explore the simpler Hamiltonian containing only
one dominant resonant term. This situation would be appropriate if
the planet’s eccentricity is very small in which case the δk,0 term
dominates. The Hamiltonian (equation 3) including only this term
is

K (�, ψ ; �, γ ) = a�2 + b� + c�

+ δk,0�
k/2 cos (ψ − k� ). (5)

It is convenient to perform a canonical transformation with the gen-
erating function

F2 = J1

(
ψ

k
− �

)
+ J2ψ

leading to new variables

J1

k
+ J2 = �, φ = ψ

k
− �

J1 = �, θ = ψ

and a new Hamiltonian

K ′(�, φ; J2, ψ) = a

(
�2

k2
+ J 2

2

)
+

(
2a J2

k
+ b

k
+ c

)
�

+ bJ2 + δk,0�
k/2 cos(kφ). (6)

Note that J2 is conserved and is small for initial conditions near
resonance with small initial eccentricity (or �).

Dropping constant terms and setting b′ = (2a J 2 + b) + kc, the
Hamiltonian in equation (6) is

K ′(�, φ) = a

k2
�2 + b′

k
� + δk,0�

k/2 cos (kφ).

By rescaling momentum and time

�̄ =
∣∣∣∣ δk,0k2

a

∣∣∣∣
−2/(4−k)

�

τ = |δk,0|2/(4−k)

∣∣∣∣ a

k2

∣∣∣∣
(2−k)/(4−k)

t, (7)

we can write this as

K̄ (�̄, φ) = �̄2 + b̄�̄ + (−1)k�̄k/2 cos(kφ) (8)

where

b̄ = b′|δk,0|−2/(4−k)

∣∣∣∣ a

k2

∣∣∣∣
(k−2)/(4−k)

sign(a). (9)

We relate the drift rate ḃ from the migrating planet to that of our
scale-free system∣∣∣∣ db̄

dτ

∣∣∣∣ =
∣∣∣∣ ḃ

k

∣∣∣∣ |δk,0|−4/(4−k)
∣∣∣ a

k2

∣∣∣2(k−2)/(4−k)

. (10)

The form of the Hamiltonian in equation (8) is (excepting for factors
of

√
2)1 identical to that used to explore capture in the adiabatic limit

(e.g. Henrard 1982; Borderies & Goldreich 1984; Malhotra 1990;
Murray & Dermott 1999).

3.1 Capture probability as a function of drift rate and initial
momentum for first- and second-order resonances

We ask the following question. Above what drift rate (db̄/dτ ) does
the resonance fail to capture? The system behaves adiabatically
when it takes longer than an oscillation period for the system to
pass through the resonance. For low initial momentum, the width
of the resonance is ∼1, and the period of oscillation is ∼1. Con-
sequently, we expect the system would evolve adiabatically when
|db̄/dτ | 	 1. To go beyond this limit and estimate the probability
of capture as a function of drift rate in the non-adiabatic regime,
we would need to find solutions to Hamilton’s equation. It is non-
trivial to find solutions to the equations of motion for equation (8)
when b̄ is a function of time and the system is not varying adia-
batically (e.g. Friedland 2001). Consequently, we have integrated
Hamilton’s equations of motion numerically to explore the non-
adiabatic regime. Once we numerically understand the behaviour of
the scale-free Hamiltonian (equation 8), we can make predictions
for systems in the same form using the factors of equation (7).

Our procedure for numerical integration is as follows. Hamil-
ton’s equations for equation (8) are integrated using a conventional
Burlisch–Stoer numerical scheme. The initial angle is chosen ran-
domly. We assume that b̄ is proportional to time so that only one
parameter db̄/dτ specifies the time dependence of the system. To
ensure that the particles were initially outside resonance, we require
the initial value of |b̄| to exceed 1. The parameter b̄ was initially
chosen to be ∼−15, well outside the resonance. The system passes
through resonance when b̄ ∼ 0 so the time-scale until capture is
t capture ∼b init (db/dτ )−1. The system is integrated at least twice the
capture time. Two sample integrations are shown in Fig. 1. Fig. 1(a)
shows an integration illustrating a particle that is captured into res-
onance and Fig. 1(b) shows one where no capture takes place.

In the adiabatic limit, the capture probability is 1 when the initial
particle eccentricity is smaller than a limiting value, elim, which de-
pends on the order and width of the resonance (e.g. Henrard 1982;
Borderies & Goldreich 1984; Malhotra 1990; Murray & Dermott
1999). However, when the drift is not adiabatic, the capture proba-
bility could depend on the initial particle eccentricity (or momentum
�̄) even when it is below this limiting value. Consequently, we mea-
sured capture probability as a function of both drift rate (db̄/dτ )
and initial particle momentum. For each value of drift rate and ini-
tial momentum, we integrated the system 100 times (each time with
a different randomly chosen angle) to measure a capture probability.

1 By rescaling our momentum by a factor of 2k+2/(4−k), the Hamiltonian
becomes �̄2 + b̄� + (−1)k2(k+2)/2�̄k/2 cos(kφ) as by Murray & Dermott
(1999).

C© 2005 The Author. Journal compilation C© 2005 RAS, MNRAS 365, 1367–1382



1370 A. C. Quillen

 0
 2
 4
 6
 8

 10
 12
 14

 0  5  10  15  20  25  30  35  40

Γ

τ

 0
 1
 2
 3
 4
 5
 6

φ

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25

Γ

τ

 0
 1
 2
 3
 4
 5
 6

φ

Figure 1. (a) This integration shows a resonant capture. We show different behaviour for the drifting system with one resonant term, equation (8), as it passes
through resonance. For these integrations the resonance is first order (k = 1), and the initial momentum �̄(t0) = 10−4. The solid lines show �̄. The dots show
the resonant angle φ. After capture at a time τ ∼ 15, the resonant angle librates about π and the momentum �̄ slowly increases. The rate of increase is set by
the drift rate; for this integration db̄/dτ = 1. (b) No capture takes place in this integration, which has a higher drift rate of db̄/dτ = 2.3. The resonant angle
φ circulates during the entire integration. The momentum oscillates about a fixed value before and after resonance. There is an increase or jump in the mean
momentum as the system passes through resonance at τ ∼ 10.

After the system captures, the momentum increases with time (see
Fig. 1a) and the resonant angle φ librates about a fixed value (0 or
π) rather than circulating. If no capture takes place, the momentum
jumps as the system pass through resonance (see Fig. 1b). When
the momentum increases to a value exceeding the resonance width
(approximately 1 as we have rescaled the Hamiltonian) we identify
the system as having captured into resonance. We used a limiting
value of � = 5 to identify captures. In resonance, the angle librates
around a fixed value. The condition φ̇ ∼ 0 implies that ∂K/∂�̄ ∼ 0,
and �̄ ∼ −b̄/2 in resonance. We use this condition to ensure
that we integrate Hamilton’s equations long enough that the mo-
mentum crosses our limiting momentum value when the resonance
captures.

Figs 2 and 3 show capture probabilities that we have measured
numerically for first- and second-order resonances (k = 1 and 2). In
the adiabatic limit for �̄(t0) below 3/2 for k = 1, or 1/8 for k = 2, the
capture probability isone.2 Above these limiting initial momentum
values, the capture probability is less than 1 in the adiabatic limit.
For �̄(t0) = 2.3, shown as stars in Fig. 2, above the limiting value
of �̄0,lim = 1.5, we see that the capture probability never reaches 1.
At lower drift rates, the capture probability approaches a constant
value for this initial condition, consistent with the prediction in the
adiabatic limit. The same behaviour is seen for k = 2 with initial
momentum �̄(t0) = 1 (shown as stars in Fig. 3). This momentum is
eight times the limiting value which ensures capture in the adiabatic
limit.

To quantify the width of the probability function, we have fit a
function to the capture probability

p(u) = 0.5

[
1 − tanh

(
u − u1/2

w

)]

as a function of u = log10|db/dτ |. Here u1/2 is the log of the drift rate
at which the capture probability is 1/2, and w describes the width of
the drop. For large w, the slope is shallow; for small w, the drop is a
steep function of the drift rate. The drift rates, at which the capture
probability is half and a quarter, and the widths of the probability

2 Our momentum is half or quarter times that of Murray & Dermott (1999)
for k = 1 and k = 2, respectively. Murray & Dermott (1999) list critical
momentum values of 3 and 1/2. These critical values are used to find the
maximum particle eccentricity, elim, that ensures capture in the adiabatic
limit (Henrard 1982; Borderies & Goldreich 1984; Malhotra 1990).
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Figure 2. Capture probabilities for a Hamiltonian system equation (8) with
one first-order (k = 1) resonant term as a function of drift rate |db̄/dτ |
and initial momentum �̄(t0). Note that low �̄(t0) corresponds to low initial
eccentricity. The thick and thin solid lines show the capture probability
for �̄(t0) = 10−4 and 10−1, respectively. The squares and stars show the
capture probability for �̄(t0) = 1 and 2.3, respectively. In the adiabatic limit
for �̄(t0) < 1.5 the capture probability is 1. For �̄(t0) = 2.3 the capture
probability is intermediate for low drift rates and approaches a constant
value as the system becomes more adiabatic. For initial momentum low
(10−4) the transition between 100 per cent capture and 0 per cent capture is
extremely sharp. We find that if the initial momentum is ∼1, then there is a
regime or a range of drift rates where the capture probability is intermediate.
With a change of scale, all first-order resonances can be put in the form
of equation (8). Consequently, the probabilities shown here can be used to
estimate the capture probability in the non-adiabatic limit for any migrating
first-order resonance.

functions are shown as a function of initial momentum in Figs 4 and
5 for first- and second-order resonances, respectively. For initial
momentum sufficiently low (e.g. 10−2 for k = 1 and 10−6 for k =
2), the drift rate at which the probability is half approaches a limiting
value. The steepness of the transition between 100 per cent capture
and 0 per cent capture is narrower in its range of drift rates at lower
values of initial momentum. The lower the initial momentum, the
sharper the transition between a capture probability of 1 and zero.
A sharp transition is reached at a lower initial momentum for k = 2
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Figure 3. Similar to Fig. 2 except for the second-order resonances (equation
8 with k = 2). The thick, intermediate and thin solid lines show the capture
probability for �̄(t0) = 10−6, 10−4 and 10−2, respectively. The squares and
stars show the capture probability for �̄(t0) = 0.1 and 1.0, respectively.
Capture is ensured in the adiabatic limit for �̄(t0) < 1/8. As was true for
the first-order resonances, the transition between capture and no capture is
steeper (covering a narrower range in drift rate) for low initial momentum.
For second-order resonances, the drift rate for a capture probability of 0.5
depends on the initial momentum.

than in the k = 1 case. For initial momentum near �̄0,lim, the limiting
value ensuring capture in the adiabatic limit, there is a regime or a
range of drift rates where the capture probability is intermediate. In
other words, for �̄(t0) ∼ 1 the widths w ∼ 1.

We now consider the situation where the transition between a
probability of 1 and 0 is sharp. This is true for initial momentum
�̄(t0) � 10−2 and 10−6 for k =1 and for k =2, respectively. For these
initial momenta we measure the critical drift rate where the transition
takes place. From our numerical integrations, the dynamical system
fails to capture for drift rates faster than∣∣∣∣ db̄

dτ

∣∣∣∣
crit

∼ 2.0 for k = 1

∼ 0.25 for k = 2.

(11)

For first-order resonances the drift rate for a capture probability of
half is not strongly dependent on the initial momentum as long as this
lies below �̄0,lim. However, for second-order resonances when the
initial momentum �̄(t0) ∼ 1, the capture probability of half occurs
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Figure 4. (a) The drift rate at which the probability of capture is half (stars) and quarter (squares) as a function of initial momentum (�̄(t0) ) for first-order
resonances (k = 1). The x-axis shows log10 �̄(t0). The y-axis shows log10 |db̄/dτ |. (b) Width of the drop in probability as a function of initial momentum.

at a drift rate that is about 10 times that at low initial momentum.
We have approximated the dependence of the half probability drift
rate on the initial momentum with the following function (shown as
a dotted line in Fig. 5)∣∣∣∣ db̄

dτ

∣∣∣∣
1/2

∼ 0.25

[
1 + �̄(t0)

3 × 10−5

]0.25

. (12)

The power, 0.25, is not necessarily theoretically meaningful. This
function is a reasonable match to the measured points of Fig. 5
for initial momentum �̄(t0) � 1. For higher initial momentum,
�̄(t0) � 4, the probability of capture never exceeds half. This initial
momentum (4) exceeds �̄0,lim by a factor of 32.

In the adiabatic limit, the probability of capture drops as a func-
tion of increasing momentum (or eccentricity) when the initial mo-
mentum is above �̄0,lim. However, the probability drops faster for
first-order resonances than for second-order resonances (Hahn &
Malhotra 1999). In the adiabatic limit, the probability of capture for
a first-order resonance drops to half for �̄(t0) ∼ 2.3 (less than twice
the limiting value of 1.5), whereas for second-order resonances the
probability of capture drops to half for �̄(t0) ∼ 4 or 32 times the
limiting value.

Using the critical drift rates for db̄/dτ (equation 11) we can in-
vert equation (10) to determine which resonances can capture at a
particular drift rate. We find that resonances are likely to capture for
ḃ slower than the critical rates-

|ḃcrit| ∼ 2|δ1,0|4/3|a|2/3 for k = 1

∼ 0.5δ2
2,0 for k = 2. (13)

Using equation (2) to replace ḃ with the planet’s mean motion

|ṅ p,crit| ∼ 2( j − 1)|δ1,0|4/3|a|2/3 for k = 1

∼ 0.5( j − 2)δ2
2,0 for k = 2. (14)

For second-order resonances, the rate given above can be modified
by the function given in equation (12) to estimate the rate at which
the probability is half as a function of initial momentum

|ṅ p,1/2| ∼ 0.5( j − 2)δ2
2,0

(
1 + α−1/2e2

0a

2.4 × 10−4δ2,0

)0.25

(15)

where e0 is the initial particle eccentricity. This is expression is valid
for initial particle eccentricities smaller than e0 � 10e lim where elim

is the eccentricity limit ensuring capture in the adiabatic limit. An
expression for elim is given in Appendix A. The factor of 10 comes
from the range covered by the function shown in equation (12). The
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Figure 5. (a) The drift rate at which the probability of capture is half (stars) and quarter (squares) as a function of initial momentum for second-order resonances
(k = 2). The x-axis shows log10 �̄(t0). The y-axis shows log10 |db̄/dτ |. The dotted line shows the function given in equation (12). (b) Width of the drop in
probability as a function of initial momentum.

curve shown in Fig. 5 is a reasonable match up to � (t 0) ∼ 1, which
is approximately 10�̄0,lim.

The above relations (equations 14 and 15) allow us to estimate the
likelihood of resonance capture in different astronomical settings.
The strength of the perturbative cosine terms (δk,p) is proportional
to the planet’s mass or µ; however, the critical drift speed depends
on µ4/3 for k = 1 and on µ2 for k = 2. We see that the critical drift
rates for capture are strong functions of the planet mass and this is
particularly true for the second-order resonances. Slower drift rates
are required to allow resonant capture for lower-mass planets.

The dependence of critical drift rate on planet mass provides a
qualitative explanation for some features of numerical simulations
which start with particles in initially low eccentricity orbits. The
above relation predicts that only more slowly drifting particles will
be able to capture into higher-order resonances. We can understand
why the 5 : 3 resonance requires slower migration rates than the 2 :
1 and 3 : 2 resonances to capture in the simulations of Wyatt (2003).
Although we have integrated a time-dependent Hamiltonian sys-
tem, we can expect similarities between this system and the slowly
drifting non-conservative systems. Simulations of dust drifting in-
ward via dissipative forces tend to show that larger dust particles
are captured into higher-order resonances than smaller particles (e.g.
Marzari & Vanzini 1994; Liou & Zook 1999). This follows because
small particles drift faster than larger ones and the higher-order res-
onances require slower drift rates to capture.

Using results of simulations of Neptune’s migration, Ida et al.
(2000) proposed that the critical drift rate depended on planet mass
to the 4/3 power. They restricted their study to k = 1 resonances
so their prediction is consistent with our previous equation. This
power dependence was confirmed with analytical work by Friedland
(2001), also for the k = 1 resonance, and numerical work by Wyatt
(2003). We confirm the steeper dependence on planet mass of the
5 : 3 resonance capture probability measured numerically by Wyatt
(2003) and specifically predict that the critical drift rate is ∝ µ2

for second-order resonances. The relation for the critical drift rate
(equation 14) is both consistent with and more general than the
scaling found by these previous studies. Because we have related
the critical drift rate (via scaling) to the resonance strengths, the
formulation given here can be applied to any first- or second-order
mean motion resonance.

Here we have also found that the probability of capture when the
drift is not adiabatic is a non-trivial function of initial particle ec-
centricity. The transition between a probability of 1 and 0 becomes
smoother (covering a larger range of drift rates) as the initial mo-

mentum approaches the minimum value ensuring capture in the adi-
abatic limit (see Figs 2–5). For first-order resonances, the mid-point
drift rate (corresponding to a probability of capture of half) does not
significantly depend on the initial particle eccentricity. However,
for second-order resonances the mid-point is at a higher drift rate
when the initial momentum or particle eccentricity is higher. The
increase in drift rate with initial particle eccentricity allowing cap-
ture for second-order resonances was described previously by Hahn
& Malhotra (2005). However, we do not predict the same depen-
dence on resonance width and planet mass. This is because we have
restricted our study to initial particle eccentricity near or below elim,
and Hahn & Malhotra (2005) considered initial particle eccentricity
exceeding elim.

Our estimate for the critical drift rate above (equation 14) is appro-
priate for a wide range of initial particle eccentricities for first-order
resonances (as long as they are below the limiting value, elim). The
half probability drift rate’s dependence on the initial particle eccen-
tricity can be estimated for second-order resonances using equa-
tion (15) when the initial particle eccentricity is lower than ∼10
times elim. The framework we provide here can be used to estimate
the half probability drift rate for any second-order resonance.

Numerical studies report intermediate probabilities for capture
into first-order resonances from simulations (Ida et al. 2000; Quillen
& Holman 2000; Chiang & Jordan 2002; Wyatt 2003). By interme-
diate, we mean not close to zero or 1, or at a ∼50 per cent level. Here
we have found that the dynamical system described by equation (8)
for k = 1 with only a single resonance term has a limited range of
drift rates where the capture probability is intermediate, unless the
initial particle momentum �̄ is of order 1. This regime corresponds
to an initial particle eccentricity within a factor of a few of elim, the
limiting value ensuring capture in the adiabatic limit. The limiting
eccentricity depends on the resonance strength, and planet mass to
the power k/(4 − k) (using the square root of the scale-free mo-
mentum in equation 7; Malhotra 1990; Murray & Dermott 1999).
For weaker resonances, the initial particle eccentricity limit is more
restrictive. It is possible that some of the numerical simulations are
effectively in the regime of intermediate capture for certain reso-
nances because of their initial particle eccentricity distribution. We
return to this issue in later sections as we identify other regimes of
intermediate capture probability for first-order resonances.

Although the limiting eccentricity is smaller for second-order res-
onances, the probability of capture drops more slowly in the adia-
batic limit as a function of initial particle eccentricity at values above
elim. Furthermore, because the half probability drift rate increases

C© 2005 The Author. Journal compilation C© 2005 RAS, MNRAS 365, 1367–1382



Reducing probability of capture into resonance 1373

with initial particle eccentricity (equation 15), higher eccentricity
particles can be captured at higher drift rates than lower eccentricity
particles (as pointed out by Hahn & Malhotra 2005). This also im-
plies that the second-order resonances have a larger regime in both
range of initial eccentricity and drift rate where the probability of
capture is intermediate.

4 RO L E O F A N A D D I T I O NA L
R E S O NA N C E T E R M

We now consider the differences in the dynamics of capture caused
by the addition of a secondary resonant term for a first-order reso-
nance. We rescale the momenta and time for the Hamiltonian given
in equation (A1) for k = 1 according to equation (7). This gives us
unitless momenta and time

K̄1(�̄, ψ ; �̄, γ ) = �̄2 + b̄�̄ + c̄�̄

−�̄1/2 cos(ψ − � ) + ε̄ cos(ψ − �p) (16)

where

ε̄ = |δ1,1||δ1,0|−4/3|a|1/3

c̄ = c|δ1,0|−2/3|a|−1/3sign(a). (17)

The coefficients that can be adjusted are the width of the second
resonance compared to the first (set by ε̄) and the separation between
the two resonances (set by c̄). Variation in �̇p can be absorbed into
our coefficient c̄. The term proportional to cos (ψ − � ) is often
called the e-resonance because �1/2 ∝ e. The other term can be
called an e′-resonance or a corotation resonance because it does not
depend on the particle’s longitude of perihelion or � .

Because the corotation resonance does not depend on �̄, it does
not grow in volume as the planet migrates. Were we to allow α to
depend upon time, the resonance width would grow slightly but not
significantly as the planet migrates. Because the resonance volume
in phase space does not grow as the planet migrates, this resonance
should not capture particles (Yoder 1979). However, when this reso-
nance overlaps the other, the system can exhibit large-scale chaotic
behaviour (Holman & Murray 1996). Hence, the coupling of the
two resonant terms may influence the probability of capture into the
e-resonance.
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Figure 6. The Hamiltonian system with two resonant terms can also exhibit temporary captures. Here equation (8) is integrated as it passes through resonance
with ε̄ = 1.8, db̄/dτ = 0.5, c̄ = 0.9 and �̄(t0) = 10−4. The momenta �̄ and �̄ are shown as solid and dotted lines, respectively.

We now ask what is the capture probability of the above Hamil-
tonian as a function of drift rate, db̄/dτ , and secondary perturbation
strength, ε̄? To answer this question we numerically integrate equa-
tion (16), for different parameters db̄/dτ and ε̄. In this section we
work in the limit of low initial particle momentum. This ensures that
the probability of capture is 1 in the adiabatic limit and that the tran-
sition between capture and no capture would be a sharp transition
of drift rate in the case of a single resonance.

Our procedure for numerical integration is the same as described
in the previous section. Initial angles are randomly chosen. Initial
momenta (�̄, �̄) are set to small values to ensure a sharp transition
when ε̄ = 0 and the initial momentum are small. The parameter b̄
is initially chosen to be ∼ −15. For each value of db̄/dτ and ε̄ we
integrated the system 100 times to estimate a resonant capture prob-
ability. After the system captures, the momenta variables increase
with time and the resonant angle φ = ψ − � librates about a fixed
value. If no capture takes place, the momenta jump as the system
passes through resonance.

The coupled two-dimensional system exhibits different dynamics
from the one-dimensional system considered in the previous section.
For example, the resonance can capture for a short period of time,
a trajectory we refer to as a temporary capture. An example of a
simulation that illustrates a temporary capture is shown in Fig. 6.
We find that temporary captures tend to occur for larger values of
ε̄ and drift rate. Quillen (2001) previously showed that temporary
capture was exhibited by overlapped resonances using a similar
drifting Hamiltonian model.

During a temporary capture, the momenta increase. This also
happens if the particle is captured. As in the previous section, we
identify a capture if the momentum at the end of the integration
exceeds a value of 5. However, we then reclassify the integration as
a temporary capture if the momenta lie below that expected from
a particle still in resonance. These two situations can be differenti-
ated because a particle in resonance has momentum proportional to
the time since capture. Temporary captures are excluded when we
calculate the capture probability. However, were we to integrate the
systems longer, it is possible that a particle identified on a short time-
scale as captured would later drop out of resonance. In other words,
the precise fraction of captures is dependent on the time-scale over
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Figure 7. The capture probability for a first-order resonance (k = 1) is
shown as a function of drift rate |db̄/dτ | and strength of secondary reso-
nance ε̄. Contours are shown at probabilities of 0.15, 0.35, 0.55, 0.75 and
0.95. The numbers 0.0 and 1.0 at the top-right and lower-left, respectively,
are placed to make it clear where the probability of capture is near zero and
near 1. Equation (16) was numerically integrated with resonance separa-
tion c̄ = 0 and low initial momentum �̄(t0) = 10−4. Each probability was
measured from 100 different trials with randomly chosen initial angles. The
x-axis shows log10 |db̄/dτ | and the y-axis shows log10(ε̄). For low values
of corotation perturbation strength, ε̄, the transition between capture and no
capture occurs at the critical value of db̄/dτ estimated for the case of a single
perturbation. Near the critical drift rate, the additional resonant perturbation
can cause a moderately large region with an intermediate probability of cap-
ture. At lower drift rates, the corotation resonance prevents capture for ε̄ � 1.
To the upper right in this plot (large drift rates and large ε̄ values), temporary
capture can take place, making it more difficult to measure absolute capture
probabilities.

which we have integrated these systems and the value of momen-
tum that we have used as a limit to identify captures. This makes our
capture probability numerical measurements uncertain primarily at
high values of drift rate |db̄/dτ | � 1 and large secondary pertur-
bation strength ε̄ � 1, the regime where we have found temporary
captures to be more common.

In Fig. 7 we show a contour plot of the resonant capture probability
for k = 1, initial �̄(t0) = 10−4 and resonance separation c̄ = 0.
For high values of the drift rate and low values of the secondary
perturbation, ε̄ (on lower right in these contour plots), the transition
between capture and no capture is sharp and occurs at the critical
drift rate measured in the previous section. However, for lower drift
rates and higher values of ε̄ the resonance fails to capture for ε̄ � 1.
For low drift rates, the transition between capture and no capture
is also sharp, but is a function of ε̄ instead of drift rate. There are
two regimes: that where the drift is so fast that it fails to capture,
and that where the corotation resonance is so large that it prevents
capture.

For first-order resonances we consider the possibility that ε̄ could
be of order 1. Because ε̄ ∝ |δ1,0|−4/3, |δ1,0| ∝ µ and |δ1,0| ∝ µep,
the coefficient ε̄ ∝ µ−1/3ep. For small planet mass µ we see that
the rescaled secondary perturbation strength could be high even at
moderate planet eccentricity ep. The coefficient ε̄ could be of order
1 particularly if the planet eccentricity is moderate.

Why is it that for ε̄ � 1 the e-resonance fails to capture parti-
cles? A possible explanation is that an increase in �̄ caused by the
corotation reduces the capture probability, in the same way that
an increase in the initial momentum value does. We would ex-
pect that an increase of initial momentum of size ∼1 caused by
the corotation resonance when ε̄ ∼ 1 would strongly reduce the
capture probability. This is consistent with the limiting value of
ε̄ � 1 for capture. This qualitative explanation is also consistent

with the lack of dependence of the critical value of ε̄ on drift rate
(see Fig. 7) at drift rates |db̄/dτ |<1. We suspect that the corotation
resonance prevents capture into the e-resonance because the corota-
tion resonance raises the particle eccentricity during the resonance
encounter. If this were true, then we would expect that the capture
probability would be influenced by the resonance separation. Up
to this point we have only considered resonances with separation
c̄ = 0.

4.0.1 Separated first-order resonances

To further explore the role of multiple resonant terms, we consider
the situation when the resonance separation is non-zero (c̄ not small).
The order in which the subresonances are encountered as the system
drifts can be determined by considering the two resonant angles
ψ − � and ψ − � p. The time derivative ψ̇ − �̇ = jn − ( j −
1)np −�̇ . As the planet migrates outward np drops. For �̇ > �̇p the
time derivative of the corotation resonant angle crosses zero first.
For c̄ > 0 (corresponding to c < 0 and a positive precession rate for
the longitude of periapse), the corotation resonance is encountered
first by a particle exterior to a planet as the planet migrates outward.
This is what is expected for external resonances in a single planet
system where the precession rate of the planet’s longitude of periapse
�̇p = 0 and �̇ > 0 because of secular precession induced by the
planet.

We consider which resonance is encountered first for other drift-
ing systems. Dust particles migrating inward and exterior to a planet
would encounter the resonances in the same order, corotation res-
onance first as long as �̇ > �̇p. Here n is increasing, whereas for
the planet migrating outward np was decreasing. A particle located
internal to a planet that is migrating inward would also encounter
the resonances in the same order when �̇ > �̇p; in this case, we
consider ( j + 1)np − jn − �̇ and ( j + 1)np − jn − �̇p with np

increasing.
We can compare the width of the corotation resonance to the

separation between them. For the e-resonance, the libration width
in �̄ depends on the particle eccentricity or �̄. However, because
the corotation term does not depend on �̄, the corotation resonance
width can more easily be estimated as ��̄ ∼ √

ε̄. For

|c̄| �
√

ε̄,

the two resonances must overlap. Because c̄ ∝ µ and
√

ε̄ ∝
e1/2

p µ−1/6, strong resonances are likely to overlap for small planet
masses unless the planet eccentricity is extremely small. Because
the two resonant terms differ in sign, they have fixed points at dif-
ferent angles, and they are expected to interfere when overlapped
even if only slightly separated.

We have found that a non-zero value of c̄ does change the prob-
ability of capture. Fig. 8 shows numerical measurements similar to
those of Fig. 7 but for c̄ = ±0.1. For c̄ < 0 (Fig. 8a) the corota-
tion resonance is encountered after the e-resonance. The onset of
the corotation resonance can knock the particle out of resonance,
following capture into the e-resonance. For c̄ > 0, the corotation
resonance is encountered first as the planet migrates (Fig. 8b). The
capture probabilities are primarily modified at low drift rates where
higher values of ε̄ are required to reduce the probability of capture.
It is not obvious why this is the case. From individual integrations
we note that the frequency c̄ sets an oscillation period that is longer
for smaller values of c̄. Holman & Murray (1996) found that c̄ sets
the Lyapunov time of the resonance. So, for an overlapped system
we might expect more highly chaotic behaviour for larger values
of c̄, particularly at low drift rates. Oddly higher values of c̄ at
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Figure 8. (a) Same as Fig. 7 except the resonance separation c̄ = −0.1. The frequency of the corotation term is shifted so that this resonance is encountered
after the e-resonance. The onset of the corotation resonance can kick the particle out of resonance. (b) Same as Fig. 7 except the resonance separation c̄ = 0.1.
The frequency of the corotation term is shifted so that this resonance is encountered first. At lower drift rates, larger ε̄ is required to prevent captures. These
figures show that the subresonance separation can influence the capture probability. The subresonance separation is set by the difference between the planet
and particle’s precession rate of longitude of periapse.

low drift rates seem to stabilize the system, requiring higher values
of the corotation resonance strength to kick the particle out of the
e-resonance.

For c̄ < 0 (as shown in Fig. 8b) the corotation resonance is en-
countered after the e-resonance, and consequently the corotation
resonance is encountered after the e-resonance captures a parti-
cle. If the corotation resonance is strong it can knock the particle
out of resonance. For larger separations, c̄ ∼ 1, temporary cap-
tures are frequent at large ε̄. The extended low probability con-
tours on the top end of Fig. 8(b) are in part a result of temporary
captures.

4.1 Second-order resonances

When the resonance is second order it contains three subterms (see
equation 3). The first term ∝ �cos (ψ − 2� ) and can be called
(e.g. Murray & Dermott 1999) the e2-resonance because � ∝ e2

at low eccentricity. The second term ∝ep�
1/2 cos(ψ − � − � p)

and can be called an ee′-resonance. The third term ∝ e2
p cos(ψ −

2� p) can be called a corotation or e′2-resonance. Because the coro-
tation term does not depend on �, its volume in phase space does
not grow as the planet drifts and it should not be able to capture
particles. However, as was true for the first-order resonance, this
resonant term can prevent the other resonant terms from capturing
particles. When the corotation term is not large, both the e2- and
ee′-resonances can capture particles. Because it is ∝ �1/2, the ee′

term behaves like a first-order resonant term, whereas the e2 term,
∝ �, is a second-order term. In the previous section we found that
first-order resonances captured at a higher drift rate than the second-
order term and did not require as low initial momenta to exhibit a
sharp transition between capture and no capture. The critical drift
rate for first-order terms is ∝ µ4/3 and for second-order terms ∝ µ2,
a much steeper function of planet mass. Consequently, it is possible
that the ee′ resonant term will capture particles and the e2-resonance
will not capture particles even when the planet eccentricity
is low.

We first consider the situation where the e2-resonance is domi-
nant. Taking k = 2 terms from equation (3), we rescale the Hamil-
tonian as follows

K̄ξ �̄, ψ ; �̄, γ ) = �̄2 + b̄ξ �̄ + c̄ξ �̄ + �̄ cos(ψ − 2� ) − ξ̄ �̄1/2

× cos(ψ − � − �p) + ε̄ξ cos(ψ − 2�p) (18)

where

�̄ =
∣∣∣∣ δ2,0

a

∣∣∣∣
−1

�

τ = |δ2,0|t
c̄ξ = c|δ2,0|−1sign(a)

b̄ξ = b|δ2,0|−1sign(a)

ξ̄ = |δ2,1||δ2,0|−3/2|a|1/2

ε̄ξ = |δ2,2||δ2,0|−2|a|.
The coefficients that can be adjusted are the strength of the ee′-

resonance (set by ξ̄ ), the strength of the corotation resonance (set by
ε̄ξ ), and the separation between the resonances (set by c̄ξ ). Because
the precession rate c ∝ µ and the perturbation strength δ2,0 ∝ µ we
find that the resonance separation (c̄) does not depend on the planet
mass. This implies that the subterms could be well separated. This is
different from the first-order resonances that have c̄ ∝ µ1/3, which
implies that the resonance subterms are often overlapped.

The ee′-resonance strength ξ̄ ∝ µ−1/2ep. Because this depends
on a negative power of µ, at low planet masses and at high planet
eccentricities it is possible that ξ̄ > 1. In this case the ee′-resonance
could be dominant, and we would rescale momentum and time as we
did for a first-order resonance. In this case we could work with the
Hamiltonian (equivalent to the previous one except for the rescaling)

K̄χ (�̄, ψ ; �̄, γ ) = �̄2 + b̄χ �̄ + c̄χ �̄

+ �̄1/2 cos(ψ − � − �p)

− χ̄ �̄ cos(ψ − 2� ) + ε̄χ cos(ψ − 2�p) (19)

where

�̄ =
∣∣∣∣ δ2,1

a

∣∣∣∣
−2/3

�

τ = |δ2,1|2/3|a|1/3t

b̄χ = b|δ2,1|−2/3|a|−1/3sign(a)

c̄χ = c|δ2,1|−2/3|a|−1/3sign(a)

χ̄ = |δ2,0||δ2,1|−2/3|a|−1/3

ε̄χ = |δ2,2||δ2,1|−4/3|a|1/3. (20)

A comparison between equations (19) and (20) shows that

ξ̄ 2 = χ̄−3. (21)
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Figure 9. (a) The capture probability for a second-order resonance (k = 2) as a function of drift rate and ee′-resonance strength. This figure is similar to Fig. 7.
Equation (18) was numerically integrated with resonance separation c̄ξ = 0, no corotation term, ε̄ξ = 0, and initial momentum �̄(t0) = 10−6. Drift rate and
ξ̄ were varied. The x-axis is log10 |db̄ξ /dτ | and the y-axis is log10(ξ̄ ). For low ee′-resonance strength or ξ̄ � 10−3, the capture probability drops at a drift rate
consistent with the critical value measured in Section 3 for a single second-order resonance (equation 11). For larger values of the ee′ resonant term, ξ̄ , the
critical drift rate increases, depending upon ξ̄ . In this case the system fails to capture into the second-order e2-resonance and instead captures into ee′-resonance,
which behaves like a first-order resonance. (b) Equation (19) was numerically integrated with c̄χ = 0, ε̄χ = 0 and initial momentum �̄(t0) = 10−6. Drift rate
and χ̄ were varied. The x-axis is log10 |db̄χ /dτ | and the y-axis is log10(χ̄ ). Because χ = ξ−2/3, this figure covers large values of ξ , extending past the top of
(a). For low e2-resonance strength or ξ̄ � 10−1, the capture probability drops at a drift rate consistent with that predicted in Section 3 for a single first-order
resonance (equation 11). For χ̄ ∼ 0.5, there is a regime of drift rates with intermediate capture probability.

We suspect that the e2-resonance is more likely to capture when ξ̄

reaches a transitional value that we denote ξ̄trans. The ee′-resonance
may be more important when χ̄ � ξ̄

−2/3
trans . If ξ̄ � ξ̄trans, then we expect

second-order behaviour (ṅ p,crit ∝ µ2); otherwise, we expect first-
order behaviour (ṅ p,crit ∝ µ4/3). We note that the order in which the
resonances are encountered is also important. Here we numerically
measure a capture probability that does not specify which resonance
captures. If the drift rate is sufficiently slow that the e2-resonance
captures and this resonance is reached first, then this resonance will
dominate the capture probability.

As we did for the k = 1 resonances, we have measured the capture
probability for a range of coefficients and drift rates. Fig. 9(a) shows
the capture probability for the Hamiltonian of equation (18) with
varying drift rate, and ee′-resonance perturbation strength, ξ̄ , and
with no corotation term: ε̄ξ = 0. The resonances are not separated:
c̄ξ = 0. On the lower-left side of this plot, for weak ξ̄ we see capture
behaviour consistent with the pure second-order (k = 2) system
discussed in the previous section with only one resonant term. With
the variables defined in this section (which differ by a factor of k =
2 from those defined in equation 7) |db̄/dτ |crit = 0.5. The capture
probability ceases to depend on ξ̄ for ξ̄ � 10−2. Consequently, we
can estimate a transition value

ξ̄trans ∼ 10−2 (22)

valid for low initial particle momentum. For ξ̄ � ξtrans, the tran-
sition between capture and no capture occurs at faster drift rates
and the transition drift rate is a function of ξ̄ . For ξ̄ > ξ̄trans, the
system behaves like a first-order system, and because the pertur-
bation strength depends on ξ̄ we expect the transition drift rate
to depend on ξ̄ 4/3. This is consistent with the trend shown in the
upper right in Fig. 9(a). For large ξ̄ and at high drift rates, the
system can fail to capture into the e2-resonance but can be cap-
tured into the ee′-resonance. In short, for ξ̄ � ξ̄trans the system
behaves like a second-order system and tends to capture into the
e2-resonance; however, for ξ̄ � ξ̄trans the highly overlapped sys-
tem behaves like a first-order system and tends to capture into the
ee′-resonance.

Fig. 9(b) shows the capture probability for the Hamiltonian of
equation (19) with varying drift rate, varying e2-resonance pertur-

bation strength, χ̄ and with no corotation term: ε̄χ = 0. The reso-
nances are not separated: c̄χ = 0. This figure extends Fig. 9(a) to
ξ̄ > 1 because χ̄ = ξ̄−2/3. At small χ̄ the system critical drift rate is
independent of χ̄ and consistent with that measured in Section 3 for
a first-order resonance with |db̄/dτ |crit = 2. At this limit the system
behaves like a first-order resonance. The second-order regime is not
fully reached until ξ̄ ∼ ξ̄trans, which would correspond to χ̄ > 20.
However, for large values of ξ̄ we see that the critical drift rate does
begin to increases, consistent with a dependence of critical drift rate
on χ̄ (the second-order term dominates). In Fig. 9(b) where χ̄ ∼ 0.5
we see an extended region of drift rates corresponding to a regime of
intermediate capture probability. We have inspected individual in-
tegrations from this region and seen temporary captures and widely
varying or chaotic trajectories. The intermediate capture probabil-
ity measured is probably a result of interference between the two
similarly sized and overlapped e2- and ee′-resonances.

Fig. 9 shows integrations performed for low initial particle ec-
centricity [low �̄(t0)]. We discuss what we expect would happen
for higher initial particle momentum. The second-order resonance
is more strongly affected by the initial particle momentum. For
larger �̄(t0), the drop in probability at the bottom right in Fig. 9(a)
would occur at a faster drift rate and the drop would be smoother.
The contours would broaden and shift to the right, primarily at the
bottom of Fig. 9(a). The resonance behaves like a second-order
resonance at the top right of Fig. 9(b). So we expect a similar
broadening and shifting to the right of the contours at the top of
Fig. 9(b).

We now investigate the role of the corotation or e′2-resonance
term. When the e2 term is not important (as we have found ξ̄ � ξ̄trans),
the system is identical to that studied in the previous section for
k = 1 with two terms (equation 16). However, we can also study
the system for equation (18) as a function of ε̄ξ and with ξ̄ = 0 so
the corotation term is strong but the ee′-resonance is weak. Fig. 10
shows the capture probability for the Hamiltonian of equation (18)
with varying ε̄ξ drift rate, db̄/dτ , and with ξ̄ = c̄ξ = 0. We find here
that even moderate values of the corotation resonance strength ε̄ ∼
0.1 can significantly reduce the capture probability. The corotation
resonance can reduce the probability of capture for both first- and
second-order resonances.
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Figure 10. The capture probability for a second-order resonance (k = 2) as a
function of drift rate and corotation resonance strength. This figure is similar
to Fig. 7. Equation (18) was numerically integrated with c̄ξ = 0, ξ̄ = 0 and
initial momentum �̄(t0) = 10−6. Drift rate and ε̄ξ were varied. The x-axis is
log10 |db̄ξ /dτ | and the y-axis is log10(ε̄ξ ). At low values of ε̄ξ , the capture
probability drops at a value consistent with that predicted in Section 3 for
a single second-order resonance (equation 11). At ε̄ξ ∼ 1, the corotation
terms prevents capture into the e2-resonance.

4.1.1 Separated second-order resonances

As was true for the first-order resonances, we expect the capture
probability to depend on the resonant term separations and order
that the resonances are encountered. Fig. 11 shows the effect of
changing the resonance separation c̄ξ when the e2-resonance dom-
inates. Fig. 11(a) shows the case with widely separated resonances
when the e2-resonance is encountered first. We see that the transition
value of ξ trans is higher than when there is no separation (c̄ = 0).
When the e2-resonance is encountered afterward the transition value
of ξ trans is lower. The ee′-resonance interferes with the capture into
the e2-resonance to a higher degree when this resonance is encoun-
tered earlier. Fig. 12 shows the effect of changing the resonance
separation c̄χ when the ee′-resonance dominates. We find that the
region of intermediate capture probability at χ̄ ∼ 0.5 is smaller
when the resonances are separated than when c̄ = 0 (Fig. 9b).

5 A P P L I C AT I O N S

In this section we apply what we have learned above to two systems
involving capture into the 2 : 1 resonance. When the 2 : 1 resonance
is exterior (and capture particles as a planet migrates outward) the
e-resonance strength is reduced because of the indirect term. This
reduces the critical migration rate compared to that for other first-
order resonances. Because the corotation resonance is not affected
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Figure 11. Separated second-order resonances. (a) This figure is similar to Fig. 9(a) except c̄ξ = −1. The ee′-resonance is encountered after the e2-resonance.
(b) This figure is similar to Fig. 9(a) except c̄ξ = 1. The ee′-resonance is encountered before the e2-resonance.

by the indirect term, it is comparably strong. Consequently, even a
small planet eccentricity can reduce the capture probability. When
the 2 : 1 resonance is interior (and can capture for a planet migrating
inward) the indirect term reduces the strength of the corotation res-
onance instead of the e-resonance. In this case the 2 : 1 resonance
is strong and can capture at fairly high migration rates. We consider
two situations: the capture of twotinos into the 2 : 1 resonance by
Neptune migrating outward, and the capture of an inner extrasolar
planet into the 2 : 1 or 3 : 1 resonance by an inward migrating planet
exterior to it.

5.1 Capture of twotinos in the Kuiper Belt via Neptune’s
migration

In this section we consider the capture of Kuiper belt objects into
the 2 : 1 resonance by an outward migrating Neptune. We see from
Table 1 that the 2 : 1 external resonance has exceptionally large
values of ε̄ compared to the 3 : 2 and 4 : 3 resonances. This is
because δ1,0 is small because of the addition of the indirect term.

We first consider the critical migration rate allowing capture and
compare the one we predict here with that found from numerical
studies. Migration rates are often given in terms of the time it takes
to cross the range of radius covered during the entire migration. This
is typically a few astronomical units for Neptune’s migration (Ida
et al. 2000; Chiang & Jordan 2002). To compare migration rates to
the critical one estimated above, we must first convert rates into our
system of units. For G M
 = 1 and radii in units of Neptune’s semi-

major axis, aN, we multiply time-scales by
√

a3
N/GM
 = 26.1yr.

A migration rate of a few astronomical units in 107 yr corresponds
to ȧp ∼ 2.6 × 10−7(107yr/tmigrate). Because np ∝ a−3/2

p this corre-
sponds to ṅp ∼ 3.9 × 10−7(107yr/tmigrate). The critical planet mi-
gration rate (listed in Table 1) for Neptune’s 2 : 1 resonance is
ṅ p,crit ≈ 0.54µ4/3 ≈ 1.0 × 10−6. We find that

ṅp

ṅ p,crit
≈ 0.4

(
107yr

tmigrate

)
. (23)

Chiang & Jordan (2002) found that the 2 : 1 resonance captured at the
50 per cent level for t migrate = 107 yr but was much less efficient, cap-
turing only 15 per cent of particles at faster migration rates of t migrate

∼ 106 yr. The same rise in capture probability at t migrate ∼ 107 yr
was seen by Ida et al. (2000). The sharp drop in capture probability
is consistent with our predicted limit for the critical migration rate.
We find that we can account for the trends seen in the numerical
studies of Ida et al. (2000) and Chiang & Jordan (2002), and we
confirm the theoretical explanation of Friedland (2001). We note that

C© 2005 The Author. Journal compilation C© 2005 RAS, MNRAS 365, 1367–1382



1378 A. C. Quillen

Table 1. Coefficients for k = 1 resonances. Equations (2) and (4) were
used to calculate the coefficients a and c (for external resonances). Equa-
tions (A2) and (A3) were used to estimate the perturbation strengths for
the 4 : 3 and 3 : 2 resonances and the 2 : 1 resonance, respectively, for
external resonances. Coefficients for the internal resonances are given in
Appendix A. The critical drift rate is calculated from equation (14). The
coefficients ε̄ and c̄ are calculated from equation (17). We have calculated c
using only the secular term from one planet and assumed that �̇p = 0. The
critical eccentricity ensuring capture in the adiabatic limit is calculated using
equation (A4).

Exterior resonances Interior resonances
j : k 4 : 3 3 : 2 2 : 1 4 : 3 3 : 2 2 : 1

α 0.825 0.763 0.630 0.825 0.763 0.630
a −16.35 −7.86 −2.38 −19.81 −10.30 −3.78
c/µ −4.14 −2.01 −0.61 −5.02 −2.64 −0.98
δ1,0/µ −3.41 −2.31 −0.24 −4.21 −3.06 −1.89
δ1,1/(µep) 2.35 1.55 0.75 3.07 2.29 0.31
ṅp,crit/µ

4/3 198.5 48.4 0.54 398.7 126.4 22.7
ε̄/(µ−1/3ep) 1.16 1.00 6.59 1.22 1.21 0.21
c̄/µ1/3 0.72 0.58 1.18 0.71 0.58 0.41
e lim/µ1/3 0.98 1.08 0.72 1.08 1.24 1.54

the transition from a probability of 50 per cent to 15 per cent occurs
over a fairly large range of drift rates. In our toy model we could
account for such a smooth transition with initial particle eccentricity
near elim. However, because the capture probability drops steeply
for e0 > e lim this explanation would require fine tuning of the initial
particle eccentricity distribution. We note that it is impossible to
zero the eccentricity of a particle in a simulation because of other
perturbations. Also, because we have dropped most cosine terms
in equation (3), we have neglected these other perturbations in our
Hamiltonian model. Consequently, it is difficult for us to compare
the initial eccentricity distribution of a simulation to the distribution
in our momentum �̄.

We now consider the role of the corotation resonance. From Ta-
ble 1 we find ε̄ = 6.6µ−1/3ep. For Neptune µ = 5.1 × 10−5 and we
find that ε̄ ≈ 180ep. For Neptune’s current eccentricity ep ∼ 0.008
this places ε̄ ∼ 1.4. This is somewhat above the critical corotation
strength value allowing capture into the 2 : 1 resonance according to
Fig. 7 when the resonances are on top of each other. We need to con-
sider the separation between the resonances: c̄ = 1.18µ1/3 = 0.04.
However, this is the separation only if Neptune’s longitude of peri-
helion does not precess. Neptune’s precession frequency is largely
a result of the Solar system’s eighth eigenvector that dominates this
planet’s secular motions (Applegate et al. 1986; Nobili, Milani &
Carpino 1989). Neptune’s precession rate due to other planets is a
few times larger than that it induces on objects in its 2 : 1 resonance.
Consequently, c̄ could be larger a factor of a few and either positive
or negative depending upon the secular motion of the planet when
the migration took place. Smaller values of planet eccentricity would
allow the 2 : 1 resonance to capture whereas larger values would
tend to make it more difficult. Negative values of c̄ would allow the
resonance to be in the temporary capture regime shown in Fig. 8(a),
whereas positive values of c̄ would allow capture at Neptune’s cur-
rent eccentricity, provided the migration was slow (Fig. 8b). It is
interesting to find that Neptune’s eccentricity is very near the criti-
cal value that would make this resonance fail to capture. This large
value of ε̄ could contribute to the intermediate capture probability
seen in simulations and the moderate range of drift rates where this
intermediate capture occurs.

5.2 Capture into the 2 : 1 and 3 : 1 resonances of multiple
extrasolar planet systems

Three extrasolar multiplanet systems have two planets locked in the
2 : 1 resonance: GL 876, HD 82943 and HD 128311 (Marcy et al.
2005). In each case, the outer planet is more massive than the inner
one. The masses of the outer planet are 1.9, 1.6 and 3.2 M J (Jupiter
masses), respectively. We assume that an outer planet has migrated
inward and captured the interior and lower mass planet into the
2 : 1 resonance (e.g. as explored previously by Kley et al. 2004,
2005; Moorhead & Adams 2005). The coefficients for this situa-
tion are listed in Appendix A and in Table 1. For an internal 2 : 1
mean motion resonance, ṅ p,crit = 22.7µ4/3. We relate the critical
mean motion drift rate to a critical semimajor axis drift rate (with
a factor of 2/3) and restore the units. To capture an internal planet
into the 2 : 1 resonance, a planet must have a migration rate slower
than

ȧp � 15µ4/3

(
G M∗

ap

)
. (24)

Using the period of the planet’s orbit, P = 2π
√

a3
p/G M∗, we can

relate the critical migration rate to a time-scale, τ = ap/ȧp, finding

τ2:1 � 0.4µ−4/3 P (25)

for the 2 : 1 resonance. For a 2-M J mass planet, we find a migration
time-scale of longer than 1600 orbital periods is required for the
2 : 1 resonance to capture. This limit is consistent with the time-
scales adopted for migration in the simulations by Kley et al. (2004).
We can consider the eccentricity limit (taking the value from Table 1)
e lim ∼ 1.5 µ1/3 = 0.2. This implies that the initial eccentricity of the
inner planet (as long as it was below 0.2) would probably not limit
the capture probability into the 2 : 1 resonance.

We now consider capture into the 3 : 1 resonance. The 55 CnC
system has two planets locked in the 3 : 1 resonance with outer
planet 0.2 M J and inner planet with 0.8 M J. Even though the in-
ner planet is more massive, we consider capture into an internal
resonance because the 3 : 1 internal resonance is stronger than the
external one. This is a result of the contributions from the indirect
terms. Using values given in Appendix A in Table 2 for an internal
3 : 1 resonance, we find ṅ p,crit = 0.6µ2 for the e2-resonance and
ṅ p,crit = 41µ4/3e4/3

p for the ee′-resonance, in both cases for low ini-
tial particle eccentricity. This corresponds to a migration time-scale

τ3 : 1,e2 � 15µ−2 P (26)

for the e2-resonance and

τ3 : 1,ee′ � 0.2µ−4/3e−4/3
p P (27)

for the ee′-resonance. However, the migration rate is less restrictive
for the e2-resonance if the inner planet has a moderate eccentricity.
The limiting eccentricity is e lim ∼ 0.2 µ1/2. For µ = 0.002, we find
e lim = 0.003. Consequently, the inner planet is likely to have e >

e lim. In this case, the migration time-scale must be modified by the
factor given in equation (15) and the limiting migration time-scale
would be ∼10 times smaller or

τ3 : 1,ee′ � 0.02µ−4/3e−4/3
p P. (28)

For µ = 0.0002 to capture we find the migration time-scale must be
longer than a few times 107 orbits for the e2-resonance and 20 000
e−4/3

p orbits for the ee′-resonance. For a moderate planet eccentricity
of 0.2, this corresponds to a time-scale of 2 × 105 orbits.

We have found here that capture into the 2 : 1 resonance by the
multiple planet extrasolar systems does not require a slow migra-
tion rate but capture into the 3 : 1 resonance does. For the 3 : 1
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Table 2. Coefficients for k = 2 resonances. Equations (2) and (4) were
used to calculate a and c. The critical drift rates ṅ p,crit,ξ and ṅ p,crit,χ are
those calculated for low ξ̄ and χ̄ , respectively. ṅ p,crit,ξ is given in the limit
of low initial particle eccentricity. For particle initial eccentricity near the
limit ensuring capture in the adiabatic limit, the values given here for n p,crit,ξ

should be multiplied by 10. The coefficients ε̄ξ and c̄ξ are calculated from
equation (19). The coefficients ε̄χ and c̄χ are calculated from equation (20).
Expressions from Appendix A were used to calculate the δ coefficients and
critical eccentricities. We have calculated c using only the secular term from
one planet and assumed that �̇p = 0.

Exterior resonances Interior resonances
j : k 3 : 1 5 : 3 3 : 1 5 : 3

α 0.481 0.711 0.481 0.711
a −3.12 −18.98 −6.49 −26.68
c/µ −0.20 −1.22 −0.41 −1.72
δ2,0/µ 0.24 6.82 0.63 3.47
δ2,1/(µep) −1.25 −8.00 −3.76 −13.33
δ2,2/(µe2

p) 0.10 1.04 0.36 5.69
ξ̄ /(µ−1/2ep) 18.56 1.95 19.11 10.61
ε̄ξ /(µ−1e2

p) 5.59 0.43 5.93 12.56
c̄ξ /µ

0 0.81 0.18 0.65 0.50
ṅp,crit,ξ /µ

2 0.029 69.86 0.60 30.19
e lim,ξ /µ

1/2 0.40 0.95 0.19 0.20

ε̄χ /(µ−1/3e2/3
p ) 0.114 0.174 0.116 0.538

c̄χ /(µ1/3e−2/3
p ) 0.12 0.11 0.09 0.10

ṅp,crit,χ /(µ4/3e4/3
p ) 5.77 683 40.66 1694

e lim,χ /(µ1/3 e1/3
p ) 1.06 1.19 1.73 1.50

resonance, faster migrations are allowed for the ee′-resonance than
the e2-resonance. The limiting time-scale is decreased if the planet
eccentricities are not low prior to resonance capture.

6 S U M M A RY A N D D I S C U S S I O N

In this paper we have explored the problem of resonance capture
for mean motion resonances at fast or non-adiabatic drift rates. We
first studied the first- and second-order time-dependent Hamiltonian
systems with one resonant term. We find that for sufficiently low
initial particle momentum (or eccentricity), the transition between
resonance capture and no capture is sharp, occurring over a nar-
row range in drift rate. We give an expression (equation 14) which
makes it possible to predict the critical planetary migration rate
(above which there is no capture) for first- and second-order mean
motion resonances in the general restricted three-body problem in
the limit of low initial particle eccentricity. Expressions are given in
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Figure 12. Separated second-order resonances. (a) This figure is similar to Fig. 9(b) except c̄χ = −0.5. The ee′-resonance is encountered before the
e2-resonance. (b) This figure is similar to Fig. 9(b) except c̄χ = 0.5. The ee′-resonance is encountered after the e2-resonance.

Appendix A for coefficients which allow us to estimate the critical
drift rate for any first- or second-order mean motion resonance. Co-
efficients are evaluated for strong resonances and listed in Tables 1
and 2. This generalizes upon previous analytical work by Friedland
(2001) and provides a theoretical explanation for critical drift rates
measured numerically and their dependence on planet mass (e.g.
Ida et al. 2000; Wyatt 2003).

We have numerically measured the probability of capture as a
function of initial particle eccentricity. We find that the transition
between resonance capture and no capture is smoother, occurring
over a larger range in drift rate, for initial particle eccentricity of the
order of the limiting value ensuring capture in the adiabatic limit,
elim. The drift rate at which the capture probability is half is not
strongly dependent on the initial particle eccentricity for first-order
resonances, and the probability of capture drops rapidly for initial
particle eccentricities exceeding the limiting value, elim. For second-
order resonances, we find that the drift rate at which the capture
probability is half is higher when the initial particle eccentricity is
higher. Equation (15) can be used to estimate the half probability
drift rate for initial eccentricities below 10 e lim. At e0 � 30 e lim the
capture probability drops below half at all drift rates.

In the limit of low initial particle eccentricity, we have considered
the case of resonances containing multiple subterms. A first-order
resonance fails to capture when the corotation resonance has unitless
strength ε̄ � 1. As this coefficient depends on planet eccentricity,
migrating, eccentric, low-mass planets could have first-order reso-
nances that fail to capture particles for this reason. A regime of inter-
mediate capture probability also exists at high drift rates and large
corotation perturbation strength. We have found that the resonance
separation, and order of encounter, affects the capture probability,
primarily when the corotation resonance is strong. This implies that
the capture probability is dependent upon the precession rates of the
longitude of periapse of both particle and planet.

Second-order resonances contain three subterms. As was true for
the first-order resonances, the corotation resonance fails to capture
particles but can prevent the other resonant terms from capturing
particles if scale-free parameters ε̄ξ � 1 or ε̄χ � 1. This implies
that above a certain planet eccentricity, second-order resonances fail
to capture particles. Below this planet eccentricity the e2- and ee′-
resonances can capture particles. When our coefficient ξ̄ � 10−2

the e2-resonance will capture particles (providing the drift rate is
sufficiently slow) and the capture behaviour is second order. For
χ̄ < 0.1, the ee′-resonance will capture particles and the behaviour
is first order. For non-zero planet eccentricity, the ee′-subresonance
(which behaves like a first-order resonance) may more easily capture
particles at faster drift rates than the e2-resonance. For χ̄ or ξ̄ of order
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1, a regime of intermediate capture probability exists at high drift
rates. For second-order resonances, the subresonance separation and
order of encounter also affect the capture probability.

A number of effects have been proposed to account for reduction
in capture probabilities compared to those predicted via adiabatic
theory; for example, Zhou et al. (2002) showed that stochastic or
jumpy migration would allow particles to escape resonances. Here
we have shown that rich dynamics in the non-adiabatic limit allows
particles to escape resonance capture. We have shown that corota-
tion terms can reduce the capture probability. For second-order res-
onances, resonant subterms can interfere, again producing a regime
of intermediate capture probability. For first-order resonances, the
half probability drift rates are not strongly dependent on the initial
particle eccentricity, and the probability of capture drops rapidly
above a limiting initial eccentricity. However, for second-order res-
onances the half probability drift rate is higher for initial particle
eccentricity near the limiting value. Consequently, we expect that
second-order resonances should have larger regimes of intermediate
capture probability in range of drift rate and initial particle eccen-
tricity.

We have applied our understanding to the problem of capturing
twotinos via Neptune’s migration. We find that the eccentricity of
Neptune is sufficiently high that the 2 : 1 resonance could fail to cap-
ture particles. Certainly, if Neptune’s eccentricity were any higher
during migration its 2 : 1 resonance would not have captured par-
ticles efficiently. It is interesting to find that Neptune’s eccentricity
is very near the critical value that would make this resonance fail to
capture particles.

We have applied our framework toward predicting minimum mi-
gration time-scales allowing extrasolar multiple planet systems to
capture into the 2 : 1 or 3 : 1 resonances. We find that a migration
time-scale of greater than a few thousand orbital periods is required
to allow capture into the 2 : 1 resonance for three systems. However,
a much longer time-scale, ∼107 orbital periods, is required to allow
capture into the 3 : 1 resonance for the 55 Cnc planetary system. The
migration time-scale can be reduced if the planets are on moderately
eccentric orbits subsequent to migration.

In this work we have extended the theory of resonant capture
for drifting Hamiltonian systems to the non-adiabatic limit and to
systems with multiple resonant subterms. We have provided a theo-
retical framework to predict resonance capture probabilities. How-
ever, this framework is based on numerical integration of a simplis-
tic two-dimensional Hamiltonian model and so may not accurately
represent the full complex dynamical systems. Direct numerical in-
tegration of these systems must be carried out to test the validity and
accuracy of the expressions given in this paper. The exploration car-
ried out here could also in future be extended via numerical study
of modified quasi-Hamiltonian toy models (e.g. Gomes 1997) to
better cover systems with drift induced by non-conservative forces
such as gas drag or Poynting–Robertson drag. This work could also
be extended to cover motions out of the plane and high eccentricity
systems.

AC K N OW L E D G M E N T S

I thank the Research School of Astronomy and Astrophysics of the
Australian National University and Mount Stromlo Observatory for
hospitality and support during Spring 2005. Support for this work
was in part provided by National Science Foundation grant AST-
0406823, and the National Aeronautics and Space Administration
under Grant No. NNG04GM12G issued through the Origins of Solar
Systems Programme. Support was also provided by the National

Science Foundation to the Kavli Institute for Theoretical Physics
under Grant No. PHY99-07949.

R E F E R E N C E S

Applegate J. H., Douglas M. R., Gursel Y., Sussman G. J., Wisdom J., 1986,
AJ, 92, 176

Borderies N., Goldreich P., 1984, Celestial Mechanics, 32, 127
Chiang E. I., Jordan A. B., 2002, AJ, 124, 3430
Deller A. T., Maddison S. T., 2005, ApJ, 625, 398
Dermott S. F., Malhotra R., Murray C. D., 1988, Icarus, 76, 925
Dermott S. F., Jayaraman S., Xu Y. L., Gustafson B. A. S., Liou J. C. 1994,

Nat, 369, 719
Fernandez J. A., Ip W.-H., 1984, Icarus, 58, 109
Gomes R. S., 1995, Celestial Mechanics and Dynamical Astronomy, 61, 97
Gomes R. S., 1997, A&A, 321, 967
Friedland L., 2001, ApJ, 547, L75
Hahn J. M., Malhotra R., 1999, AJ, 117, 3041
Hahn J. M., Malhotra R., 2005, AJ, 130, 2392
Henrard J., 1982, Celestial Mechanics, 27, 3
Henrard J., Lemaitre A., 1983, Celestial Mechanics, 30, 197
Holman M. J., Murray N. W., 1996, AJ, 112, 1278
Ida S., Bryden G., Lin D. N. C., Tanaka H., 2000, ApJ, 534, 428
Kley W., Peitz J., Bryden G., 2004, A&A, 414, 735
Kley W., Lee M.-H., Murray N., Peale S., 2005, A&A, 437, 727
Levison H. F., Morbidelli A., 2003, Nat, 426, 419
Liou J-C., Zook H. A. 1997, Icarus, 128, 354
Liou J-C., Zook H. A. 1999, Icarus, 118, 580
Malhotra R., 1990, Icarus, 87, 249
Malhotra R., 1995, AJ, 110, 420
Marcy G., Butler R. P., Fischer D. A., Vogt S. S., Wright J. T., Tinney C. G.,

Jones H. R. A., 2005, Prog. Theor. Phys. Suppl., 158, 24
Marzari F., Vanzini V., 1994, A&A, 283, 275
Moorhead A. V., Adams F. C., 2005, Icarus, 178, 517
Moro-Martin A., Wolf S., Malhotra R., 2005, ApJ, 621, 1079
Murray C. D., Dermott S. F., 1999, Solar System Dynamics. Cambridge

Univ. Press, Cambridge
Murray-Clay R. A., Chiang E. I., 2005, ApJ, 619, 623
Nobili A. M., Milani A., Carpino M., 1989, A&A, 210, 313
Ozernoy L. M., Gorkavyi N. N., Mather J. C., Taidakova T. A., 2000, ApJ,

537, L147
Peale S. J., 1986 in Burns J. A., Matthews M. S., eds, Satellites. Univ. of

Arizona Press, Tuscon, p. 159
Quillen A. C., 2001, preprint (astro-ph/0012466)
Quillen A. C., Holman M., 2000, AJ, 119, 397
Sicardy B., Beauge C., Ferraz-Mello S., Lazzaro D., Roques F., 1993, Ce-

lestial Mechanics and Dynamical Astronomy, 57, 373
Tittemore W. C., Wisdom J., 1990, Icarus, 85, 394
Wilner D. J., Holman M. J., Kuchner M. J., Ho P. T. P., 2002, ApJ, 569,

L115
Wisdom J., 1980, AJ, 85, 1122
Wyatt M. C., 2003, ApJ, 598, 1321
Yoder C., 1979, Celestial Mechanics, 19, 3
Zhou L-Y., Sun Y-S., Zhou J-L., Zheng J-Q., Valtonen M. 2002, MNRAS,

336, 520

A P P E N D I X A : C O E F F I C I E N T S F O R
I N T E R NA L A N D E X T E R NA L R E S O NA N C E S

A1 External resonances

For external first-order resonances

K (�, ψ ; �, γ ) = a�2 + b� + c� + δ1,0�
1/2

× cos (ψ − � ) + δ1,1 cos (ψ − �p)
(A1)
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with

δ1,0 = −µ
√

2α5/4 f31

δ1,1 = −µepα f27. (A2)

Coefficients a, b and c are given in equations (2) and (4). The fi

are functions of the Laplace coefficients and are evaluated at α with
index j using expressions from the appendix by Murray & Dermott
(1999).

The above expressions only include direct terms. For the 2 : 1
resonance the indirect term contributes and

δ1,0(2 : 1) = −µ
√

2α1/4

(
α f31 − 1

2α

)
. (A3)

The near cancellation of the direct and indirect terms makes second-
order terms important for the 2 : 1 resonance (Friedland 2001;
Murray-Clay & Chiang 2005). It may be useful to recall the maxi-
mum initial particle momentum or initial eccentricity, elim ensuring
capture in the adiabatic limit. This corresponds to

elim =
√

2�̄0,limα1/4

∣∣∣∣ δ1,0

a

∣∣∣∣
1/3

(A4)

where �̄0,lim = 3/2.
For external second-order resonances or k = 2

K (�, ψ ; �, γ ) = a�2 + b� + c�

+ δ2,0� cos (ψ − 2� )

+ δ2,1�
1/2 cos (ψ − � − �p)

+ δ2,2 cos (ψ − 2�p) (A5)

where

δ2,0 = −µ2α3/2 f53

δ2,1 = −µep

√
2α5/4 f49

δ2,2 = −µe2
pα f45. (A6)

Coefficients a, b and c are given in equations (2) and (4). For the 3
: 1 resonance the indirect term contributes and

δ2,0(3 : 1) = −µ2α1/2

(
α f53 − 3

8α

)
. (A7)

For second-order resonances capturing into the e2 subterm

elim,ξ =
√

2�̄0,limα1/4

∣∣∣∣ δ2,0

a

∣∣∣∣
1/2

(A8)

where the critical scale-free momentum �̄0,lim = 1/8. For those
capturing into the ee′ subterm

elim,χ =
√

2�̄0,limα1/4

∣∣∣∣ δ2,1

a

∣∣∣∣
1/3

(A9)

where the critical scale-free momentum �̄0,lim = 3/2.

A2 Internal resonances

To make our theory appropriate for internal resonances (external
perturber) we consider j : j + k resonances and change the coeffi-

cients to

a = −3

2
j2α−2

b = −( j + k)(np − 1)

c = −µ2 f2α
−1/2

δ1,0 = −µ
√

2α−1/4 f27

δ1,1 = −µep f31

δ2,0 = −µ2α−1/2 f45

δ2,1 = −µep

√
2α−1/4 f49

δ2,2 = −µe2
p f53 (A10)

where α ≡ a/ap and we have used the approximation e2 ∼ 2 �/L ∼
2 � α−1/2. The c term describes secular precession of the longitude
of periapse and depends on the function f 2 given in the appendix
by Murray & Dermott (1999) and is evaluated at α with index j =
0. For internal resonances, the other fi functions are evaluated at α

with index j + k using expressions from the appendix by Murray
& Dermott (1999). For the 2 : 1 and 3 : 1 resonances, the indirect
terms contribute and

δ1,1(2 : 1) = −µep( f31 − 2α) (A11)

δ2,2(3 : 1) = −µe2
p

(
f53 − 27

8
α

)
. (A12)

The maximum initial particle eccentricity ensuring capture in the
adiabatic limit for first-order resonances is

elim =
√

2�̄0,limα−1/4

∣∣∣∣ δ1,0

a

∣∣∣∣
1/3

(A13)

where �̄0,lim = 3/2. For second-order resonances capturing into the
e2 subterm

elim,ξ =
√

2�̄0,limα−1/4

∣∣∣∣ δ2,0

a

∣∣∣∣
1/2

(A14)

where the critical scale-free momentum �̄0,lim = 1/8. For those
capturing into the ee′ subterm

elim,χ =
√

2�̄0,limα−1/4

∣∣∣∣ δ2,1

a

∣∣∣∣
1/3

(A15)

where the critical scale-free momentum �̄0,lim = 3/2. The drift rate
for a capture probability of half given in equation (15) must be
modified for second-order internal resonances:

|ṅ p,1/2| ∼ 0.5( j − 2)δ2
2,0

(
1 + α1/2e2

0a

2.4 × 10−4δ2,0

)0.25

. (A16)

This expression is valid for initial particle eccentricity e0 � 10 e lim,ξ .
The coefficients for strong internal and external resonances are

listed in Tables 1 and 2.

A P P E N D I X B : M I G R AT I O N O F D U S T V I A
P OY N T I N G – RO B E RT S O N D R AG

In this paper we have considered a varying Hamiltonian system.
However, there may be some similarities between this system and
the slowly drifting dissipative systems. We add relations that allow
the reader to approximately predict the critical drift rates for dust
spiralling inward under Poynting–Robertson drag. In the case of
Poynting–Robertson drag, dust particles in a circular orbit decay on
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a time-scale proportional β−1 where β is the ratio of radiation to
gravitational (from the star) forces. It is convenient to write

β ∼ 0.2

sµm

(
L∗
L


)(
M∗

M


)−1

(B1)

where sµm is the radius of the particle in µm and L∗ is the luminosity
of the star (Sicardy et al. 1993). The drag force leads to a slow
increase in the mean motion

ṅ ∼ 3α1/2β

cl
(B2)

where cl is the speed of light in units of the planet’s velocity or
divided by

√
G M∗/ap. The value of our coefficient b is not impor-

tant, as long as it passes through zero on resonance. However, its
drift rate or ḃ is important. At resonance jn = ( j − k) np and we
can relate the drift rate of the particle spiralling inward to a system
of a planet migrating outward considered in Sections 3 and 4. We
replace ṅp with ṅ, finding an effective drift coefficient

ḃ = 3 jα1/2β

cl
. (B3)

The rescaled speed of light

cl ≈ 104

(
M∗

M


)−1/2 (
ap

1 au

)1/2

. (B4)

Consequently, we can write

ḃ = 0.6 × 10−4 jα1/2s−1
µm

(
L∗
L


)(
M∗

M


)−1/2 (
ap

1 au

)−1/2

. (B5)

The above relation can be used to approximately determine the min-
imum size particles that can be captured into resonances using the
formulation presented in Sections 3, 4 and Appendix A.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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