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Abstract We study systems of close orbiting planets evolving under the influence
of tidal circularization. It is supposed that a commensurability forms through the
action of disk induced migration and orbital circularization. After the system enters
an inner cavity or the disk disperses the evolution continues under the influence
of tides due to the central star which induce orbital circularization. We derive
approximate analytic models that describe the evolution away from a general first
order resonance that results from tidal circularization in a two planet system and
which can be shown to be a direct consequence of the conservation of energy
and angular momentum. We consider the situation when the system is initially
very close to resonance and also when the system is between resonances. We also
perform numerical simulations which confirm these models and then apply them to
two and four planet systems chosen to have parameters related to the GJ581 and
HD10180 systems. We also estimate the tidal dissipation rates through effective
quality factors that could result in evolution to observed period ratios within the
lifetimes of the systems. Thus the survival of, or degree of departure from, close
commensurabilities in observed systems may be indicative of the effectiveness of
tidal disipation, a feature which in turn may be related to the internal structure
of the planets involved.

Keywords Planet formation · Planetary systems · Resonances · Tidal interactions

1 Introduction

Planetary systems containing hot Neptunes and hot super–Earths have been ob-
served recently. A system of this kind consists of the four planets around the
M–dwarf GJ 581 (Bonfils et al. 2005, Udry et al. 2007, Mayor et al. 2009a). The
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projected masses of the planets are 1.9, 15.6, 5.4 and 7.1 M⊕ and the periods
are 3.15, 5.37, 12.93 and 66.8 days, respectively. Other such multiple systems are
that around HD 40307 (Mayor et al. 2009b) which consists of three planets with
projected masses of 4.2, 6.9 and 9.1 M⊕ and periods of 4.31, 9.62 and 20.46 days,
respectively and that around HD 10180 (Lovis et al. 2010) which consists of seven
planets with projected masses 1.35, 13.10, 11.75, 25.1, 23.9, 21.4 and 64.4 M⊕ and
periods of 1.18, 5.76, 16.36, 49.74, 122.76, 601.2, and 2222 days respectively. The
innermost member of the latter system has yet to be confirmed.

Migration due to tidal interaction with the disk is a possible mechanism through
which planets end up on short period orbits, as in situ formation implies very
massive discs (e.g., Raymond et al. 2008). Terquem & Papaloizou 2007 (see also
Brunini & Cionco 2005) proposed a scenario for forming hot super–Earths in which
a population of cores that formed at some distance from the central star migrated
inwards due to interaction with the disk. These collided and merged as they went .
This process could produce systems of planets with masses in the earth mass range,
located inside an assumed disk inner edge, on short period orbits with mean mo-
tions of neighbouring planets that frequently exhibited near commensurabilities.
However, tidal circularization of the orbits induced by tidal interaction with the
central star, together with later close scatterings and mergers tended to cause
the system to move away from earlier established commensurabilities to an extent
determined by the effectiveness of these processes.

Papaloizou & Terquem (2010) considered the system around HD 40307 for
which the pairs consisting of the innermost and middle planets and the middle
and outermost planets are near but not very close to a pair of 2:1 resonances. In
spite of this it was found that secular effects produced by the action of the resonant
angles coupled with the action of tides from the central star could cause the system
to increasingly separate from commensurability. Resonant effects can arise even
when departures from strict commensurability are apparently large because tidal
circularization produces small eccentricities which, for first order resonances, can
be consistent with resonant angle libration (see Murray & Dermott 1999).

In this paper we undertake a further study of systems of close orbiting planets
evolving under the influence of tidal circularization. We present simple analytic
models describing the evolution away from a general first order resonance for a two
planet system under the influence of tidal circularization, describing the situation
both when the commensurabilty is very close and also when the system is between
resonances. We also perform numerical simulations of two and four planet sys-
tems chosen to have parameters related to the GJ581 and HD10180 systems . We
consider the situation when various commensurabilities result through the action
of assumed disk induced migration and orbital circularization rates, estimating
the magnitudes of tidal quality factors that could produce evolution to observed
period ratios within the lifetimes of the systems.

The plan of this paper is as follows. In section2.1 we consider a coplanar system
of planets in near circular orbits in which orbital energy is dissipated while its total
angular momentum is conserved. The system is expected to spread in a similar
manner to a viscous accretion disk (see Lynden-Bell & Pringle 1974). For a two
planet system, this radial spreading will always lead to evolution away from an
initially close commensurability.

In sections 2.2, 2.3 and 3, we carry out an anlaytic study of two planets near
to a first order commensurability under the influence of tidal circularization. For
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planets in the mass range we consider, it is readily estimated that tides raised
on the planet are very much more important than tides raised on the star (eg.
Goldreich & Soter 1966, Barnes et al. 2009). In addition the orbital decay timescale
due to tides raised on the star may be estimated to be much longer than any
timescale of interest (eg. Barnes et al. 2009). Thus tides raised on the star have
been neglected.

We consider the initial evolution away from a close first order commensurability
in section 3.1 and go on to consider the case of evolution when the commensura-
bility is not so close, or the system is between commensurabilities in section 3.2 .
As expected from the simple arguments given in section 2.1, the system departs
from an initially close commensurability moving to a neighbouring one.

We go on to perform numerical simulations of multiplanet systems in section
4. Various commensurabilities between pairs of planets are set up by applying
dissipative forces assumed to arise from a disk, that lead to orbital migration and
circularization. These forces were then removed corresponding to assumptions of
either entry into an inner cavity or removal of the disk. The evolution of the system
under tidal circularization caused by interaction with the central star was then
followed. For illustrative purposes we consider two planet systems with parameters
corresponding to the two innermost planets in the GJ581 system. In section 4.5 we
consider a system that formed a 3:2 commensurability which then evolved under
orbital circularization indicating that the model system could attain the period
ratio appropriate to the actual system if the tidal parameter Q′ introduced by
Goldreich & Soter (1966) ∼ 100. The situation when the system began with disk
parameters that led to a 5:3 commensurability is then similarly studied in section
4.6. We go on to consider the effect of adding the additional planets in the GJ581
system in section 4.7.

As there are examples of low mass planetary systems such as HD 10180 which
have separations of pairs of planets, the third and fourth innermost in that case,
that indicate there may have been a past proximity to a 3:1 commensurability, we
consider an exploratory simulation of a system for which the initial disk evolution
sets up a 3:1 commensurability in section 4.8. Finally in section 5 we summarize
and discuss our results.

2 Commensurabilities and tidal circularization in planetary systems

We begin by considering the evolution of planetary systems undergoing tidal cir-
cularization in a general way and then move on to consider simple analytic models
of two planet systems that can be close to first order commensurabilities.

2.1 Two interacting planets in circular orbits for which energy is dissipated at
fixed total angular momentum

Consider two interacting planets with orbital energies E1 and E2 respectively. The
associated orbital angular momenta for assumed circular orbits are −2E1/n1 and
−2E2/n2 respectively. Here n1 and n2 are the mean motions associated with the
two planets. Suppose now the system dissipates energy while conserving its total
angular momentum. This is expected to be the case during orbital circularization
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when this occurs as a result of stellar tides dissipated in the planets because the
planets themselves cannot contain a significant amount of angular momentum.
Accordingly we write

dE1

dt
+
dE2

dt
= −L, (1)

where L is the rate of energy dissipation. Angular momentum conservation implies
that

1

n1

dE1

dt
= − 1

n2

dE2

dt
(2)

from which we obtain

dE1

dt
= − L

1− n2/n1
, (3)

and

dE2

dt
= − L

1− n1/n2
. (4)

Supposing that n1 > n2, the above two equations imply that planet 1 moves
inwards losing energy while planet 2 moves outwards, taking up the angular mo-
mentum lost by planet 1. This is the generic form for the evolution of an accretion
disc (see Lynden-Bell & Pringle 1974).

We now go on to discuss some simplified models for the interaction of two
planets that may be either very close to or some distance away from a strict first
order commensurability. In these contexts we show how tidal dissipation induced
by forced eccentrcities causes the system to separate. When the resonance is close,
this causes the system to depart further from commensurability.

2.2 Coordinate system

We consider a general system of N planets orbiting a central mass. We adopt
Jacobi coordinates (Sinclair 1975, Papaloizou & Szuszkiewicz 2005) for which the
radius vector of planet i, ri, is measured relative to the centre of mass of the system
comprised of a dominant central mass M and all other planets interior to i, for
i = 1, 2..., N. The planets are assumed to maintain an ordering with increasing
i corresponding to greater distances |ri| from the dominant central mass. Thus
the innermost planet has i = 1. The Hamiltonian, correct to second order in the
planetary masses, can be written in the form:

H =

N∑
i=1

(
1

2
mi|ṙi|2 −

GMimi

|ri|

)

−
N−1∑
i=1

N∑
j=i+1

Gmimj

(
1

|rij |
−

ri · rj
|rj |3

)
. (5)

Here Mi = M +mi and rij = ri − rj .
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The equations of motion for motion for planet i assumed to move in a fixed
plane, about a dominant central mass, may be written in the form (see, e.g.,
Papaloizou 2003, Papaloizou & Szuszkiewicz 2005):

Ėi = −ni
∂H

∂λi
(6)

L̇i = −
(
∂H

∂λi
+

∂H

∂$i

)
(7)

λ̇i =
∂H

∂Li
+ ni

∂H

∂Ei
(8)

$̇i =
∂H

∂Li
. (9)

Here the orbital angular momentum of planet i which has reduced mass mi =
mi0M/(M +mi0), with mi0 being the actual mass, is Li and the orbital energy is
Ei. For motion around a central point mass M we have:

Li = mi

√
GMiai(1− e2i ), (10)

Ei = −GMimi

2ai
, (11)

where Mi = M + mi0, ai denotes the semi-major axis and ei the eccentricity of
planet i.
The mean longitude of planet i is λi = ni(t − t0i) + $i, where ni =

√
GMi/a

3
i

is its mean motion, with t0i denoting its time of periastron passage and $i the
longitude of periastron.
From equations (6) and (7) an equation for the evolution of the eccentricity of
planet i may be readily obtained in the form

ėi =

√
1− e2i

eiminia
2
i

(
∂H

∂λi

(√
1− e2i − 1

)
+

∂H

∂$i

)
. (12)

The Hamiltonian may be expanded in a Fourier series involving linear combina-
tions of the (2N−1) angular differences $i−$1, i = 2, 3..N and λi−$i, i = 1, 2, ..N.
In the limit of small eccentricities of interest here, only terms that are of first order
in the eccentricities need to be retained (terms that are of zero order do not lead
to changes to eccentricities or to resonances). If this is done the possibility of first
order resonances, for which the ratio of the periods of two planets is the ratio
of successive integers, is allowed for. The above approximation scheme should be
valid when circularization times are small enough to ensure that the eccentrici-
ties remain small. This situation is realized for examples of low mass protoplanets
migrating in protoplanetary discs (Papaloizou & Szuszkiewicz 2005).

Near a first order p+ 1 : p resonance, p being an integer, we expect that terms
in the Hamiltonian involving angles of the type φp,j,i,j = (p+ 1)λj − pλi−$j , and
φp,j,i,i = (p+1)λj−pλi−$i, where the subscripts on the left hand side correspond
to those on the right hand reading from left to right, will be slowly varying and
thus be dominant. Accordingly we shall retain only terms of this type. Motion
away from resonances may also be considered having made this approximation
although neglected high frequency modulations may be more significant then.
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The Hamiltonian may be written in the form

H =

N∑
i=1

Ei +

N−1∑
i=1

N∑
j=i+1

Hi,j , (13)

where the component of the interaction Hamiltonian Hi,j that is first order in the
eccentricities is given, given that j > i, by

Hi,j = −
Gmimj

aj

∞∑
p=1

(ejCp,j,i,j cos(φp,j,i,j) + eiDp,j,i,i cos(φp,j,i,i)) , (14)

with

Cp,j,i,j =
1

2

(
x
d(b

(p)
1/2

(x))

dx
+ (2p+ 1)b

(p)
1/2

(x)− 4xδp1

)
and (15)

Dp,j,i,i = −1

2

(
x
d(b

(p+1)

1/2
(x))

dx
+ 2(p+ 1)b

(p+1)

1/2
(x)

)
. (16)

Here b
(p)
1/2

(x) denotes the usual Laplace coefficient (e.g. Brouwer & Clemence 1961)

with the argument x = ai/aj and δp1 denotes the Kronnecker delta. We remark that
the subscripts associated with the coefficients Cp,j,i,j and Dp,j,i,i correspond to the
related angles as in (14). We shall also make the approximation of replacing Mi

by M and equivalently mi0 by mi.

The governing equations for motion, retaining only terms that are of the low-
est order in the eccentricities, follow from Hamilton’s equations (6)- (9) for the
Hamiltonian (13) discussed above as

dei
dt

= −
∞∑
p=1

 N∑
j=i+1

GmjDp,j,i,i sin(φp,j,i,i)

nia
2
i aj

+

i−1∑
j=1

GmjCp,i,j,i sin(φp,i,j,i)

nia
3
i

 (17)

dni
dt

= −
∞∑
p=1

 N∑
j=i+1

3Gmjp

a2i

(
eiDp,j,i,i sin(φp,j,i,i)

aj
+
ejCp,j,i,j sin(φp,j,i,j)

aj

)

−
i−1∑
j=1

3Gmj(p+ 1)

a2i

(
ejDp,i,j,j sin(φp,i,j,j)

ai
+
eiCp,i,j,i sin(φp,i,j,i)

ai

) (18)

d$i

dt
=

∞∑
p=1

 N∑
j=i+1

GmjDp,j,i,i cos(φp,j,i,i)

einia
2
i aj

+

i−1∑
j=1

GmjCp,i,j,i cos(φp,i,j,i)

einia
3
i

 . (19)

In addition, consistent with the above approximation scheme, the rate of change
of the mean longitudes may be obtained from

dλi
dt

= ni (20)

which also enables evaluation of the rate of change of the angles φp,j,i,i, φp,j,i,j etc.
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2.3 The incorporation of disk tides

We incorporate the effects of orbital circularization by adding additional terms to
the right hand sides of equations (17) and (18). Equation (17) is modified through
the straightforward prescription

dei
dt
→ dei

dt
− ei
tc,i

, (21)

where tc,i is the circularization time for planet i. Similarly equation (18) is modified
according to

dni
dt
→ dni

dt
+

3nie
2
i

tc,i
. (22)

This adjustment is necessary to account for the orbital energy dissipation occurring
as a result of circularization correct to the lowest order in ei. This dissipation is
assumed to occur with out changing the angular momentum of the system because
the planets can only potentially contain a negligible amount of angular momentum
compared to that in the orbit. It follows from the energy dissipation rate for planet,
i, given by

dEi

dt
= − min

2
i a

2
i e

2
i

(1− e2i )tc,i
. (23)

For small eccentricities, e2i may be neglected in the denominator of the above
expression and the total rate of energy dissipation in the system is obtained by
summing over all planets.

3 Two planets in a p + 1 : p commensurability

It is possible to investigate solutions of equations (17) - (19) modified to incor-
porate circularization, that illustrate the geometrical separation of the system as
energy is dissipated while the total angular momentum is conserved, in a number
circumstances.

3.1 A tight commensurability

We begin with an example where two successive planets k and k + 1 maintain
a p + 1 : p commensurability with the associated angles in a state of at most
small amplitude libration while their semi-major axes separate. We later go on
to consider a simple restricted example where the angle circulates. The effects
of planets other than the resonant pair is neglected. Equations(17) - (19) with
the modifications given by (21) and (22) to incorporate circularization give the
governing equations for planet k in the form
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dek
dt

= −
Gmk+1Dp,k+1,k,k sin(φp,k+1,k,k)

nka
2
kak+1

− ek
tc,k

(24)

dnk
dt

= −
3Gmk+1p

a2k

(
ekDp,k+1,k,k sin(φp,k+1,k,k)

ak+1

+
ek+1Cp,k+1,k,k+1 sin(φp,k+1,k,k+1)

ak+1

)
+

3nke
2
k

tc,k
(25)

d$k

dt
=
Gmk+1Dp,k+1,k,k cos(φp,k+1,k,k)

eknka
2
kak+1

. (26)

Similarly the governing equations for planet k + 1 are given by

dek+1

dt
= −

GmkCp,k+1,k,k+1 sin(φp,k+1,k,k+1)

nk+1a
3
k+1

−
ek+1

tc,k+1
(27)

dnk+1

dt
=

3Gmk(p+ 1)

a2k+1

(
ekDp,k+1,k,k sin(φp,k+1,k,k)

ak+1

+
ek+1Cp,k+1,k,k+1 sin(φp,k+1,k,k+1)

ak+1

)
+

3nk+1e
2
k+1

tc,k+1
(28)

d$k+1

dt
=
GmkCp,k+1,k,k+1 cos(φp,k+1,k,k+1)

ek+1nk+1a
3
k+1

. (29)

Setting φp,k+1,k,k → φp,k+1,k,k ± ∆φp,k+1,k,k and φp,k+1,k,k+1 → φp,k+1,k,k+1 ±
∆φp,k+1,k,k+1, where the positive sign is taken when the equilibrium value of the
angle is zero and the negative sign is taken when it is π, and∆ indicates a small shift
such that the sines of the angles may be replaced by the angles themselves. Then
assuming that the evolutionary time scale is much longer than the circularization
times so that the time derivatives of the eccentricities may be neglected, we can
then find expressions for the small angular shifts in the form

∆φp,k+1,k,k = −
eknka

2
kak+1

Gmk+1Dp,k+1,k,ktc,k
. (30)

∆φp,k+1,k,k+1 = −
ek+1nk+1a

3
k+1

GmkCp,k+1,k,k+1tc,k+1
. (31)

Substituting these into the equations for the evolution of the mean motions yields

dnk
dt

=
3(p+ 1)e2knk

tc,k
+

3pmk+1e
2
k+1nk+1a

2
k+1

mka
2
ktc,k+1

(32)

dnk+1

dt
= −

3(p+ 1)mke
2
knka

2
k

mk+1tc,ka
2
k+1

−
3pe2k+1nk+1

tc,k+1
. (33)

The above pair of equations express the conservation of energy and angular mo-
mentum for the system in the limit of small eccentricity. We remark that the latter
follows in the form

mk+1a
2
k+1

dnk+1

dt
+mka

2
k
dnk
dt

= 0, (34)
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while the former follows from using the fact that Ej ∝ mjn
2/3
j to find equations

for dEj/dt, j = k, k+ 1 and then adding. We may also obtain an equation showing
how the period ratio increases with time in the form

d

dt

(
nk
nk+1

)
=

3nkJ

nk+1

[
(p+ 1)e2k
tc,kJk+1

+
pe2k+1

tc,k+1Jk

]
, (35)

where Jk = mka
2
knk, and J = Jk + Jk+1. In order to proceed further we need to

calculate the eccentricities. These may be obtained from the governing equations
for the evolution of the angles that may be obtained from (20), (26) and (29) in
the form

dφp,k+1,k,k

dt
= (p+ 1)nk+1 − pnk −

Gmk+1Dp,k+1,k,k cos(φp,k+1,k,k)

eknka
2
kak+1

. (36)

dφp,k+1,k,k+1

dt
= (p+ 1)nk+1 − pnk −

GmkCp,k+1,k,k+1 cos(φp,k+1,k,k+1)

ek+1nk+1a
3
k+1

. (37)

As the angles are quasi-steady and close to zero or π, these expressions enable
the calculation of the squares of the eccentricities ek and ek+1 which are required
in order to calculate the rate of period separation through (35). They are found
to be given by

e2k =

(
Gmk+1Dp,k+1,k,k

nka
2
kak+1[(p+ 1)nk+1 − pnk]

)2

and (38)

e2k+1 =

(
GmkCp,k+1,k,k+1

nk+1a
3
k+1

[(p+ 1)nk+1 − pnk]

)2

respectively. (39)

Using these in (35) we obtain

d

dt

(
nk
nk+1

− p+ 1

p

)3

=
9nkJ

nk+1
F, (40)

where

F =
(p+ 1)

tc,kJk+1

(
Gmk+1Dp,k+1,k,k

pnknk+1a
2
kak+1

)2

+
p

tc,k+1Jk

(
GmkCp,k+1,k,k+1

pn2k+1
a3k+1

)2

. (41)

When the system starts to move away from a commensurability taken to be exact
at t = 0, we may treat the right hand side of (40) as being constant and integrate
with respect to time to obtain

nk
nk+1

− p+ 1

p
=

(
9nkJ

nk+1
Ft

)1/3

. (42)

A similar scaling for which the separation from a commensurability increases ∝ t1/3
was obtained for a three planet system by Papaloizou & Terquem (2010).
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3.2 The interaction between two planets away from a close commensurability

In this case we again assume interaction between planets k and k+ 1. In this case
we consider the situation away from a strict commensurability where significant
libration or circulation may occur. This is a natural development as tidal evolu-
tion causes the system to evolve away from a tight commensurability of the type
described above towards such a situation. We make the additional simplification
of assuming that mk+1 � mk. In that case, a circular restricted 3 body prob-
lem may be adopted. Only the motion of planet k is considered with ek+1 = 0.
Equations (17) - (20) apply and as ek+1 = 0, only terms involving the angles
φp,k+1,k,k, p = 1, 2... appear. These give the equations governing the evolution as

dek
dt

= − ek
tc,k
−
∞∑
p=1

Gmk+1Dp,k+1,k,k sin(φp,k+1,k,k)

nka
2
kak+1

(43)

dnk
dt

=
3nke

2
k

tc,k
−
∞∑
p=1

3Gmk+1pekDp,k+1,k,k sin(φp,k+1,k,k)

ak+1a
2
k

(44)

dφr,k+1,k,k

dt
= (r + 1)nk+1 − rnk −

∞∑
p=1

Gmk+1Dp,k+1,k,k cos(φp,k+1,k,k)

eknka
2
kak+1

,

r = 1, 2, 3 . . . (45)

Although we consider the effect of more than one angle, we focus on a particular
one with r = q which might be considered to be the one closest to resonance, though
that is not essential. Setting x = ek cos(φq,k+1,k,k) and y = ek sin(φq,k+1,k,k) in
equations (43) and ( 45 ) leads to a system that, unlike the original one, does not
contain an apparent singularity as ek → 0 in the form

dx

dt
= −ωqy −

x

tc,k
−

∞∑
p=1 6=q

αp sin[(p− q)(λk+1 − λk)] (46)

dy

dt
= −αq + ωqx−

y

tc,k
−

∞∑
p=16=q

αp cos[(p− q)(λk+1 − λk)], (47)

where, recalling that k is fixed, we define αq = Gmk+1Dq,k+1,k,k/(nka
2
kak+1)

and ωq = (q + 1)nk+1 − qnk.
We now remark that if we consider the limit ek → 0, which occurs far enough

away from resonance, we may neglect the evolution of nk and asume that it remains
constant and equal to nk0. To see this it follows from (43) that ek scales as mk+1

while (44) then indicates that the change in nk, δnk = nk − nk0 scales as m2
k+1 or

e2k. Accordingly, for q of order unity, the induced variation of wq, δωq, is such that
δωq ∼ nk0e2k. By comparing the variation of the first two terms on the right hand
side of equation (47), it readily follows in the low eccentricity limit that provided
nk0e

3
k � αq or

ek �
(
Gmk+1Dq,k+1,k,k

n2ka
2
kak+1

)1/3

, (48)
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the variation of nk may be neglected so that it may be taken to be equal to
nk0. Similarly ak is replaced by the corresponding fixed value ak0. The above
approximation scheme applies in the low eccentricity limit or sufficiently far away

from strict commensurability such that |ωq| = |(q + 1)nk+1 − qnk0| � n
1/3
k0 α

2/3
q .

Given that in the same approximation (20) implies that
λk+1 − λk = (nk+1 − nk0)t, equations (46) and (47) describe a linear system with
prescribed harmonic forcing that is easily solved exactly. The solution in the limit
tc →∞ may be written

x = x0 +

∞∑
p=16=q

αp cos[(p− q)(λk+1 − λk)]

(p+ 1)nk+1 − pnk
(49)

y = −
∞∑

p=1 6=q

αp sin[(p− q)(λk+1 − λk)]

(p+ 1)nk+1 − pnk
, (50)

where x0 = αq/ωq. This indicates oscillation about the mean value of x = x0.

In the absence of the periodic forcing circularization would cause the solution to
approach x = x0, y = 0 corresponding to a precise commensurability with zero
libration amplitude. When the forcing is present, there is either libration or circu-
lation depending on the ratio of the forcing amplitude to x0. When q+ 1 : q is the
closest commensurability, this can be small resulting in small amplitude libration.
When some other commensurability is dominant, the motion in the (x, y) plane is
around an approximately circular curve that encloses the origin and so corresponds
to circulation. Thus as the system moves through a commensurabilty the motion
is expected to change from circulation to libration to circulation (see Terquem &
Papaloizou 2007 for an example of evolution away from a first order commensu-
rability driven by orbital circularization). Note that in all of these cases the time
dependent averages of quantities such as ek cos(φq,k+1,k,k) ≡ x and cos(φq,k+1,k,k)
are generally non zero (see also Papaloizou & Terquem 2010).

In order to calculate the rate of energy dissipation resulting from orbital cir-
cularization and hence the rate of evolution it causes, we require the time average
of the square of the eccentricity. This is given by

〈e2k〉 = 〈x2 + y2〉 =

∞∑
p=1

α2
p

[(p+ 1)nk+1 − pnk]2
. (51)

We remark that this expression connects to that found for the tight resonance
example (38). The latter expression is identical to that given by (51) if only one
term is retained that corresponds to the tight commensurability considered. Thus
we expect the evolution to continue to be dominated by the closest comensurability
until another becomes closer and takes over governing the evolution.

3.3 The orbital evolution of the planet

The rate of change of the orbital energy may be obtained from consideration of
(51) and (23) together with the discussion leading to equation (3) given in section
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2.1 with the result that

dEk

dt
≡ −

mka
2
knknk+1

3

d

dt

(
nk
nk+1

)
= −

mkn
2
ka

2
k

(1− nk+1/nk)tc,k

∞∑
p=1

α2
p

[(p+ 1)nk+1 − pnk]2

(52)
which means that the orbit of mk contracts and separates from that of mk+1. In the
limit mk/mk+1 → 0 in which nk+1 becomes fixed, and close to a commensurability
(52) becomes equivalent to (40). Thus it enables the discussion of the situation
corresponding to a tight commensurability to be extended to conditions away from
close commensurability. In view if the fact that nk/nk+1 must always increase,
such a discussion leads to the conclusion that the evolution will be controlled by
successive first order comensurabilities as the system widens (see also Terquem &
Papaloizou 2007).

4 Numerical Simulations

We here describe simulations of model planetary systems in which commensurabil-
ties have been formed subsequently evolving under the influence of circularization
tides.

4.1 Model and initial conditions

We consider a primary star together with N planets embedded in a gaseous disk
surrounding it. The planets undergo gravitational interaction with each other and
the star and are acted on by tidal forces from the disk and star. The system is
solved as an N–body problem. Tidal interactions are incorporated by applying
appropriate dissipative forces (see Terquem & Papaloizou 2007 and Papaloizou &
Terquem 2010 for more details and examples). The equations of motion may be
written as

d2ri
dt2

= −GMri
|ri|3

−
N∑

j=16=i

Gmj0 (ri − rj)

|ri − rj |3
− Γ + Γi + Γr , (53)

where M , mj0 and rj denote the mass of the central star, that of planet j and the
position vector of planet j, respectively. The acceleration of the coordinate system
based on the central star (indirect term) is given by

Γ =

N∑
j=1

Gmj0rj
|rj |3

, (54)

and that due to tidal interaction with the disk and/or the star is dealt with through
the addition of dissipative forces (see Papaloizou & Larwood 2000). Thus

Γi = − 1

tmg,i

dri
dt
− 2

|ri|2te,i

(
dri
dt
· ri
)

ri −
2

ti,i

(
dri
dt
· ez
)

ez , (55)

where tmg,i, te,i and ti,i are the timescales over which, respectively, the angular mo-
mentum, the eccentricity and the inclination with respect to the unit normal ez to
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the assumed fixed gas disk midplane change. Evolution of the angular momentum
and inclination is assumed to be due to tidal interaction with the disk, whereas
evolution of the eccentricity is assumed to occur due to both tidal interaction with
the disk and the star. We have:

1

te,i
=

1

tdc,i
+

1

tc,i
, (56)

where tdc,i and tc,i are the contribution from the disk and tides raised by the
star, respectively. Relativistic effects are modeled through Γr ( see Papaloizou &
Terquem 2001).

Because a low mass planet cannot contain a significant quantity of angular
momentum, tides raised on it by interaction with the star are assumed not to
modify the angular momentum of the orbit. We remark that the orbital decay
timescale, due to tides raised on the star, is readily estimated to be much longer
than any timescale of interest (eg. Barnes et al 2009) thus these tides are ignored
from now on.

4.2 Orbital circularization due to tides from the central star

The circularization timescale due to tidal interaction with the star, in the small
eccentricity limit appropriate here, is taken to be ( Goldreich & Soter 1966)

tc,i = 4.65× 104

(
M�
M

)3/2(
M⊕
mi0

)2/3 (
20ai
1 au

)6.5
Q′ years, (57)

where ai is the semi–major axis of planet i. Here we have adopted a mass density of
1 g cm3 for the planets (uncertainties in this quantity could be incorporated into a
redefinition of Q′). The parameter Q′ = 3Q/(2k2), where Q is the tidal dissipation
function and k2 is the Love number. For solar system planets in the terrestrial
mass range, Goldreich & Soter (1966) give estimates for Q in the range 10–500
and k2 ∼ 0.3, which correspond to Q′ in the range 50–2500. We remark that this
parameter should be regarded as being very uncertain for extrasolar planets. As
computations with increasing Q′ become prohibitive on account of long evolution
times, we have considered values of Q′ of 1.5 and 3 in this paper. However, we
have obtained scaling relations which indicate how to scale results to larger Q′.

4.3 Type I migration

When a planet is in contact with the disk, disk–planet interactions occur leading to
orbital migration as well as eccentricity and inclination damping (e.g., Ward 1997).
However, the migration rates to be used are uncertain even when the disk surface
density is known, largely because of uncertainties regarding the effectiveness of
coorbital torques (e.g., Paardekooper & Melema 2006, Pardekooper & Papaloizou
2008, 2009). In this context there are indications from modelling the observational
data that the adopted type I migration rate should be significantly below that
predicted by the linear calculations of Tanaka et al. (2002) (see Schlaufman et al
2009). Hence we have carried out simulations with tmg,i and tde,i for any system
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Fig. 1 The evolution of two planets that form a 3:2 commensurability. The early evolution
of the period ratio during convergent migration is shown in the upper left panel. The upper
right panel shows the evolution of the period ratio under orbital circularization after disk
migration ceases. The uppermost curve is for Q′ = 1.5 and the lower curve is for Q′ = 3. The
triangles/diamonds correspond to the analytic predictions made from equation (42) adapted
to the case of a 3:2 commensurability for Q′ = 1.5/Q′ = 3 respectively. The evolution of
the eccentricity of the outermost planet is plotted in the lower left panel for Q′ = 1.5. The
evolution of the resonant angle 3λ2 −2λ1 −$1 is plotted in the lower right panel for Q′ = 1.5.

taken, as for type I migration, to be proportional to 1/mi and adopted ti,i =

tde,i. A range of scaling constants was explored. These are quoted together with
corresponding numerical results below.

We remark that provided that eccentricity damping limits eccentricities to
small values, the commensurabilities that are formed in the system as a conse-
quence of convergent migration depend on the ratio of the adopted migration rate
to the local orbital frequency, with commensurabilities of low order and low degree
forming when this ratio is small.
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4.4 Numerical results

4.5 A system with a 3:2 commensurability

For the calculatioas presented in this section we adopted masses for the two planets
and the central star that coincided with those for the star and two innermost
planets of the GJ581 system. Thus the inner planet was taken to have a mass
m1 = 1.94M⊕ and to be in circular orbit at 0.16au. The outer planet was taken
to have a mass mi = 15.64Moplus and to be in a circular orbit at 0.32au. Tests
indicate that the results of simulations of the type described here do not depend
on the longitudes at which the planets are inserted on such circular orbits. The
central mass was 0.31M�. The initial semi-major axes were chosen to be larger
than the corresponding ones in the GJ581 system so as to allow for some inward
migration. The disk migration and circularization rates adopted were given by

tmig = 4.375× 105M⊕
mi

yr. and tc,i = 5× 102M⊕
mi

yr. (58)

However, they were only applied when the semi-major axis of a planet exceeded
0.041au. This procedure results in the final semi-major axis of the outer planet
to coincide with the second planet in the GJ581 system. The termination of disk
migration could be regarded as either being due to entry into an inner cavity, or
simply removal of the disk. The migration rate was chosen so as to enable the
planets to settle into a 3:2 commensurability through convergent migration. A
very much slower rate would allow trapping in a 2:1 commensurability, while a
very much faster one would result in the system passing through the 3:2 commen-
surability (see eg. Papaloizou & Szuskewicz 2010). We remark that although the
specific parameters chosen correspond to the GJ581 system, the aruments pre-
sented above indicate that the form of evolution we find should be generic for
two low mass planets attaining a first order commensurability through convergent
migration.

The evolution of the system is illustrated in Fig. 1. The early evolution of the
period ratio during convergent migration is shown in the upper left panel. It is seen
that the system is trapped in a 2:1 commensurability for a while before escaping
to be subsequently trapped in a 3:2 commensurability. After about 2× 104yr. the
forces from the disk cease to act and the system evolves under tidal circularization.
The upper right panel of Fig. 1 shows the evolution of the period ratio. Results
for simulations with Q′ = 1.5 and Q′ = 3 are illustrated and compared to analytic
predictions derived from equation (42) adapted to the cases on hand. Interestingly
the numerical results are in quite good agreement with what is expected from the
analytic discussion given in section 3 which assumed a small libration amplitude
and which led to equation (42), even in regimes where the amplitude of libration of
the resonant angle is quite large. However, the simulations show additional sudden
small jumps in the period ratio which occur when the system passes through the
5:3 resonance. This jump was larger for the Q′ = 1.5 case than for the Q′ = 3 case.
The evolution of the resonant angle 3λ2 − 2λ1 −$1 for Q′ = 1.5. shown in Fig. 1
indicates an increasing amplitude libration that tends to break down near the end
of the simulation when the period ratio ∼ 1.7 as in GJ581. But note that there
is also a short temporary breakdown as the system passes through 5:3 resonance.
Note that the anlaytic treatment suggests the time for the period ratio to evolve
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Fig. 2 The evolution of two planets that form a 5:3 commensurability. The early evolution of
the period ratio during convergent migration is shown in the upper left panel. The upper right
panel shows the evolution of the period ratio under orbital circularization after disk migration
ceases. The uppermost curve is for Q′ = 1.5 and the lower curve is for Q′ = 3. The evolution
of the eccentricity of the outermost planet is plotted in the lower left panel. The evolution of
the resonant angle 3λ2 − 2λ1 −$1 is plotted in the lower right panel.

from 1.5 to 1.7 to be ∼ 5×106yr. The simulation with Q′ = 1.5. rather fortuitously
agrees very well with this. The analytic prediction for Q′ = 3 is 107yr. while the
simulations discussed in this and the next section indicate 1.3× 107yr. Given the
expectation that evolution times are ∝ Q′, this indicates that values of Q′ as large
as a few hundred could have allowed the period ratio to move from 1.5 to the
present value within the lifetime of the system.

4.6 A system with a 5:3 commensurability

For the calculations presented in this section we adopted the same values for the
central mass and the planet masses as in section 4.5. However, we adopted initial
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conditions, migration and circularization rates so as to enable the system to settle
into a 5:3 commensurability. Thus the inner planet was started in circular orbit
at 0.08au and the outer planet in a circular orbit at 0.16au in this case. The disk
migration and circularization rates adopted were given by

tmig = 1.75× 105M⊕
mi

yr. and tc,i = 2× 103M⊕
mi

yr. (59)

Thus the convergent migration rate was two and a half times faster and the circu-
larization rate four times slower than for the calculation in section 4.5. However,
they were applied in the same way. The faster migration rate and the slower ec-
centricity damping rate allows trapping in the 5:3 resonance.

The early evolution of the period ratio during convergent migration is shown
in Fig. 2. It is seen that the system becomes trapped in a 2:1 commensurability
before escaping to form a 5:3 commensurability. After about 8× 104yr. the forces
from the disk cease to act and the system evolves under tidal circularization.

The upper right panel of Fig. 2 shows the evolution of the period ratio under or-
bital circularization after disk migration ceases for Q′ = 1.5 and Q′ = 3. Although
the system started in a 5:3 commensurability, the evolution can be regarded as
matching onto that illustrated in the previous section which can be regarded as
being driven by the 3 : 2 comensurability. This is also confirmed by the evolution
the resonant angle 3λ2 − 2λ1 −$1 also plotted in Fig.2. We also remark that the
time for the period ratio to move from 5/3 to 1.7 is about twice as large for Q′ = 3
as for Q′ = 1.5 as expected. However, these times are only approximately 1.8×106

and 3.6×106yr. respectvely indicating that values of Q′ up to 103 could be effective
within the lifetime of the system.

4.7 Adding additional planets

Here the effect of adding additional planets to the simulation described above is
investigated. To do this we take the calculation of section 4.6 at the point at which
forces arising from the disk cease to act. Two additional planets of masses 5.36M⊕
and 7.09M⊕ are added in circular orbits with semi-major axes 0.07au and 0.22au
respectively. These correspond to the two outermost planets in the GJ581 system.
We remark that the eccentricities of these planets were determined to be consistent
with zero by Vogt et al. (2010). As before we considered runs for which Q′ = 1.5
and Q′ = 3. In this case the same value of Q′ was adopted for each planet.

The results are plotted in Fig. 3. The evolution in this case is for the most part
similar to that illustrated in Fig. 2 for two planets. In particular approximately
the same time is taken for the period ratio for the innermost pair of planets to
move from 5/3 to 1.7. However, a significant difference is that the evolution of the
period ratio slows down briefly between 1.5×107 and 2.0×107yr. in the simulation
with Q′ = 3. During this time the eccentricity of the second innermost planet
is increased. Although the reasons for this are unclear, it is associated with an
interaction between the second and third innermost planets. The innermost planet
continues to move inwards but the angular momentum ends up being transferred to
the third rather than the second innermost planet. There does not seem to be any
clear resonance associated with this. However, we comment that in a many planet
system like this, we could consider a tension between possible interacting pairs. The



18 Papaloizou

Fig. 3 The evolution of two planets illustrated in Fig. 3 but with two additional outer planets
added after the disk migration phase as indicated in the text. The upper right panel shows
the evolution of the period ratio of the innermost two planets under orbital circularization.
The uppermost curve is for Q′ = 1.5 and the lower curve is for Q′ = 3. The evolution of the
eccentricity of the second innermost planet is plotted in the upper left panel. The evolution
of the resonant angle 3λ2 − 2λ1 −$1 is plotted in the lower left panel. The behaviour of the
angle between the apsidal lines of the orbits of the second innermost and innermost planets is
illustrated in the lower right panel.

second and third planets would separate on account of tidal circularization if the
innermost planet were absent. Similarly the innermost pair can couple as in section
4.6. In some circumstances, dependent on their masses, orbital parameters, and
values of Q′ etc., different interacting pairs may have varying levels of importance
in the simulation. This requires a more detailed study than we have been able to
perform at this preliminary stage that will be the subject of future work.
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Fig. 4 The evolution of two planets in a 3:1 commensurability is illustrated. The left upper-
most panel shows the evolution of the semi-major axes of the two planets. The initial period of
disk migration is short <∼ 4.5×106yr. The subsequent evolution is driven by tidal circulariza-
tion with Q′ = 100 and the gravitational interaction between the planets. The upper left panel
shows the evolution of the period ratio. This remains 3:1 for some time after disk migration
has ceased before finally increasing as the planets separate. The lower left panel shows the
evolution of the eccentricities of the two planets, the uppermost curve corresponding to the
inner planet. The lower right panel shows the angle between the apsidal lines of the orbits of
the outer and inner planets, which ultimately remains close to π.

4.8 A system with a 3:1 commensurability

Finally we describe a situation in which a 3 : 1 commensurability could be formed
under convergent migration and then subsequently maintained. The parameters
of this simulation were chosen to lead to a separation of pairs similar to the third
and fourth innermost planets in the HD 10180 system for which there may have
been a past proximity to a 3:1 commensurability.

In this case the central mass was taken to be 1M⊕. The inner planet mass was
taken to be 11.73M⊕ and the outer planet taken to be 25.07M⊕. Their initial semi-
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major axes were 0.387au and 1.2au respecively. The outer planet was started in
circular orbit while the inner planer was started at apocentre with an eccentricity
e = 0.24. The disk migration and circularization rates adopted were given by

tmig = tc,i = 1.4× 108M⊕
mi

yr. (60)

These were applied only when the planets semi-major axes exceeded 0.29au. Note
that this migration rate is very much lower than the previous cases so as to en-
able trapping in the 3 : 1 resonance. The ecentricity damping rate is taken to be
equal to the migration rate so that the eccentricities do not damp too quickly so
enabling the 3:1 resonance to persist. Rates like these are not readily produced in
calculations of disk planet interactions for which the planets are fully embedded.
They may be possible if the planets are located within a wide cavity. However, this
aspect remains to be investigated. Here we simply adopt these rates and explore
their consequences. Because of the larger planetary masses and larger orbital ec-
centricities in this run, it was possible to consider larger values of Q′. We adopted
Q′ = 100.

The evolution of the two planets in this simulation is illustrated in Fig. 4. The
planets undergo convergent migration and attain a 3:1 resonance. The eccentricity
of the inner planet grows up to ∼ 0.56. The growth ceases after ∼ 4 × 106yr.

when effects arising from the disk cease to act. After this time the planets evolve
under tidal circularization. For about 50 million years the commensurability is
maintained while the eccentricty of the inner planet decreases and that of the
outer one increases. In this process angular momentum is transferred to the inner
planet. However, this form of evolution cannot be maintained and it reverts to
the situation where the planets separate in semi-major axis as descibed in section
2.1 while the eccentricities decrease. The period ratio secularly increases while the
angle between the apsidal lines of the orbits of the outer and inner planets remains
close to π.

Interestingly at least five resonance passages were seen during this later evolu-
tionary stage. As the period ratio increased, these corresponded to the 19:6, 16:5,
13:4, 10:3 and 7:2 resonances. They are manifested as local blips in the eccen-
tricity evolution of both planets as shown in the lower left panel of Fig. 4. The
resonance passages are of decreasing order with increasing time and so the conse-
quent changes induced in the planetary eccentricities increase in magnitude. The
fact high order resonances such as 19 : 6 were manifest in this run is because of
the relatively high eccentricities, in particular of ∼ 0.3 for the inner planet.

5 Discussion

In this paper we have studied systems of close orbiting planets evolving under the
influence of tidal circularization. We considered the situation where the system
evolved under the influence of disk tides to form a commensurability. After the
disk tides ceased to operate, either because of entry into an inner cavity, or because
of loss of the disk, the operation of tidal circularization caused increasing departure
from any close commensurability as time progressed.

In section2.1 we pointed out that a system of planets in near circular orbits is
expected to separate on average as energy is dissipated while angular momentum
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is conserved. This is also expected in the very similar situation of an accretion
disk evolving under a viscosity (see Lynden-Bell & Pringle 1974). In the simplest
case of two planets, this inevitable increasing physical separation has to lead to
the increasing departure from any initial commensurability.

In sections 2.2, 2.3 and 3, we developed a formalism that could be adapted
study the evolution of two planets near to a first order commensurability under
the influence of tidal circularization. This was then applied to a system with a tight
commensurability in section 3.1. An expression for the departure from commensu-
rability, indicating this to be ∝ t1/3, was given (see equation (42)). The discussion
was then extended to the situation when the two planets were not necessarily in a
close commensurability in section 3.2. The orbital evolution of the planet in that
case, leading to a neighbouring commensurability, was then considered in section
3.3.

In order to confirm the analytic modeling, numerical simulations were under
taken in section 4. We were able to set up systems of low mass planets in vary-
ing commensurabilities, depending on the strengths of the disk tides leading to
orbital migration and circularization, with weaker tides in general leading to more
widely separated commensurabilities. We focused on a two planet system which
had the same parameters as the innermost two planets as the GJ581 system in
section 4.5. This formed a 3:2 commensurability which then evolved under orbital
circularization. This model system attained the period ratio of the actual system
after ∼ 108yr. when Q′ ∼ 1. Simple extrapolation thus indicates that tidal evo-
lution could have moved the system to the present period ratio of 1.7 from a 3:2
commensurability if Q′ ∼ 100. Similarly the situation when the system initially
attained a 5:3 commensurability was studied in section 4.6. In this case the evolu-
tion quickly adapted to evolve as for the case with the initial 3:2 commensurability
when that had reached the same period ratio. However, a larger value Q′ would
suffice to cause the period ratio to move from 5:3 to the observed one within a
given life time. The effect of adding the additional planets in the GJ581 system
was considered in section 4.7. In that case over the long term the extra planets did
not greatly affect the evolution. However, for a brief period the third planet moved
outwards taking up the angular momentum of the innermost planet rather than
the second, with the consequence that the period separation rate for the innermost
pair was slowed. Thus a pair of planets may not always evolve independently of
others in the system, a feature that requires further study.

Finally the evolution of a system that formed a 3:1 commensurability was con-
sidered in section 4.8. The model system adopted had similar parameters to the
third and fourth innermost planets in the HD 10180 system. This case required
slow disk migration and weak circularization with the result that the resonance
involved high eccentricities. Because of these the commensurability could be main-
tained for a while under orbital circularization. However, eventually the system
increasingly departed from it as in the other cases. Finally all of our results indi-
cate that if Q′ <∼ 100, commensurabilities would have been significantly affected
by tidal effects related to orbital circularization. Thus the survival of close com-
mensurabilities in observed systems may be indicative of the presence of large Q′

values, a feature which in turn may be related to the internal structure of the
planets involved.
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