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ABSTRACT

Planetary systems discovered by the Kepler space telescope exhibit an intriguing feature. While
the period ratios of adjacent low-mass planets appear largely random, there is a significant excess
of pairs that lie just wide of resonances and a deficit on the near side. We demonstrate that this
feature naturally arises when two near-resonant planets interact in the presence of weak dissipation
that damps eccentricities. The two planets repel each other as orbital energy is lost to heat. This
moves near-resonant pairs just beyond resonance, by a distance that reflects the integrated dissipation
they experienced over their lifetimes. We find that the observed distances may be explained by tidal
dissipation if tides are efficient (tidal quality factor ∼ 10). Once the effect of resonant repulsion is
accounted for, the initial orbits of these low mass planets show little preference for resonances. This
is a strong constraint on their origin.

1. INTRODUCTION

NASA’s Kepler mission is revolutionizing our knowl-
edge of planetary systems. It has already discovered
thousands of transiting planetary candidates, including
hundreds of systems with two or more planets (Batalha
et al. 2012). Most of these are Neptune- or Earth-sized
planets. To date, one of the most intriguing Kepler dis-
coveries is that, while the spacing between planets ap-
pears to be roughly random, there is a distinct excess
of planetary pairs just wide of certain resonances, and
a nearly empty gap just narrow of them (Lissauer et al.
2011; Fabrycky et al. 2012). These features are particu-
larly prominent near the 3:2 and 2:1 resonances, and af-
fects planets that fall within a few percent of resonances
(Fabrycky et al. 2012).

Is this resonance asymmetry a feature planetary sys-
tems are born with, or one they acquire much later on?
Many studies have reported that planets become trapped
into first-order resonances when they migrate in proto-
planetary disks (e.g., Lee & Peale 2002; Snellgrove et al.
2001; Papaloizou & Szuszkiewicz 2005). In fact, the pres-
ence of resonances among giant planets detected by ra-
dial velocity has been regarded as strong evidence for
disk migration (e.g., Marcy et al. 2001; Tinney et al.
2006). However, Kepler’s low-mass planets appear to be
less influenced by resonances, and the pile-ups just out-
side resonances are partly counterbalanced by the gaps
inside them.

In this paper, we identify a process that can modify
the pair separation and give rise to the observed reso-
nance asymmetry. But first, let us consider a commonly
invoked mechanism, tidal circularization. If the inner
planet is eccentric, tides raised on it would damp its ec-
centricity, decrease its semi-major axis, and hence in-
crease the period ratio of the pair (Novak et al. 2003;
Terquem & Papaloizou 2007)3. Adopting the equilib-
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rium tide expression from Hut (1981), the damping rate
for a psudo-synchronized planet is

γe =
1

e

de

dt
= −9

2

k2
T1
q(1 + q)

(
R1

a

)8

, (1)

where q = M∗/m1 is the mass ratio of the star to
planet, k2 the tidal love number, R1 the inner planet’s
radius and a its orbital separation. In this tidal model,
T1 = R3

1/(Gm1τ1) where τ1 is the assumed constant tidal
lag time which we take to be τ1 = P1/(2Q1), with Q1

the inner planet’s tidal quality factor (Goldreich & Soter
1966) and P1 its orbital period. Numerically,
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The orbital decay rate is ȧ/a = 2eė because orbital an-
gular momentum is largely conserved. So tidal evolution
could have potentially circularized orbits inward of ∼ 10
days. As it does so, it moves the inner planet inward by
∆a/a ∼ −e21. This increases the period ratio for a planet
pair by a fractional amount of 3e21/2 = 1.5%(e1/0.1)2.
However, tidal circularization alone can not reproduce
the observed asymmetry: assuming all near-resonant
pairs were initially uniformly distributed in their period
ratios, all systems march to larger period ratios by a com-
parable amount. This produces neither gap nor peak.

A more selective mechanism is required. In this paper,
we show that for a pair of planets that happen to lie near
a mean-motion resonance, dissipation causes the planets
to repel each other. The rate of repulsion is greatest
at exact resonance and falls off steeply away from reso-
nance. Planets that are initially slightly closer than res-
onance are pushed wide of the resonance; those that are
initially wider are pushed even further apart. And planet
pairs far away from the resonance are not affected. So
the combined action of resonant interaction and damp-
ing naturally give rise to the observed resonance asym-
metry. This effect, which we term “resonant repulsion”,
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was first investigated by Lithwick & Wu (2008) to ac-
count for the orbits of Pluto’s minor moons. Though
it likely fails quantitatively in that particular case, we
show here that it can account for the observed asymme-
try in Kepler planets. A similar effect plays a role in
the migration of the moons of Jupiter and Saturn (e.g.,
Peale 1986). But in that case, the dominant dissipative
effect (tides raised by the moons on the central bodies,
Jupiter or Saturn) pushes the moons outwards which of-
ten locks them into resonances. Papaloizou (2011) also
investigated the effect of tidal circularization on multiple
planet systems.

2. RESONANT REPULSION

We consider the evolution of two planets orbiting a star
and assume that the interaction between the planets is
predominantly due to the 2:1 resonance. We will also
include weak external eccentricity-damping forces. The
energy (or Hamiltonian) of the two planets is, to leading
order in eccentricity,

H=−GM∗m1

2a1
− GM∗m2

2a2
− Gm1m2

a2
×

(f1e1 cos (2λ2 − λ1 −$1) + f2e2 cos (2λ2 − λ1 −$2)) (3)

where we follow standard notation (e.g., Murray & Der-
mott 2000), with the orbital parameters for the inner
planet denoted by {a1, e1, λ1, $1}, and those for the
outer planet subscripted by 2. The mass of the star and
planets are M∗,m1,m2, and the Laplace coefficients are
f1 = −(2 + αD/2)b21/2 and f2 = (3/2 + αD/2)b11/2 − 2α

(Murray & Dermott 2000). Near 2:1 resonance (α =
2−2/3), the Laplace coefficients are f1 = −1.19 and
f2 = 0.428.

We choose units such that

GM∗ = 1 , (4)

and assumes that the eccentricities are small. In terms
of the complex eccentricity

zj ≡ ejei$j , (5)

the equations of motion for planet j are (e.g. Murray &
Dermott 2000; Lithwick & Wu 2008)
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To leading order in mj/M∗, the semi-major axes are
constant, and the equations for λj are

dλj
dt

= nj , (9)

where
nj ≡ a−3/2

j . (10)

Hence
λj ≈ njt , (11)

The eccentricity equations become, after adding damp-
ing terms,

dz1
dt

= iµ2n2

√
a2
a1
f1e

iφ − γe1z1 (12)

dz2
dt

= iµ1n2f2e
iφ − γe2z2 , (13)

where

µj ≡mj/M∗ (14)

φ≡2λ2 − λ1 ≈ −2δ · n2t . (15)

Here

δ ≡ n1 − 2n2
2n2

. (16)

is the fractional distance to nominal resonance. When
δ < 0 the pair is on the near side of resonance, otherwise
it is on the far side.4 The γej in Equations (12)–(13)
denote the eccentricity damping rates on each of the two
planets due to some external force (e.g., tides or a dissi-
pative disk). We assume that γej � |δn2|.

We discard the free solutions to Equations (12)–(13)
because they decay to zero at the rates γej , much faster
than the rate of semi-major axis evolution, as we shall
see below. The forced eccentricities are, to first order in
γej/(δn2)� 1:

z1 =−µ2

2δ
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√
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eiφ
(

1− i γe1
2δn2

)
(17)

z2 =−µ1

2δ
f2e

iφ

(
1− i γe2

2δn2

)
. (18)

The small phase shift, O(γej), relative to the undamped
forced eccentricities plays a crucial role in resonant re-
pulsion.

Inserting the above forced eccentricities into the semi-
major axis equations yields, as in Lithwick & Wu (2008),

d ln a1
dt

=−β
2

µ2
1

δ2
(γe1f

2
1β + γe2f

2
2 )− γa1|z1|2. (19)
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µ2
1
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(γe1f

2
1β + γe2f

2
2 ) − γa2|z2|2 (20)

where

β≡
µ2
√
a2

µ1
√
a1

(21)

and we have included additional damping terms with
rates γaje

2
j . The form of our damping rates for a as-

sume that it is the damping of the planets’ eccentricities
that lead to a evolution, as is true for instance with tides
(see below). By contrast, if the planet is migrated in a
disk, or pushed by tides raised on the central body (as for
Jupiter’s moons), the induced rate of change of a would
be independent of eccentricity. We shall not consider
those kinds of forces.

4 For brevity, we often refer to nominal resonance (δ = 0) as
simply resonance. This should not be confused with a pair be-
ing locked in resonance, i.e. in a state where the resonant angles
librate.
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Fig. 1.— Effect of resonant repulsion on the period distribution
of planet pairs. The dotted blue line shows the assumed initial
condition: a flat differential number distribution of planet pairs.
δ is the fractional distance to resonance. The three red curves
show the effect of resonant repulsion at three later times (via Eq.
24). Planets are evacuated from the near side of resonance (δ < 0)
and piled up on the far side (δ > 0). The parameters are chosen

such that δmig = .005(t/Gyr)1/3 in Equation (25), similar to our
fiducial values for tidal damping (Eq. (26)). The pileup occurs at
∼ δmig and the evacuated region extends to ∼ −δmig. The black
histogram shows Kepler data for planet pairs near the 2:1 and 3:2
resonances (data obtained from Kepler website; see Batalha et al.
2012).

We conclude that the distance to resonance changes at
the rate

dδ

dt
=

3

4

µ1
2

δ2
Γ , (22)

where

Γ ≡ (2 + β)(γe1f
2
1β + γe2f

2
2 ) +

γa1f
2
1β

2 − γa2f22
2

,(23)

for |δ| � 1. We verify this rate with an N-body simula-
tion below.

As long as Γ > 0, as we shall argue is the case, then δ
always increases, independent of the sign of δ. A pair of
planets that is initially spaced closer than nominal reso-
nance (δ < 0) will tend to be pushed outside of resonance,
i.e. to δ > 0. And a pair initially outside of resonance
will be pushed even further apart. We term this effect
resonant repulsion. Furthermore, since the speed of mi-
gration is slowest far from resonance, the region near
nominal resonance (δ = 0) should be unoccupied, and
resonant pairs should evacuate the resonance region and
pile up outside. This will lead to an asymmetry, with
more planets outside of nominal resonance than inside.

Two planets that initially have δ = δ0 repel each other
to δ > δ0, and at time t they migrate to

δ(t) =
(
δ3mig + δ30

)1/3
, (24)

where

δmig(t) =

(
9

4
µ2
1Γt

)1/3

. (25)

Figure 1 illustrates the effect on the distribution of period
ratios.

The sign of Γ is always positive due to eccentricity
damping alone, i.e. to the γej terms in Equation (23).
Furthermore, if tides are the source of damping, then
γaj = 2γej by angular momentum conservation, leaving

Fig. 2.— An N-body simulation of resonant repulsion, where
the dissipation is provided by tidal damping on the inner planet.
A pair of planets initially on the near side of the 2:1 resonance
(i.e., with period ratio P2/P1 < 2) is pushed to the far side (black
points, upper panel). The red curve is the analytic solution (Equa-
tions (24) and (26)) with the same parameters as the simulation.
The lower panels show the evolution of eccentricity and the two
resonant angles. The two planets both have mass 10M⊕ and orbit
a solar mass star, with P1 = 5 days. To speed up the simula-
tion, we artificially enhance the tidal effect by assuming a radius
of 12RE for the inner planet, while Q1 = 10 and k2 = 0.1. The
simulation was performed with the SWIFT package (Levison &
Duncan 1994), modified to include routines for tidal damping and
relativistic precession.

Γ > 0; this is also true for any form of damping that
conserves angular momentum. Other forms of damping
could in principle result in values of γaj that make Γ
negative. However, the fact that Kepler pairs are piled
up outside of resonances argue that this did not happen.

3. RESONANT REPULSION BY TIDES

In this section we focus on the case when the dissipa-
tion is provided by tidal damping. The rate of eccentric-
ity damping γe1 is given by Equation (2). In addition,
γa1 = 2γe1 by angular momentum conservation, and we
may ignore tides on the outer planet (γe2 = γa2 = 0) be-
cause tidal damping rates are steep functions of orbital
period. Therefore Equation (25) becomes

δmig≈ 0.006

(
Q1

10

)−1/3(
k2
0.1

)1/3 (
m1

10M⊕

)1/3 (
R1

2R⊕

)5/3

×
(
M∗

M�

)−8/3 (
P1

5day

)−13/9 (
t

5Gyrs

)1/3

×(2β + 2β2)1/3. (26)

Figure 2 shows an N-body simulation with tides of two
planets initially on the near side of resonance. Resonant
repulsion pushes them to the far side, in agreement with
the analytic solution (Equations (24) and (26)). There
is modest disagreement when the pair crosses through
nominal resonance when the expansion in small e be-
comes invalid. The free eccentricities damp away after a
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Fig. 3.— The timescale for resonant repulsion to move the period
ratio of Kepler planet pairs by a distance |δ|, where δ is the observed
fractional distance to the closest first order resonance. We adopt
KIC system parameters, with updated values for KOI-961 (red
dots) from Muirhead et al. (2012). For tidal dissipation, Q1 = 10
and k2 = 0.1. The lower panel zooms in to the resonant region.
If tRR � system age (the horizontal line is the age of the Sun),
the period ratios should have evolved little since birth; while for
tRR � age, we do not expect the systems to linger at the observed
ratios. The fact that most pairs lie at or above the horizontal
line is consistent with resonant repulsion by tides. Although a
number of systems very near resonances have very small tRR, close
inspection reveals that many of these (if not all) are related to
3-body effects: the turquoise circles indicate pairs where one or
both planets are engaged in at least two resonances simultaneously
(defined as |δ| < 3%). Our simple picture of resonant repulsion
may break down in these cases. ‘Suspicious systems’ refer to those
where the nominal total mass ≥ 1000M⊕ (assuming Earth density)
and we discard them from consideration for fear of contamination.

brief initial period (. 2 × 104 yr). On crossing nominal
resonance, they are regenerated, but then quickly damp
away again. Damping locks the system into libration
(of both resonant angles), but this has little dynamical
significance, as it is merely a consequence of the eccen-
tricities taking on their purely forced values.

Figure 3 shows the “resonant repulsion time” (tRR)
for all reported Kepler pairs. This is the timescale over
which resonant repulsion by tides moves a pair towards
or away from the nearest first order resonance. Mathe-
matically, tRR ≡ |δ/δ̇|, where δ is the observed fractional

distance and δ̇ is the rate predicted by resonant repul-
sion (Equation (22)) assuming tidal damping is operating
with Q1 = 10, k2 = 0.1, and using the observed planet
and stellar parameters. On this plot, systems that have
tRR longer than their age have not experienced signifi-
cant resonant repulsion, while all those with shorter tRR

should have moved to the right.
A number of inferences may be drawn. First, most sys-

tems far from resonances (|δ| ≥ 10%) have experienced
negligible resonant repulsion and were most likely born
with the period ratio they have today.

Second, systems within 1 − 10% of resonance exhibit
tRR that are as long as, or longer than, the typical age of

systems (a few Gyrs). This is consistent with resonant
repulsion by tides: systems with shorter tRR would have
been moved to the right until tRR was comparable to the
age of the system. Near the 2:1 resonance, it appears
that pairs as far left as 1.8 and as far right as 2.2 could
have been affected by the repulsion.

Last, many systems very near resonances (|δ| . 1%)
exhibit such short tRR that they should have migrated
to much larger δ values. At first sight, their presence
is troubling. However, an inspection of the Kepler cata-
logue reveals that many of these are in triples or higher
multiple systems, and these planets are engaged simul-
taneously in two or more 2-body resonances. The worst-
off cases are in simultaneous resonances, reminiscent of
the Laplace resonance of Jupiter’s moons (Yoder & Peale
1981). Moreover, the fraction of multiples is much higher
amongst systems with tRR falling below the solar age line
than for other random pairs. Our simple picture of reso-
nant repulsion fails when the planet is subject to two or
more resonances. In this case, exact resonance may be
maintained for a much longer time because the planets
form a heavy ladder with an effectively large inertia. The
prevalence of simultaneous resonances in these short tRR

systems spurs us to hypothesize that all pairs with short
tRR in Fig. 3 are results of 3-body effects; and that these
resonances are not primordial, but a combined effect of
resonant repulsion and 3-body effects.

Removing the colored circles in Fig. 3, we see a rela-
tively clear picture that most pairs stay where they were
born with, while pairs very close to resonances experi-
ence repulsion and are shifted by a few percent to larger
period ratios.

4. DISCUSSION

In this work, we investigate the peculiar fact that there
is an excess of Kepler planet pairs just wide of resonance,
and a deficit just inward of resonance. We propose that
dissipation is responsible for this asymmetry. Two nearly
resonant planets whose eccentricities are weakly damped
repel each other, as shown previously in Lithwick & Wu
(2008) and Papaloizou (2011). This is because dissi-
pation damps away the planets’ free eccentricities, but
the eccentricities that are forced by the resonance per-
sist despite dissipation. Planets are typically repelled
when dissipation acts on these forced eccentricities. As
such, resonant interaction allows dissipation to continu-
ously extract energy from the orbits. Resonant repulsion
pushes pairs from the near side to the far side of res-
onance, and naturally explains the Kepler result. Pairs
accumulate at a fractional distance δmig wide of each res-

onance, with δmig ∼ (µ2t/tdamp)1/3, where tdamp is the
typical eccentricity damping time and t the system age
(Equations (24)–(25)).

For the source of dissipation, we focused on tidal damp-
ing in the inner planet. The typical distance planets can
repel each other is of order a few percent or less for Ke-
pler parameters if the tidal damping is efficient. The
deficit of pairs immediately inward of resonance may be
explained by this repulsion. And the distances outward
of resonance where planet pairs are found are consistent
with the theoretically estimated repulsion distance.

However, a number of inconsistencies between theory
and data require further investigation. For instance,
many pairs remain very close to resonance despite a short
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resonant repulsion time. These are often found in sys-
tems with more than two planets where the planet pairs
are engaged simultaneously in more than one resonance.
We therefore speculate that in fact all systems with short
resonant repulsion time are consequences of 3-body ef-
fects. This may be confirmed using transit-timing varia-
tion or other tools.

If resonant repulsion is the reason behind the resonance
asymmetry, its signature should be observable in future
studies. The planets should currently have nearly zero
free eccentricities, and as a result both of the resonant an-
gles should be locked at their center-of-resonance values,
with very small libration amplitude. This could be tested
if these planets are accessible to radial velocity studies, or
if their transit-timing variation can be well characterized
using data such as in Ford et al. (2012). Furthermore,
if tidal damping is the dominant dissipation mechanism,
we expect that the resonance asymmetry should vanish
for planets at orbital periods greater than 10− 20 days.

Long-term Kepler monitoring will decide between tides
or alternative damping mechanisms, e.g., damping by a
gaseous or planetesimal disk.

Our study suggests that the initial period distribution
of Kepler planets was relatively flat, without major pile-
ups at or near resonances.5 This is in contrast to jovian
mass planets and places a strong constraint on the origin
of these low-mass planets. If disk migration is responsible
for their current location, it must somehow have avoided
pushing the planets into resonances, perhaps because the
migration rate was very fast—faster than the resonant
libration rate. Alternatively, planets may be formed in-
situ (Hansen & Murray 2011) and have therefore avoided
convergent migration.

We are grateful to the Kepler team for procuring such
a spectacular data set. Y.L. acknowledges support from
NSF grant AST-1109776. Y.W. acknowledges useful con-
versations with J. Xie and support from NSERC.
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