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Abstract We study the establishment of three-planet resonances—similar to the Laplace
resonance in the Galilean satellites—and their effects on the mutual inclinations of the orbi-
tal planes of the planets, assuming that the latter undergo migration in a gaseous disc. In
particular, we examine the resonance relations that occur, by varying the physical and initial
orbital parameters of the planets (mass, initial semi-major axis and eccentricity) as well as
the parameters of the migration forces (migration rate and eccentricity damping rate), which
are modeled here through a simplified analytic prescription. We find that, in general, for
planetary masses below 1.5 MJ, multiple-planet resonances of the form n3 : n2 : n1 = 1 : 2 : 4
and 1:3:6 are established, as the inner planets, m1 and m2, get trapped in a 1:2 resonance
and the outer planet m3 subsequently is captured in a 1:2 or 1:3 resonance with m2. For mild
eccentricity damping, the resonance pumps the eccentricities of all planets on a relatively
short time-scale, to the point where they enter an inclination-type resonance (as in Libert and
Tsiganis 2011); then mutual inclinations can grow to ∼ 35◦, thus forming a “3-D system”.
On the other hand, we find that trapping of m2 in a 2:3 resonance with m1 occurs very rarely,
for the range of masses used here, so only two cases of capture in a respective three-planet
resonance were found. Our results suggest that trapping in a three-planet resonance can be
common in exoplanetary systems, provided that the planets are not very massive. Inclina-
tion pumping could then occur relatively fast, provided that eccentricity damping is not very
efficient so that at least one of the inner planets acquires an orbital eccentricity higher than
e = 0.3.
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1 Introduction

Recently, the possibility that extrasolar planetary systems can be ‘3-D systems’, namely that
they are composed of two or more planets whose orbital planes have substantial values of
mutual inclinations, has been considered. Some analytical studies have highlighted that such
systems can be long-term stable, either following normal secular dynamics or due to the
action of a phase-protection mechanism, such as a mean-motion resonance (MMR) or a sec-
ular, Kozai-type resonance (e.g. Michtchenko et al. 2006b; Libert and Henrard 2007, 2008;
Libert and Tsiganis 2009a). A first observational confirmation (McArthur et al. 2010) for the
υ Andromedae system estimated the mutual inclination of the orbital planes of planets c and
d of this system to ∼30◦.

In the meantime, a number of studies on the possible formation mechanisms of 3-D plan-
etary systems have been realized. Strong dynamical instability of systems with giant planets
(planet-planet scattering) is generally invoked to explain the orbital properties of extrasolar
systems, in particular the highly eccentric orbits seen in many (see e.g. Ford et al. 2005;
Fabrycky and Tremaine 2007; Ford and Rasio 2008; Nagasawa et al. 2008). Many of these
have shown that the most common outcome of gravitational scattering by close encounters is
the hyperbolic ejection of one planet, the ‘survivors’ having significant values of eccentricity
and mutual inclination (e.g. Marzari and Weidenschilling 2002; Chatterjee et al. 2008; Jurić
and Tremaine 2008). These works focused on gas-free systems, assuming that systems that
are relatively compact when the gas nebula dissipates will undergo planet-planet scattering
after a relatively short time. Only a few works investigated the combined action of disc torques
and planet-planet scattering (e.g. Adams and Laughlin 2003; Moorhead and Adams 2005;
Thommes et al. 2008; Matsumura et al. 2010). However, an unstable crowded system—the
starting point of typical planet-planet scattering simulations—is not the unique result of for-
mation in a gas-disc, since resonant interactions during the gas phase should lead to stable
resonant systems, such as the ones observed (e.g. Michtchenko et al. 2006a; Hadjidemetriou
2006; Hadjidemetriou et al. 2009 for studies of mean-motion resonant systems).

Resonant two-planet systems can also be ‘3-D’, as first shown by Thommes and Lissauer
(2003), who studied the evolution of planets trapped in a 1:2 MMR, under the effects of gas-
driven (Type II) migration, inside the protoplanetary gas disc. Libert and Tsiganis (2009b)
extended the study of this ’inclination-type resonance’ to capture in higher order resonances
(such as the 2:5, 1:3, 1:4 and 1:5), showing that inclination-excitation occurs, as long as the
eccentricity of one planet exceeds ∼0.4 and the inner planet is not very heavy.

Concerning resonant systems with more than two planets, it has been recently shown that,
at least in the case of low-mass planets such as the ones in our Solar System, gas-driven migra-
tion can force the planets to enter into a multiple-planet resonance, an analogue of the Laplace
resonance in the Galilean moons (Morbidelli et al. 2007). At present, at least three extrasolar
systems are believed to be in multiple-planet resonance: HR8799 (e.g. Reidemeister et al.
2009) and Gl876 (Rivera et al. 2010) in a Laplace configuration, and the KOI 500 five-
planet exosystem that shows two three-body resonances (Lissauer et al. 2011). Moreover,
simulations on a possible trapping of HD82943 exosystem in a Laplace resonance were also
performed by Beaugé et al. (2008). Libert and Tsiganis (2011) showed that a Laplace three-
planet resonance can be achieved for Jupiter-mass planets, but generally becomes unstable
as the resonance excites the eccentricities of all planets and planet-planet scattering sets in.
This mechanism, combining the action of disc torques and planet-planet scattering, typically
results in the ejection of one of the three planets, leaving behind a two-planet system in a
nearly hierarchical configuration and with median mutual inclination of ∼30◦. In 10% of the
simulations presented in that paper, the triple resonance remains stable for sufficiently long
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Trapping in three-planet resonances during gas-driven migration 203

times, leading to the formation of a ‘3-D’ system, through resonant inclination excitation,
similarly to the two-body inclination-type resonance mentioned before.

As also noted in Morbidelli et al. (2007), a multiple-planet resonance is a delicate dynam-
ical configuration; not all resonant ratios can be reached by all planetary masses (or mass
ratios) and not all resonances are long-term stable. In Libert and Tsiganis (2011), we only
investigated the dynamical disruption of the Laplace 1:2:4 configuration. The goal of the
present contribution is to examine for what masses of the planets and parameters of the disc
a triple resonance can be established, and of what type. Also, we examine the frequency of
inclination excitation, in three-planet resonances. As expected the initial orbital separation
of the three planets plays a major role in the final outcome and this issue is adressed also in
the following.

The paper is organized as follows. In Sect. 2, we describe the set-up of our numerical
experiments, while the results of these simulations are presented in detail in Sect. 3. The
eccentricity distribution leading to inclination excitation is presented in Sect. 4. Finally, our
conclusions are given in Sect. 5.

2 Numerical model

A commonly accepted scenario for the origin of resonant configurations assumes disc-induced
differential orbital migration of the planets, initially much further apart, towards their parent
star. While a Jupiter-sized planet carves a gap in the gaseous disc, repelling material away
from its neighborhood, the massive gaseous disc tends to refill the gap, by viscous diffu-
sion. The balance between these processes leads to a relatively slow inward migration of the
planets, called Type II migration. An order-of-magnitude estimate for the migration rate of
a planet was given by Ward (1997):
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where P is the orbital period of the body. In the following, the Shakura–Sunyaev viscosity
parameter is set to α = 4×10−3 (Shakura and Sunyaev 1973) and the aspect ratio of the disc
to H/a = 0.05. Equation 1 is used to derive an estimate for the constant drift rate that we
impose on the planet, as in Libert and Tsiganis (2009b): we assume a in Eq. 1 to be constant
and equal to the initial value of semi-major axis of the planet’s orbit. This is of course a
simplified prescription, but adequate for analyzing the dynamics of resonance encounters.
As planet-disc interactions also affect the eccentricity of the migrating planet (see Goldreich
and Tremaine 1980; Papaloizou et al. 2001), exponential damping is also assumed in the
following way:
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where K is chosen to be 0, 1 and 5 in the following.
We start our simulations with a system of three planets (m1, m2 and m3; m1 being the

inner body and m3 the outer one) evolving around a 1 M� star. Assuming that the inner disc
is likely to be largely depleted by the time our planets were formed, we simulate planet-disc
interaction by applying a suitable Stokes-type drag force (following Beaugé et al. 2005) on
m2 and m3 only. To integrate this four-body problem we use a variant of the SYMBA code
(Duncan et al. 1998), which is able to deal symplectically with close encounters between
massive bodies, in which the drag terms are added in the equations of motion, introducing
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an exponential drift in semi-major axis (migration) and eccentricity (damping). Let us note
that, even if the drift is not applied on the inner body, when capture in resonance occurs,
the two bodies subsequently migrate as a pair towards the star—at a slower rate—and both
their eccentricities are damped. However, for mild eccentricity damping, the growth of the
eccentricities may be very rapid, as migration in resonance continues (e.g. Lee and Peale
2002; Ferraz-Mello et al. 2003). Note that, as shown in Morbidelli and Crida (2007), in
more realistic simulations of gas-planet interactions the resonance pair may stop migrating
(or even start migrating outwards), depending on the planetary masses, α and H/a. However,
in such a case, m3 would approach a resonance with m2 more easily and a triple resonance
could again be established. To take into account (partly) these uncertainties that are related
to our simplified migration model, we perform our simulations also using migration rates 5
times larger and 5 times smaller than the values given by Eq. 1.

In Libert and Tsiganis (2011), the establishment of the Laplace triple resonance was
reached by a two-step formation process, following the lines of Morbidelli et al. (2007): first
we simulated the 1:2 resonant capture of the two inner planets, m1 and m2. Then, planet
m3 was introduced in the simulation and forced to migrate into the 1:2 MMR with m2.
The Laplace resonance was thus approached, but not always established; the orbits of heavy
giant planets usually become chaotic and planet-planet scattering dissolves the system before
the establishment of the 1:2:4 resonance. Here, the methodology is different, as we do not
focus on this particular resonance. Instead, we try to identify which triple resonances can be
established by disc-induced differential orbital migration of three planets.

Two initial configurations of the three-planet systems are examined in this work, depend-
ing on the position of the intermediate planet (m2) with respect to its 1:2 MMR with m1

(initially located at 1). The semi-major axis of m2 is set to 1.9 (exterior to their 1:2 MMR—
see Sect. 3.1) and 1.4 (interior to their 1:2 MMR—see Sect. 3.3). In either case, we con-
sider several values of the semi-major axis of m3 : 2.8, 3.1 and 3.6 for the exterior case,
2, 2.4 and 2.7 for the interior case. The initial eccentricities and inclinations of all planets
are nearly zero (e = 0.001, i = 0.01◦). The effects of initially eccentric orbits are stud-
ied in Sect. 3.2. Nine mass configurations are considered for the planets: m1 is fixed to
1.5 MJ (MJ = Jupiter’s mass), while the mass of the second planet is set to m2 = 0.75, 1.5
or 3 MJup and m3 to m2/2, m2 or 2m2. Our system of units is such that G = 1 and M� = 1.
Taking the semi-major axis of m1 as the unit of distance (a1 = 1), the time unit is defined
such that the period of m1 is P1 = 2π . All simulations spanned a time equal to 106 time units,
a time long enough to be comparable to the disc’s lifetime. The results of these simulations
are described in the following section.

3 Results

3.1 Exterior configuration

We consider first the evolution in the gas-disc of a three-planet system in which the inter-
mediate planet (m2) is initially set exterior to the location of its 1:2 MMR with m1: here
we use a1 = 1 and a2 = 1.9. Three different initial positions of the outer planet (m3) are
used in the following simulations: 2.8 (initially outside the 2:3 MMR with m2), 3.1 (initially
outside the 1:2 MMR with m2) and 3.6 (initially outside the 2:5 MMR with m2). For the
values of the mass ratios and eccentricity damping discussed in the previous section, we aim
to determine the frequency of (i) capture in different multiple-planet resonance—if capture
occurred—and (ii) subsequent resonant inclination excitation.
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Table 1 MMR captures for three-planet systems of different masses (m1 = 1.5 MJ ), for different values of
the eccentricity damping rate

m2 m3 a3 = 2.8 3.1 3.6

K = 0 K = 1 K = 5 K = 0 K = 1 K = 5 K = 0 K = 1 K = 5

3 6 1:2 1:2 1:2 1:2∗ 1:2∗
3 3 1:2 1:2 1:2 1:2∗ 1:2∗ 1:2

3 1.5 1:2:4 1:2∗ 1:2 1:2∗ 1:2∗ 1:4:8∗ 1:2

1.5 3 1:2:4 1:2 1:2 1:2 1:3:6∗ 1:3:6∗ 1:3:6

1.5 1.5 1:2:4∗ 1:2:4 1:2 1:2 1:2 1:3:6∗ 1:3:6∗ 1:3:6

1.5 0.75 1:2:4∗ 1:2:4∗ 1:2:4 1:2 1:2 1:2:4∗ 1:3:6∗ 1:3:6∗ 1:3:6

0.75 1.5 1:2:4 1:2:4 1:2:4 1:2 1:2:4 1:3:6 1:2 1:3:6

0.75 0.75 1:2:4 1:2:4∗ 1:2:4 1:2:4 1:3:6∗ 1:2 1:2

0.75 0.375 1:2:4∗ 1:2:4∗ 1:2:4 1:2:4 1:2∗ 1:2∗ 1:2

The symbol ‘∗’ indicates that the inclination-type resonance occurs as the planets migrate in resonance.
The migration rate is equal to the value given by Eq. 1, namely |ȧ2/a2| = 5.71 × 10−6 time units−1 and
|ȧ3/a3| = 3.19 × 10−6, 2.74 × 10−6 or 2.19 × 10−6 time units−1 for a3 = 2.8, 3.1 and 3.6 respectively

The results of these simulations are presented in Table 1. For each mass ratio and eccen-
tricity damping value, we describe the time evolution of the system by denoting the MMR
in which it is captured. Three different outcomes are observed in the simulations:

(a) the unstable case, represented by an empty slot in the Table. The system is destabilized in
less than 105 time units, without having previously reached any resonant configuration.1

As seen in the Table, this occurs primarily for mass ratios m2/m1 ≥ 1 and m3/m1 ≥ 1,
i.e. for more massive outer planets, and small orbital separations. As K increases, the
instability seems to occur only for m2/m1 ≥ 2 and m3/m1 ≥ 2. This implies that, for
a massive system in a compact initial configuration, the eccentricities grow fast and the
planetary orbits cross each other, before a resonance can be established.

(b) the two-body resonant case. The two inner planets are trapped in a 1:2 resonant con-
figuration, which is found to be destabilized when the outer planet is approaching a
resonance with m2. Note that this occurs for an initial a3 = 3.1 or higher. For an initial
a3 = 2.8, no similar capture of the two inner planets in a 2:3 MMR is observed.

(c) the three-body resonant case, where all three planets are trapped in a resonant configu-
ration. According to the Table, there are two main resonances, depending on the initial
configuration (i.e. period ratio P3/P2). Inclination excitation is observed for both res-
onances, but only for K ≤ 1. This implies that the excitation is related to eccentricity
growth in the resonance, as was also shown in Libert and Tsiganis (2011).

As Table 1 shows, massive planets (first lines of Table 1) and an initial location of the
intermediate planet very close to its 1:2 MMR with the outer planet (a3 = 3.1—columns
6, 7 and 8 of Table 1) prevent the formation of a multi-resonant state. For massive planets,
the typical outcome is the ejection of one of the bodies from the system at the beginning of
the simulation, especially for the particularly compact initial configuration a1 = 1, a2 = 1.9
and a3 = 2.8. For the two other initial configurations, i.e. larger distance of m3 from the
inner planets, massive planets meet easily the 1:2 MMR between m1 and m2, but no capture

1 We note that the simulation is stopped if one of the planets is ejected from the system or if two planets
merge.
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Fig. 1 Inclination excitation for a 1:2 MMR between m1 and m2. The planetary masses are m2 = 3 and
m3 = 1.5 MJ . Initial location of the outer planet is a3 = 3.6. No eccentricity damping is considered (K = 0)

occurs for m3. These two configurations excepted (massive planets and a3 = 3.1), most of the
simulations result in three-planet resonant configurations. The two dominant relations found
are: the Laplace 1:2:4 resonance (for an initial a3 = 2.8) and the 1:3:6 resonance (for an initial
a3 > 3). The notation used here means that m1 and m2 are in a 1 : 2 MMR (n2 : n1 = 1 : 2),
while m2 and m3 in a 1 : 3 MMR (n3 : n2 = 1 : 3). Thus, the multiple-planet resonance is
labeled as n3 : n2 : n1 = 1 : 3 : 6. The same convention will always be adopted in the following.

Note that these results may depend on the assumed simplified migration model, as well as
on the assumed migration rates (see Sect. 3.2). However, we believe that the observed trend,
i.e. easier establishment of a triple resonance for less massive triplets should hold, unless the
relative migration of planets is strongly affected by variations in the surface density profile
of the gas disc (e.g. as in Morbidelli and Crida 2007).

As the system remains in MMR and continues to migrate, the eccentricities of the plan-
ets become high enough that the system enters an inclination-type resonance, which induces
rapid growth of the inclinations. Inclination excitation is indicated by the presence of the sym-
bol ‘∗’ in Table 1. Inclination excitation can arise from two resonant mechanisms: the one
described by Thommes and Lissauer (2003) for two migrating planets in the 1:2 MMR and
a similar one acting with three planets in a triply-resonant configuration, described in Libert
and Tsiganis (2011). Examples of both outcomes are shown in Figs. 1 and 2 respectively.

Figure 1 shows the evolution of a three-planet system where two planets go through the
Thommes & Lissauer’s mechanism. While the outer planets migrate, m1 and m2 are captured
in a 1:2 MMR at about 3×104 time units, characterized by the libration of the resonant angles
θ1 = λ1 − 2λ2 + �1 and θ2 = λ1 − 2λ2 + �2 around 0◦. As a result, the difference of the
longitudes of pericenter �� = �1 − �2 = θ1 − θ2 starts to oscillate around 0◦, i.e. the
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Fig. 2 Inclination excitation for a three-planet system in a Laplace 1:2:4 resonant configuration. The planetary
masses are m2 = 1.5, m3 = 0.75 MJ . Initial location of the outer planet is a3 = 2.8 and eccentricity damping
is set to K = 1

planets are in apsidal alignment. As both planets continue to migrate while in resonance, their
eccentricities increase. When their values are high enough, the system enters an inclination-
type resonance: the angles θi2

1
= 2λ1 −4λ2 +2Ω1 and θi2

2
= 2λ1 −4λ2 +2Ω2 start to librate

at about 2×105 time units. A rapid growth of the inclinations of both planets is then observed,
as well as a libration of the relative longitude of the nodes, �Ω = Ω1 −Ω2 = (θi2

1
− θi2

2
)/2,

around the anti-alignment state. Note that the eccentricity and inclination of the outer planet
m3, which is not in resonance with the other ones, remain almost constant (i.e. nearly zero)
during the whole simulation of Fig. 1. The body m3 goes successively through 1:3 (when
a2 � 1.6 and a3 � 3.3) and 1:4 (when a2 � 0.93 and a3 � 2.3) commensurabilities with
m2, and at ∼3.5×105 time units (not shown on the figure), while approaching 1:5 commen-
surability (a2 � 0.6 and a3 � 1.76), destabilizes the whole system, leading to planet-planet
scattering and the subsequent formation of a non-coplanar two-planet system, the less mas-
sive planet being ejected from the system. Indeed, the given ȧ2 and masses result in a given
change in energy of the resonant pair which could be translated to a mean migration rate. If
this rate is smaller than ȧ3, then we have divergent migration of m3. A further analysis of
the reason for instability in all studied systems (i.e. MMR crossing during divergent migra-
tion or instability before the resonance) is reserved for future work. Let us note that for the
same initial configuration of the system of Fig. 1 but for less massive planets, a capture in
a multiple-resonance generally happens, as shown in Table 1 (lines 4 to 9). We remind the
reader that adiabatic invariance prevents permanent capture in a stable resonant configuration,
in the case of divergent migration. However, temporary capture in the corresponding chaotic
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Fig. 3 Inclination excitation for a three-planet system in a 1:3:6 resonant configuration. The planetary masses
are m2 = 1.5, m3 = 0.75 MJ . Initial location of the outer planet is a3 = 3.6. No eccentricity damping is
considered (K = 0)

zone is possible and, for long-enough trapping times, significant eccentricity and inclination
excitation may occur.

Inclination excitation due to multiple-planet resonance is described in Fig. 2. While the
outer planet migrates, the two inner planets are captured in a 1:2 MMR at about 3 × 104

time units, characterized by the libration of both resonant angles θ1 = λ1 − 2λ2 + �1 and
θ2 = λ1 −2λ2 +�2 around 0◦. From then on, these planets migrate as a pair, while the outer
planet is captured in a 1:2 MMR with the second body at about 7 × 104 time units (one of
the resonant angles θ3 = λ2 − 2λ3 + �2 and θ4 = λ2 − 2λ3 + �3 is in libration). Thus the
system is captured in a Laplace-type resonance, whose critical angle is φ = λ1 −3λ2 +2λ3.2

As the three planets continue to migrate while in resonance, their eccentricities increase.
When their values are high enough, the system enters an inclination-type resonance: the
angles θi2

1
= 2λ1 − 4λ2 + 2Ω1, θi2

2
= 2λ1 − 4λ2 + 2Ω2, θi2

3
= 2λ2 − 4λ3 + 2Ω2 and

θi2
4

= 2λ2 − 4λ3 + 2Ω3 start to librate around 180◦ at about 3 × 105 time units, and a rapid
growth of the inclinations of the three planets is observed.

The same type of evolution is observed for higher-order multiple-planet resonances.
Figure 3 illustrates the inclination excitation for a three-planet system in a 1:3:6 resonant
configuration (m1 and m2 are in a 1:2 MMR, m2 and m3 in a 1:3 MMR), whose resonant

2 The critical angle is a combination of the resonant angles θi , which must respect the d’Alembert char-
acteristics; thus, the sum of all integer coefficients that appear in front of each mean longitude should be
zero.
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Fig. 4 Inclination excitation for a three-planet system in a 1:4:8 resonant configuration. The planetary masses
are m2 = 3, m3 = 1.5 MJ . Initial location of the outer planet is a3 = 3.6 and eccentricity damping is set to
K = 1

angle is φ = 2λ1 − 5λ2 + 3λ3. The initial configuration of the system is the same as the one
of Fig. 1 but the planets m2 and m3 are less massive, which favors a 1:3 resonance capture of
m3 during its migration towards m2. One of our simulations even ends in a 1:4:8 resonance
capture (m1 and m2 are in a 1:2 MMR, m2 and m3 in a 1:4 MMR—see Fig. 4), characterized
by the libration of φ = 3λ1 − 7λ2 + 4λ3. However, the inclination excitation mechanism
is not effective in this case, as the system is destabilized shortly after the beginning of the
libration of the inclination-type resonant angles.

Resonant inclination excitation appears to be quite common in our model, as long as
eccentricity damping is not too strong. Indeed, a damping rate of K = 5 (see Eq. 2) does
not allow eccentricities to increase sufficiently for an inclination-type resonance to occur,
as shown by the example of Fig. 5. A similar feature has also been highlighted in the case
of a two-planet system in Thommes and Lissauer (2003) and Libert and Tsiganis (2009b).
Lee and Thommes 2009 studied the capture of a two-planet system in the 1:2 MMR and
found that inclination excitation occurs only for K ∼ 1 or less, for a range of mass ratios and
migration rates similar to what we adopt here. Our simulations confirm this limit and show
that it applies also to the case of three-planet resonance.3

For no or mild eccentricity damping (i.e. K ≤ 1), Table 1 suggests that 65% of the tri-
ply-resonant systems can go through inclination-type resonance. Hence, significant mutual
inclinations between the orbital planes of a three-planet system seems to be a common feature,
in the formation scenario depicted by our model.

3 In that paper another, faster, mode of inclination-excitation was found, not clearly associated with the
libration of any critical angle. We have not found an analogue to this mode within our results
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Fig. 5 Left effect of eccentricity damping of the form ė/e = −K |ȧ/a| with K = 1. The planetary masses
are m2 = 0.75, m3 = 0.75 MJ . Initial location of the outer planet is a3 = 2.8. Inclination excitation takes
place at ∼1.6 × 105 time units, before the disruption of the system at ∼2.1 × 105 time units. Right same as
left figure, but for K = 5. Due to the high value of the eccentricity damping, the growth in eccentricity is not
sufficient to produce inclination excitation, so that inclinations remain bounded to tiny values (<0.02◦)

Mechanisms responsible for halting Type II migration are not well understood so far.
In the case of mild (or no) eccentricity damping, the triply resonant configuration typically
becomes unstable, since the eccentricities of the planets keep increasing as migration con-
tinues. However, if the disc dissipates before the system dissolves, a stable configuration can
be reached. If it occurs during the inclination-type resonance phase, it can produce a stable
resonant non-coplanar three-planet system. An example of such a system is given in Fig. 6,
where the migration of the outer planets is abruptly switched off at 4 × 105 time units in the
simulation of Fig. 3 (1:3:6 resonant system). The system remains stable, in orbital resonance
(see the constant evolution of the semi-major axes), with small variation in its eccentricities,
and with mutual inclinations of the orbital planes between 5◦ and 35◦.

An obvious limitation of our model is that we do not account for possible inclination
damping by the gaseous disc. Inclined planets would spend most of their orbit away from the
disc plane, so it is not easy to find empirical formulae for inclination damping by performing
hydrodynamical simulations. On the other hand, if eccentricity damping in discs is moderate
(a requirement for the inclination-type resonances to be reached), one should expect the same
for inclination damping.

3.2 Varying the initial eccentricities and migration rates

In the previous section, we assumed planets to be initially on (nearly) circular orbits. The
effects of initially eccentric orbits were also studied, in order to check whether capture into
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Fig. 6 Evolution of the system
shown in Fig. 3, after suddenly
switching off the migration force
(at 4 × 105 time units). The
system remains stable, with high
mutual inclinations values
between the orbital planes
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multiple-planet resonance can occur for non-circular orbits. The results are given in Table 2.
Three different initial states were analyzed: (A) e1 = 0.15, e2 = 0.001, e3 = 0.001, (B)
e1 = 0.001, e2 = 0.15, e3 = 0.001 and (C) e1 = 0.001, e2 = 0.001, e3 = 0.15. For each
case, we performed the same set of simulations as in the previous section. As seen from
the Table, the main result is that, for no or mild eccentricity damping, the system is easily
destabilized before the establishment of any MMR, so much fewer multiply-resonant sys-
tems are formed. Most of the inclination excitation observed is due to the 1:2 MMR between
the two inner planets. For strong eccentricity damping (K = 5), the results are much more
similar to those presented in the previous section.

The new result that can be found in Table 2 is the possibility for planets on initially non-
circular orbits of being locked in a 1:2:5 resonance (i.e. m1 and m2 are in a 2:5 MMR, m2

and m3 in a 1:2 MMR).
The results presented above are by no means a complete study of the dependence of res-

onance capture on the initial planetary eccentricities. This subject certainly deserves a more
thorough analysis. On the other hand, our results clearly show that the probability of capture
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Table 2 Same as Table 1, for different values of the initial eccentricities of the planets

m2 m3 a3 = 2.8 3.1 3.6

K = 0 K = 1 K = 5 K = 0 K = 1 K = 5 K = 0 K = 1 K = 5

A 3 6 1:2 1:2 1:2∗
3 3 1:2

3 1.5 1:2∗ 1:2 1:2 1:2 1:2

1.5 3 1:2 1:2 1:2∗
1.5 1.5 1:2:4 1:2:4 1:2 1:2:4 1:2∗ 1:2∗ 1:2∗
1.5 0.75 1:2:4 1:2 1:2 1:2:4∗ 1:2 1:2∗
0.75 1.5 1:2:4 1:2 1:2:4 1:2 1:2:4

0.75 0.75 1:2:4∗ 1:2:4 1:2:4 1:2 1:2:4

0.75 0.375 1:2:4 1:2 1:3:6

B 3 6 1:2

3 3 1:2∗ 1:2 1:2∗
3 1.5 1:2∗ 1:2 1:2∗ 1:2

1.5 3 1:3:6

1.5 1.5 1:2:4 1:2:4 1:3:6∗
1.5 0.75 1:2:4 1:2 1:2 1:2∗
0.75 1.5 1:2:4 1:2 1:2

0.75 0.75 1:2:4 1:2:4 1:2 1:2:4 1:2

0.75 0.375 1:2:4 1:2:4 1:2:4 1:2 1:2

C 3 6 1:2∗
3 3 1:2 1:2∗ 1:2∗ 1:2

3 1.5 1:2:4 1:2 1:2 1:2 1:2∗ 1:2∗
1.5 3 1:2:4

1.5 1.5 1:2 1:2 1:2∗ 1:3:6

1.5 0.75 1:2:5 1:2 1:3:6∗ 1:2∗ 1:3:6

0.75 1.5 1:2:4 1:2 1:2 1:2 1:2 1:3:6

0.75 0.75 1:2 1:2 1:2 1:3:6∗ 1:2 1:3:6

0.75 0.375 1:2:4 1:2 1:2:5 1:2:4 1:3:6∗ 1:3:6∗ 1:3:6

The symbol ‘*’ indicates that the inclination-type resonance occurs as the planets migrate in resonance. A,
B and C denote different initial configurations: (A) e1 = 0.15, e2 = 0.001, e3 = 0.001, (B) e1 = 0.001,

e2 = 0.15, e3 = 0.001 and (C) e1 = 0.001, e2 = 0.001, e3 = 0.15

of three planets in a multiply-resonant, quasi-stable state is much lower, when the initial
non-resonant orbits are moderately eccentric and eccentricity damping is not strong.

In the previous section, the migration rates of the outer planets were taken from Eq. 1.
As explained in that section, this is a rough approximation and therefore the results should
be taken with care, as the actual migration mode of the planets may be different. Hence,
the influence of the migration rate on the results found in the previous section has to be
examined. We analyzed the behavior of the same set of simulations as before, evolving now
under five times larger and five times smaller migration rates. As can be seen in Table 3, the
outcomes of the simulations are similar. A more careful examination of it shows that actually
a slower migration rate favors both the capture in a triple resonance as well as inclination
excitation; however the difference is not very dramatic, taking into account that the range
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Table 3 Same as Table 1, for different values of the migration rate of the planets

m2 m3 a3 = 2.8 3.1 3.6

K = 0 K = 1 K = 5 K = 0 K = 1 K = 5 K = 0 K = 1 K = 5

1
5

∣
∣
∣

ȧ
a

∣
∣
∣ 3 6 1:2 1:2 1:2 1:2∗

3 3 1:2:4 1:2:4 1:2

3 1.5 1:2:4 2:3:6 1:2 1:2:4 1:2∗ 1:2 1:2∗
1.5 3 1:2

1.5 1.5 1:2 1:2:4 1:2:4 1:2 1:2:5 1:2:4 1:3:6∗ 1:3:6∗ 1:3:6

1.5 0.75 1:2:4 1:2:4∗ 1:2:4 1:2 1:2 1:2 1:3:6∗ 1:3:6∗ 1:3:6

0.75 1.5 1:2:4 1:2 1:2:4 1:3:6 1:3:6∗ 1:3:6

0.75 0.75 1:2:4∗ 1:2:4 1:2:4 1:2:4 1:2 1:3:6∗ 1:3:6∗ 1:3:6

0.75 0.375 1:2:4∗ 1:2:4∗ 1:2:4 1:2 1:2 1:2:4 1:3:6∗ 1:3:6∗ 1:3:6

5
∣
∣
∣

ȧ
a

∣
∣
∣ 3 6 1:2∗ 1:2∗ 1:2

3 3 1:2 1:2 1:2∗ 1:2∗ 1:2

3 1.5 1:2∗ 1:2 1:2 1:2∗ 1:2∗ 1:2

1.5 3 1:2 1:3:6 1:3:6 1:3:6

1.5 1.5 1:2:4 1:2 1:2:4 1:2 1:3:6∗ 1:2∗ 1:3:6

1.5 0.75 1:2:4∗ 1:2:4∗ 1:2:4 1:2 1:2:4 1:3:6∗ 1:3:6∗ 1:3:6

0.75 1.5 1:2:4 1:2:4 1:2 1:2 1:2 1:2

0.75 0.75 1:2:4∗ 1:2:4 1:2:4 1:2:4 1:2:4 1:2 1:2

0.75 0.375 1:2:4∗ 1:2:4 1:2:4 1:2:4 1:2 1:2 2:5:10

The symbol ‘*’ indicates that the inclination-type resonance occurs as the planets migrate in resonance.

of values of |ȧ/a| used here corresponds to an order of magnitude. Let us note that one
simulation differs again from all the others: the two inner planets are trapped in a 2:5 MMR,
before the establishment of the 1:2:5 resonant configuration (m1 and m2 are in a 2:5 MMR,
m2 and m3 in a 1:2 MMR, see Fig. 7). The resonant angle is φ = 2λ1 − 8λ2 + 6λ3. The
system is disrupted before an inclination-type resonance can be established, due to the large
eccentricities reached; apparently the inclination resonance is located for even higher values
of e than required for the system to remain stable. The trapping of m1 and m2 in a high order
resonance occurs for a slower migration rate; this observation was also highlighted in Libert
and Tsiganis (2009b).

3.3 Interior configuration

In the previous simulations, m2 was initially located exterior to its 1:2 MMR with m1. This
means that, during its orbital migration, m2 meets (and is usually captured into) this first-
order resonance. One may wonder what would happen if m1 and m2 were initially located
interior to their 1:2 MMR, or manage to jump across the 1:2 MMR during migration, as is
thought to have been the case for the Jupiter–Saturn system (see Pierens and Nelson 2008).
In the following, we set the initial semi-major axis of m2 to 1.4, and consider three initial
values for a3: 2, 2.4 and 2.7.

For the initial conditions considered above, we have performed the same set of 81 simu-
lations as in Table 1. MMR captures are shown in Table 4. Less than 10% of the simulations
result in a two- or three-planet resonance capture. Most of the simulations show a quick
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Fig. 7 Trapping in a 1:2:5 resonance (m1 and m2 are in a 2:5 MMR, m2 and m3 in a 1:2 MMR). The planetary
masses are m2 = 1.5, m3 = 1.5 MJ . Initial location of the outer planet is a3 = 3.1 and eccentricity damping
is set to K = 1

Table 4 Same as Table 1 for the interior configuration

m2 m3 a3 = 2 2.4 2.7

K = 0 K = 1 K = 5 K = 0 K = 1 K = 5 K = 0 K = 1 K = 5

3 6

3 3

3 1.5

1.5 3

1.5 1.5 2:3 2:3

1.5 0.75

0.75 1.5 2:3 3:8:12∗ 4:10:15

0.75 0.75 2:3

0.75 0.375 2:3

The symbol ‘*’ indicates that the inclination-type resonance occurs as the planets migrate in resonance.
The migration rate is equal to the value given by Eq. 1, namely |ȧ2/a2| = 9.03 × 10−6 time units−1 and
|ȧ3/a3| = 5.29 × 10−6, 4.02 × 10−6 or 3.37 × 10−6time units−1 for a3 = 2, 2.4 and 2.7 respectively

destabilization of the system (planet-planet scattering or even mergers). This is most likely
an outcome of the initially compact configuration of the system and relatively large assumed
masses. In five simulations, m1 and m2 manage to get locked in a 2:3 MMR; this happens when
m2 ≤ m1. Only two simulations, corresponding to m1 = 1.5, m2 = 0.75 and m3 = 1.5 MJ ,

123



Trapping in three-planet resonances during gas-driven migration 215

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  100000  200000  300000  400000

a

a1
a2
a3

 0

 0.2

 0.4

 0.6

 0  100000  200000  300000  400000

e

e1
e2
e3

 0

 10

 20

 30

 0  100000  200000  300000  400000

i

i1
i2
i3

 0

 100

 200

 300

 400

 0  100000  200000  300000  400000

φ

 0

 100

 200

 300

 400

 0  100000  200000  300000  400000

θ i
12 /

2

 0

 100

 200

 300

 400

 0  100000  200000  300000  400000

θ i
22 /

2

 0

 100

 200

 300

 400

 0  100000  200000  300000  400000

θ i
32 /

2

 0

 100

 200

 300

 400

 0  100000  200000  300000  400000

θ i
42 /

2

Fig. 8 Inclination excitation for a three-planet system in a 3:8:12 resonant configuration. The planetary masses
are m2 = 0.75, m3 = 1.5 MJ . Initial location of the outer planet is a3 = 2.7 and eccentricity damping is set
to K = 1

result in three-planet resonant configurations: a 4:10:15 resonance (m1 and m2 are in a 2:3
MMR, m2 and m3 in a 2:5 MMR), characterized by the libration of φ = 6λ1−11λ2+5λ3, and
a 3:8:12 resonance (m1 and m2 are in a 2:3 MMR, m2 and m3 in a 3:8 MMR—see Fig. 8), char-
acterized by the libration of φ = 10λ1 −18λ2 +8λ3. For this last multiple-planet resonance,
an inclination-type resonance is also observed at large-enough eccentricities (see the libration
of the resonant angles θi2

1
= 4λ1 − 6λ2 + 2Ω1, θi2

2
= 4λ1 − 6λ2 + 2Ω2, θi2

3
= 6λ2 − 16λ3 +

10Ω2 and θi2
4

= 6λ2 − 16λ3 + 10Ω3).
Given the results of this section, it seems that the formation of a three-planet resonant

configuration where m1 and m2 are locked in a 2:3 MMR, is rather unlikely, at least for
planetary masses larger than ∼ 1 MJ and mass ratios m2/m1 > 0.5. On the other hand, it
may be common for mass ratios similar to the Jupiter–Saturn pair. This topic deserves further
investigation in the future.

4 Eccentricity distribution

In this section, we discuss the eccentricity distribution leading to inclination excitation, for
the masses, migration rates and initial configurations of the systems presented in Tables 1
and 3 (i.e. initially circular orbits). We plot in Fig. 9, the eccentricity values of the three
planets, measured just before the increase of the inclinations. All systems of Tables 1 and 3
that lead to inclination excitation are shown in this figure. We see that inclination excitation
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Fig. 9 Eccentricity distribution
before inclination-type resonance
for all systems of Tables 1 and 3
that lead to inclination excitation
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occurs for a wide range of eccentricities that depends strongly on the masses of the two inner
planets. For m1 ≤ m2, the eccentricity of m1 is higher than the one of m2, and vice versa.
The eccentricity of the outer body m3 is rather small for all mass ratios considered here. It is
interesting to note that left panel of Fig. 9 shows an apparently correlation between e2 and
e1 (see the linear regression: e1 � 1.08 − 2.08e2). Moreover, no system with eccentricities
e1 and e2 both smaller than 0.3 can be found on this plot. This means that inclination-type
resonance requires at least one of the two inner planets to reach an eccentricity higher than
e = 0.3.

The eccentricity distribution given in Fig. 9 is close to the final eccentricities distribution
of the resonant systems. Indeed, when the system is in the inclination-type resonance, the
eccentricities keep growing but slowly (see e.g. Figs. 2 and 3), for as long as the system can
remain stable.

5 Conclusion

In the present work we studied the formation of three-planet resonances in extrasolar planetary
systems. Such resonances can be established during the phase of gas-driven planet migra-
tion. If the resonance persists as the gas dissipates, a stable resonant three-planet system can
form. Otherwise, the system is dynamically disrupted, typically leading to the ejection of
one planet. Libert and Tsiganis (2011) studied the 1:2:4 resonance and showed that, if the
system becomes unstable, the survivors tend to have large orbital separations (i.e. hierar-
chical systems). Of particular interest is the evolution of the orbital inclinations of planets
trapped in a 1:2:4 resonance; as migration continues and the eccentricities of the planets
grow, inclination-type resonances come to play. Thus, similarly to the Thommes & Lissauer
mechanism (for two planets), the inclinations can grow to values larger than ∼30◦.

Here we showed that trapping to several triple resonances can occur, depending of course
on the masses of the planets, their initial orbital separations, and the parameters of the
disc—described here in a simplified way through the values of the migration and eccen-
tricity-damping rates. Large planetary masses typically lead to instabilities that destroy the
system before a resonance can be established. For masses smaller than ∼ 1.5 MJ , the most
common resonant relations found were the n3 : n2 : n1 = 1 : 2 : 4 and 1:3:6. These resonances
appear to be stable for relatively long times, especially when eccentricity damping is applied.
For mild eccentricity damping, these resonances can pump the eccentricities of all planets on
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relatively short time-scales. Then, the planets can enter an inclination-type resonance (as in
Libert and Tsiganis 2011), which pumps their inclinations up to ∼35◦, thus forming a “3-D
system”.

When m2 is started interior to its 1:2 MMR with m1, the strongest resonance in which
it could be trapped is the 2:3 MMR with m1. This occurred only in very few cases and,
consequently, only two cases of capture in a respective three-planet resonance were found.
We note that, according to recent results of hydrodynamical simulations (e.g. Pierens and
Nelson 2008), trapping in the 2:3 MMR is considered to be the most likely result of gas-
driven migration for the Jupiter–Saturn pair in our solar system. The fact that we do not find
such configurations may reflect our large planetary masses (and mass ratios), compared to
the Jupiter–Saturn system. Hence, it may actually be the case that trapping in the 2:3 MMR
(and related three-planet resonances) is possible only for low-mass planets.

Our results suggest that trapping in a three-planet resonant configuration during gas-driven
migration may be common, as long as the planets in question are not very massive. Also, if
eccentricity damping is not too strong in discs, resonant inclination pumping can be efficient,
provided that one of the two inner planets eccentricities is higher than 0.3. We note however
that our results should be taken with care, as our migration model is not very advanced—this
is why we have avoided presenting statistics on the efficiency of trapping, etc. On the other
hand we have no reason to question the generic character of the resonance-trapping and incli-
nation-excitation mechanisms. In order to be able to evaluate the probability of capture in a
given triple resonance, its stability time (compared to the disc-evaporation time scale) and its
efficiency in exciting the inclinations, we need to resort to more advanced models of migra-
tion—e.g. the one used in Thommes et al. (2008)—that take into account variations in the
gas surface density induced by the relative motion of the planets, as well as gas dissipation.
We hope to be able to report on these issues in a forthcoming paper.
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