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ABSTRACT

We revisit the issue of the cause of the dynamical instability during the so-called Nice model, which describes
the early dynamical evolution of the giant planets. In particular, we address the problem of the interaction of
planets with a distant planetesimal disk in the time interval between the dispersal of the proto-solar nebula and the
instability. In contrast to previous works, we assume that the inner edge of the planetesimal disk is several AUs
beyond the orbit of the outermost planet, so that no close encounters between planets and planetesimals occur.
Moreover, we model the disk’s viscous stirring, induced by the presence of embedded Pluto-sized objects. The four
outer planets are assumed to be initially locked in a multi-resonant state that most likely resulted from a preceding
phase of gas-driven migration. We show that viscous stirring leads to an irreversible exchange of energy between
a planet and a planetesimal disk even in the absence of close encounters between the planet and disk particles.
The process is mainly driven by the most eccentric planet, which is the inner ice giant in the case studied here. In
isolation, this would cause this ice giant to migrate inward. However, because it is locked in resonance with Saturn,
its eccentricity increases due to adiabatic invariance. During this process, the system crosses many weak secular
resonances—many of which can disrupt the mean motion resonance and make the planetary system unstable.
We argue that this basic dynamical process would work in many generic multi-resonant systems—forcing a good
fraction of them to become unstable. Because the energy exchange proceeds at a very slow pace, the instability
manifests itself late, on a timescale consistent with the epoch of the late heavy bombardment (∼700 Myr). In the
migration mechanism presented here, the instability time is much less sensitive to the properties of the planetesimal
disk (particularly the location of its inner edge) than in the classic Nice model mechanism.
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1. INTRODUCTION

In 2005, a new model was published describing the early
dynamical evolution of the solar system (Tsiganis et al. 2005;
Morbidelli et al. 2005; Gomes et al. 2005), which has since
come to be known as the Nice model. The Nice model is com-
pelling because it explains many of the heretofore mysterious
characteristics of the structure of the solar system. For example,
it parks all four planets on orbits with separations, eccentricities,
and inclinations similar to what we currently observe (Tsiganis
et al. 2005), as well as duplicating the correct secular frequen-
cies (Morbidelli et al. 2009a). In addition, it is the most suc-
cessful model to date in explaining both Jupiter’s (Morbidelli
et al. 2005) and Neptune’s Trojan asteroids (Tsiganis et al. 2005;
Sheppard & Trujillo 2010). It reproduces the number and the
inclination distribution of irregular satellites of the giant plan-
ets (Nesvorný et al. 2007; Bottke et al. 2010). It is the only
migration model that is consistent with the current dynamical
structure of the terrestrial planets (Brasser et al. 2009) and the
main asteroid belt (Morbidelli et al. 2010). It may explain the
origin of D-type main belt asteroids as objects that originally
formed beyond the outer planets and were captured during planet
migration (Levison et al. 2009). It reproduces many of the fea-
tures of the dynamical structure of the Kuiper Belt, including
the observed edge at ∼50 AU and the current Kuiper Belt mass
(Levison et al. 2008). The Nice model (Gomes et al. 2005) re-
produces the magnitude and the duration of the so-called Lunar
late heavy bombardment (LHB; see Hartmann et al. 2000 for a
review), which was a brief period of intense bombardment of

the inner solar system that occurred about 3.8 Gyr ago. Recent
work by Barr & Canup (2010) suggests that, in the framework
of the Nice model, the LHB would have delivered enough en-
ergy via impacts to differentiate Ganymede, but not Callisto,
potentially explaining the observed differences between these
bodies.

The Nice model is the latest and most developed of a
class of models in which the giant planets are initially in a
more compact configuration and achieve their current orbits
through a phase of dynamical instability followed by a period
of dynamical damping due to a planetesimal disk (Thommes
et al. 1999, 2003; Levison et al. 2004). In the Nice model, the
giant planets are assumed to have formed within 15 AU of the
Sun. Slow migration was induced in the planets by gravitational
close encounters with planetesimals, gradually leaking out of
a ∼35 M⊕ primordial, trans-planetary planetesimal disk, set
between ∼16 and 30 AU. After roughly 700 Myr, Jupiter
and Saturn crossed their mutual 1:2 mean motion resonance
(MMR). This event triggered a global instability that led to a
violent reorganization of the outer solar system. Uranus and
Neptune quickly evolved into orbits that crossed one another,
as well as those of the gas giants. The ice giants penetrated the
trans-planetary disk, scattering its inhabitants throughout the
solar system. The interactions between the ice giants and
the planetesimals damped the eccentricities and inclinations of
the planetary orbits—leading the planets to nearly circular orbits
at their observed locations. A small fraction of disk particles was
trapped in the small body reservoirs, described in the previous
paragraph.
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While powerful, in our view, the Nice model as it was
originally envisioned suffers from three main limitations. First,
the initial orbits of the giant planets in the published Nice model
simulations were chosen in an ad hoc manner. In particular,
because no other information was available at the time, we
simply placed all four planets on circular orbits, assuming that
Saturn was closer to Jupiter than their mutual 1:2 MMR. The
ice giants were then added with as small as possible spacing in
semi-major axes that would still keep the system stable on billion
year timescales. (It should be kept in mind that our goal was to
drive otherwise stable planetary systems unstable by inducing
planetesimal-driven migration due to small bodies leaking out
of a distant planetesimal disk.) However, because we felt that the
choice of initial conditions was a serious limitation of the model,
in Morbidelli et al. (2007) we performed a comprehensive study
of the dynamical evolution of the four giant planets embedded in
a gas disk, in an attempt to determine realistic initial conditions
for a new set of Nicelike simulations.

We found that the system naturally evolves into a configu-
ration in which the planets are locked in a quadruple MMR
(i.e., each planet is in resonance with its immediate neighbor
or neighbors), similar to the Laplace resonance of the Galilean
satellites. In total, we found four configurations in which the
planets were stable for at least 1 Gyr after the disappearance of
the gas.5 Additional stable configurations were recently iden-
tified by Batygin & Brown (2010). In all our systems, Jupiter
and Saturn are locked in the 2:3 MMR with one another. This
arrangement seems to be the natural end state of the early dy-
namical evolution of the Jupiter–Saturn system embedded in a
gas disk, even if one accounts for various accretion histories of
Saturn (Pierens & Nelson 2008) and different structures of the
disk (as long as they are reasonable; Zhang & Zhou 2010).

With these new multi-resonant configurations in hand,
Morbidelli et al. (2007) and Batygin & Brown (2010) followed
their evolution under the influence of a planetesimal disk. They
showed that, as with the original Nice model, many of these
systems became unstable and evolved into orbital configura-
tions similar to that of the real giant planets. Thus, the first
limitation of the Nice model appears to have been successfully
addressed.

The second of the Nice model’s limitations has to do with
producing the delay in the onset of the instability that is required
if the model is to explain the LHB (roughly 600 Myr). Recall
that, in the original Nice model papers, the approach to the
resonant crossing that led to instability was caused by the slow
migration of the giant planets, due to the leakage of particles
from near the inner edge of the disk. The migration was sustained
by a feedback mechanism—particles leaking out of the disk
would cause the ice giants to migrate outward, which, in turn,
destabilizes additional particles from further out in the disk. It
turns out that the exact value of the instability time was very
sensitive to the location of the disk edge. In the original Nice
model, we found that in order for the instability to occur between
200 Myr and 1 Gyr, the inner disk edge must lie between ∼14.5
and ∼15.5 AU, a range of only 1 AU. While not out of the
question (see Gomes et al. 2005 for a discussion), this narrow
range is aesthetically displeasing.

5 In the published version of Morbidelli et al. (2007), we claimed to have
found only two stable configurations of the giant planets. Unfortunately, to test
the stability, we used the original version of SyMBA (Duncan et al. 1998),
which, as we discuss in more detail in Section 2, has a problem with
integrating very compact planetary configurations for long periods of time.
After fixing this problem, we find that four out of the six configurations
identified by Morbidelli et al. (2007) are stable.

Moreover, the above problem is substantially worse for
the configurations found by Morbidelli et al. (2007) because
the planetary resonances destroy the feedback mechanism. As
described above, in the original Nice model configuration,
particles leaving the disk will cause the planets to change their
semi-major axes. However, when the planets are in resonance,
the leakage causes their eccentricities to decrease while leaving
their semi-major axes virtually unchanged. Thus, as long as
the planets remain in resonance, the outermost planet cannot
move outward while the inner part of the planetesimal disk is
dynamically eroded thereby making it much more likely that
the process will stall, leaving the planets forever in their stable
resonant configuration.

The third limitation in the original Nice model simulations
was in the way we represented the planetesimal disk. In
particular, in order for the problem to be computationally
tractable, we ignored gravitational encounters (i.e., viscous
stirring) between disk particles. Thus, during the long period
of time that preceded instability, the disk remained significantly
dynamically “colder” than it otherwise should have. This lack
of viscous stirring is problematic when one considers that: (1)
this disk probably contained on the order of 1000 Pluto-mass
objects (Morbidelli et al. 2009b; Levison et al. 2008; Stern
1991), (2) the escape velocity of Pluto is ∼1 km s−1, and (3)
the orbital velocity in the middle of the disk is 6 km s−1. Given
these numbers, one would expect that Pluto-mass objects could
excite the disk to eccentricities of ∼0.2. The fact that we did
not include viscous stirring in our previous calculations is thus
troubling, since a dynamically excited disk would probably be
more effective at passing disk material to the planets. Thus,
we must wonder whether it would still be possible to delay the
instability for as long as ∼700 Myr, if viscous stirring were
included. On the positive side, it is possible that the addition
of viscous stirring would broaden the range of inner disk edge
radii that lead to reasonably long delays, thereby solving the
aesthetic problem above.

In response to the above issues, here we present the results
of a new set of dynamical models, which start with a set of
initial planetary orbits taken from Morbidelli et al. (2007),
and include viscous stirring due to a population of Pluto-mass
objects. Surprisingly, as we describe in Section 3.1, we find
that viscous stirring leads to a heretofore unknown dynamical
coupling between the planets and the disk, which in turn gives
rise to a new trigger for the instability. Hereafter, we name this
new model, characterized by resonant initial conditions for the
planets and the new instability trigger as the “Nice II model.”

The purpose of the present paper is to analyze the dynamics
behind this newly discovered planet–disk coupling as well as
to explore the relation between the instability time and the
parameters of the model. We focus on one specific resonant
orbital configuration of the planets, but we argue that the energy-
exchange mechanism between planets and disk is generic. In
Section 2, we discuss the methods we employed. In Section 3, we
present the results of our simulations along with an interpretation
for the observed dynamical coupling between the self-stirring
disk and the planets. We show that this coupling can drive some
systems unstable, but only after several hundred million years
have elapsed. Our conclusions are given in Section 4.

2. THE CALCULATIONS

For the Nice II model, we start with a system where the planets
are in one of the configurations described by Morbidelli et al.
(2007) and Jupiter’s initial semi-major axis, a, is set to 5.4 AU.
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Table 1
Time-averaged Elementsa of the Four Giant Planets,

as Found in Morbidelli et al. (2007)

Planet 〈a〉 〈e〉 〈i〉
(AU) (deg)

Jupiter 5.42 0.0044 0.016
Saturn 7.32 0.017 0.016
Ice I 9.61 0.053 0.044
Ice II 11.67 0.011 0.029

Notes. This is the solution corresponding to a multi-resonant configuration in
which Saturn is in a 3:2 MMR with Jupiter, Ice I is in a 3:2 MMR with Saturn,
and Ice II is in a 4:3 MMR with Ice I. Note that the eccentricity of the inner ice
giant (in 3:2 with Saturn) is much higher than that of the other planets.
a a, semi-major axis; e, eccentricity; and i, inclination.

In particular, we chose the system where Saturn (at ∼7.3 AU)
is in the 2:3 MMR with Jupiter, the inner ice giant (hereafter
Ice I, at ∼9.6 AU) is in the 2:3 MMR with Saturn, and the outer
ice giant (hereafter Ice II, at ∼11.7 AU) is in the 3:4 MMR with
Ice I. Jupiter and Saturn have their real masses, while both ice
giants were given a mass equal to 15 M⊕. The time-averaged
orbital elements of this initial system are given in Table 1. These
were determined by integrating the planetary system for 1 Myr.
Note for future reference that Ice I has a significantly larger
eccentricity (∼0.05) than the rest of the planets (∼0.01). This
is a common feature for all multi-resonant configurations found
by Morbidelli et al. and Batygin & Brown (2010). We discuss
the implications of this result below.

As stated above, in addition to the giant planets, our simula-
tions include a massive particle disk, initially consisting of Ndisk
(usually 1500) equal-mass bodies, distributed so that the surface
density scales with heliocentric distance as Σ ∝ r−1. The total
mass of the disk (Mdisk) and the disk’s inner edge (rin) are free
parameters of this model. For most of our simulations we used
a 50 M⊕ disk, as did Morbidelli et al. (2007) and Batygin &
Brown (2010), which is slightly more than the nominal value of
35 M⊕ in the original Nice simulations (Tsiganis et al. 2005).
Note that our standard configuration implies that the mass of an
individual disk particle (md = Mdisk/Ndisk) is roughly twice that
of the Moon. Thus, each of these objects should be thought of as
representing a swarm of real disk particles at similar positions
and velocities. We also varied the outer edge of the disk (rout) so
that runs with the same initial disk mass also had the same value
of surface density within the disk. Our runs had outer disk edges
that ranged from 30 to 34 AU. We truncate the disk near 30 AU
to ensure that Neptune does not migrate too far (see Gomes et al.
2004 and Levison et al. 2008 for justifications of this). As in the
original Nice-model simulations, the initial eccentricities and in-
clinations of disk particles are very small (e ∼ sin (i) ∼ 10−3).

The dynamical evolution of these systems was followed using
a version of the symplectic N-body code known as SyMBA
(Duncan et al. 1998). This code has been modified in three
ways. First, SyMBA is a multiple time step algorithm, which
makes use of a so-called transition function to symplectically
change the time step of the integration. This function must
be smooth, but also must not use a lot of CPU time. Duncan
et al. (1998) advocated using a fourth-order polynomial for this
purpose. While sufficient for most applications, we find that
the integrator fails when trying to integrate, for long periods of
time, systems where the planets pass within three mutual Hill
radii of one another in each synodic period, as is the case for
the compact configurations studied here. Thus, for the present
simulations, we have adopted the transition function suggested

Figure 1. Normalized acceleration felt by one particle due to the gravitational
interaction with another, as a function of r/rH . The light gray curve is of the
Newtonian functional form (∼1/r2), while the solid curve is the one given by
Equations (1) and (2). Note that the acceleration dies out quite quickly, for
r/rH > 2.

by Rauch & Holman (1999), which does not suffer from this
problem.

While the self-gravity of the disk was ignored in the original
Nice model runs, for reasons described above, we must now
include viscous stirring. Unfortunately, it is still computationally
too expensive to include the full gravitational interaction of the
disk particles in a direct N-body integration. Thus, we needed to
develop a simplified algorithm that includes the interactions, at
least approximately, while being computationally efficient. We
first tried the obvious strategy of occasionally kicking particles
based on a simple particle-in-the-box algorithm. Unfortunately,
these small kicks brake the symplecticity of the integrator and
thus our planetary systems went unstable, even if the disk was
placed very far from the planets.

Hence, the second modification to SyMBA is to include a new
algorithm in which the magnitude of the acceleration that one
disk particle feels due to the proximity of another is assumed to
be of the form

ad = Gmp

r2
r

F (rr; brH , crH ), (1)

where mp is the mass of the perturber, rr is the separation
between the two objects, rH is their mutual Hill’s sphere, and b
and c are dimensionless constants of order unity. The function F
is 1 for rr <brH , 0 for rr >crH , and smoothly and monotonically
transitions between 1 and 0 in between. In particular, we again
turned to the transition function developed by Rauch & Holman
(1999), where for brH <rr <crH ,

F ≡ 1

2

{
1 + tanh

[
2y − 1

y(1 − y)

]}
, (2)

where y ≡ (rr − brH )/(crH − brH ). For these runs we set
b = 1.5 and c = 3.1 in order to be consistent with the time
step transitions in SyMBA. Figure 1 shows the functional form
of the modified acceleration. With this form, we can ignore
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the gravitational interaction between disk particles that are far
from one another (thereby making the calculations much less
computationally expensive), while symplectically integrating all
close encounters between them.

The third and final modification to SyMBA comes from the
fact that we have two different requirements on the way in
which we represent the disk in our calculations. First, in order
to correctly calculate the gravitational acceleration of the disk
on the planets, we need to assume that the particles have a mass,
md, that, in order to keep Ndisk at a manageably small number,
is on the order of the mass of the Moon. On the other hand, we
want the disk to dynamically evolve due to viscous stirring as
if it contains Np objects of mass mp, which is on the order of
the mass of Pluto. So, in general Np < Ndisk and mp < md .
Fortunately, there is nothing in the Hamiltonian formalism of
this problem that requires that we set these two pairs of numbers
equal to one another. In particular, when computing their effects
onto the planets, we assume that the particles have all the
same mass md; instead, when computing the mutual effects
of planetesimals in the disk, we assume that Np particles have
a mass mp while the remaining (Ndisk −Np) particles have no
mass (or more specifically they have mass mt −→ 0). We can
replace the potential part of the Hamiltonian with

Npl−1∑
i=1

Npl∑
j=i+1

Gmimj

rij

+
Npl∑
i=1

Ndisk∑
k=1

Gmimd

rik

+
Np−1∑
l=1

Np∑
ι=l+1

Gm2
p

rlι

+
Ndisk−Np∑

λ=1

Np∑
l=1

Gmtmp

rlλ

, (3)

where rik is the distance between particles i and j, and Npl is
the number of planets in the system. The physically meaningful
free parameters in our simulations are rin, Mdisk, mp, and Np.

We have carefully tested this algorithm and it is working
properly. In particular, the planets remain stable for longer
than 4 Gyr when exposed to a disk containing 1000 Pluto-
mass objects that are located very far from the planets. In
addition, it is critical that the viscous stirring that occurs in
our new code is comparable to that in a full N-body simulation.
To test this, we performed three 1 Myr long integrations of a
system containing the four giant planets in our chosen resonant
configuration, surrounded by a disk containing 1000 objects of
14 M� (i.e., ≈ 35 M⊕) spread from 14 to 30 AU. Figure 2 shows
the root-mean-square (rms) eccentricity of the disk particles as
a function of time in a full N-body simulation (dotted curve),
our new code (solid curve), and a code that ignores self-gravity
in the disk (light gray curve). The fact that the simulation with
no self-gravity shows no trend indicates that the growth seen
in the other two cases is due to viscous stirring and not due to
the planets. Moreover, there is fairly good agreement between
the full N-body results and that of our new code. The mean e2

grows approximately linearly with time, with the growth rates
of the two runs having a relative difference of ∼15%. The small
discrepancy, we believe, is due to the lack of distant encounters.
Given its small value and that mp is a free parameter of our
model, we believe that the agreement is adequate. We address
the issue of the appropriateness of our methods again at the end
of Section 3.1.

3. SIMULATION RESULTS

As described in the previous sections, our simulations follow
the evolution of a system containing the four giant planets

Figure 2. Growth in rms eccentricity in a disk spread from 14 to 30 AU that
consists of 1000 objects of 14 Pluto masses and surrounds the four giant planets
in our chosen resonant configuration. The dotted and heavy solid curves show
the results obtained by a full N-body interaction and our new code, respectively.
For comparison, the light solid curve shows what occurs when the disk does not
contain any massive objects.

in a multi-resonant configuration, surrounded by a massive
planetesimal disk. The disk has an inner edge at rin, an outer
edge at rout, and a mass of Mdisk. However, there is a relationship
between these three values so that runs with the same Mdisk had
the same value of surface density within the disk as we varied rin.
The disk is stirred by a population of Np objects with mass mp. In
the following section we describe the results of our simulations,
starting with the discovery of a new dynamical coupling between
the planets and a viscously stirred disk.

3.1. The Dynamical Coupling between the Planets and Disk

In the original Nice model simulations, the orbits of the giant
planets changed as a result of close gravitational encounters
with disk particles that were slowly leaking out of the disk. This
leakage was due to the eccentricity growth that disk particles
suffer when in MMRs with the planets. Thus, here we expected
to see no change in the orbits of the giant planets in systems with
rin large enough that there was no leakage. We were surprised,
therefore, to discover that in systems with viscous stirring, there
exists a slow, secular transfer of energy from the disk to the
planets.

The simulation shown in Figure 3 illustrates this point. The
black curve shows the change in energy of the planets under
the gravitational influence of a 50 M⊕ disk, spread between 18
and 31.6 AU. There were 1000 Pluto-mass objects embedded
in the disk. As the figure shows, the planets are slowly being
pushed toward the Sun (ΔE < 0). At the same time energy is
being pumped into the planetesimal disk (gray curve) in such a
way that the total energy is constant. No particles leave the disk
during this time. Indeed, the smallest perihelion distance any
disk particle achieves is 15.7 AU, while all planets are inside
of 12 AU.

The remainder of this section is devoted to describing the
nature of this unexpected coupling. The first step is to confirm
that it is indeed the result of adding viscous stirring to the
problem and not some other effect, like that of the planetary
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Figure 3. Change in total energy (ΔE = E−E0, E0 is the initial value) contained
in the four planets (sum of their two-body energies, black curve) and the disk
particles (light gray curve) as a function of time. The energy drift is linear in
time and has the same magnitude but opposite signs for these two components,
so that the total energy of the system is conserved (no escaping particles; good
behavior of the symplectic algorithm). Energy is given in what we call natural
units where distance is measured in AUs, time in years, and the Sun’s mass is
equal to 4π2.

MMRs. In Figure 4(a) we plot the magnitude of the rate of
change of the energy in the planets, |dE/dt |, as a function of Np
for systems with Mdisk = 50 M⊕, rin = 18 AU, and mp = 1 M�.
We see a nearly linear relationship between |dE/dt | and Np for
Np �500. The fact that the energy drift decreases with Np shows
that the drift is mainly due to viscous stirring.6

The coupling saturates for Np larger than ∼500. This is poten-
tiality the interesting region of our parameter space because we
believe that the real trans-planetary disk should have contained
on the order of 1000 Pluto-sized perturbers, for the following
reason. Roughly 50% of the sky has been searched for Kuiper
Belt Objects (KBOs) larger than 1000 km in radius, and two
have been found: Pluto and Eris (Brown et al. 2005; Brown &

6 We note that the energy drift does not go to zero when the number of
scatterers goes to zero. We believe that this is the result of standard
satellite/disk torques that are still present when Np = 0 and are responsible,
e.g., for gap opening in Saturn’s rings (Goldreich & Tremaine 1980, 1982).
This rate is, however, too small to significantly change the orbits of the giant
planets over the age of the solar system.

Schaller 2007). Levison et al. (2008) predict that 0.3%–0.6%
of the protoplanetary disk should have been trapped in the
Kuiper Belt during the instability phase of the planetary system.
If four Pluto-sized objects indeed exist, then the original disk
should have contained ∼700–1300 such objects. Thus, adopting
Np = 1000 as our canonical value seems reasonable. The fact
that we see |dE/dt | saturating for Np �500 implies that our re-
sults will not be sensitive to our choice of Np, implying that we
can effectively remove one degree of freedom from the model.

Because they play an important role in the original Nice
model, the next question we need to address is whether MMRs
are also important for the observed dynamical coupling. In
Figure 4(b) we plot |dE/dt | for a number of simulations where
we fixed Np and Mdisk, but varied the inner edge of the disk, rin.
If MMRs were important for the observed energy coupling, we
would expect jumps in |dE/dt | as the edge of the disk passes
over them (marked in the figure). Instead we see a smooth,
monotonic decrease of |dE/dt | with rin. Therefore, we conclude
that the MMRs are unlikely to play an important role in this new
planet–disk coupling.

Figure 4(c) shows how the mass of the disk affects |dE/dt |.
For Mdisk � 100 M⊕ the relationship is approximately linear.
For larger disk masses, |dE/dt | is apparently no longer mono-
tonic in Mdisk. We believe that this is due to the presence of
nonlinear terms in the problem for these masses. Fortunately,
we are most likely in the linear regime. In the original Nice-
model simulations, we favored a disk mass of 35 M⊕, while
the successful runs in Morbidelli et al. (2007) and Batygin &
Brown (2010) employed 50 < Mdisk < 91 M⊕. In any case,
any explanation for our new coupling must explain this linear
behavior.

Further insight into our coupling can be gained by investigat-
ing the behavior of the planetary orbits during these simulations.
We find that the most obvious changes are seen in the orbit of
the inner ice giant. Figure 5(a) shows that the eccentricity of
Ice I (purple curve) increases substantially as a result of the
energy coupling. In addition, the libration amplitude of the 3:4
MMR between the two ice giants increases during this period
(Figure 5(b)). This occurs only if the coupling is pushing the two
ice giants apart. These two observations suggest that the disk is
pushing the orbit of Ice I inward, while leaving Ice II mainly

(a) (b) (c)

Figure 4. (a) Absolute value of dE/dt as a function of the number of perturbers, Np. The inner edge of the 50 M⊕ disk was set to rin = 18 AU. Note that |dE/dt |
saturates for Np � 500. (b) The same quantity as measured in a series of simulations with Np = 1000 and different values of rin. The observed monotonic dependence
suggests that MMRs (noted in the plot) do not play an important role in the observed energy exchange. (c) |dE/dt | as a function of the mass of the disk. All these
simulations had Np = 1000 and rin = 18 AU. Note the linear dependence for Mdisk � 100 M⊕.
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(a)

(b)

Figure 5. (a) Eccentricity evolution for Ice I for the run of Figure 3—purple
curve—and the same for a run in which Ice II was removed—green curve. In
both runs the eccentricity increases at roughly the same rate. (b) Time evolution
of the critical angle related to the 3:4 MMR between Ice I and Ice II, for the run
of Figure 3. The amplitude of libration increases as well.

unaffected. This naturally explains the change in the 3:4 libra-
tion amplitude. Also, Ice I’s eccentricity increases because it is
trapped in the 2:3 MMR with Saturn. This resonance prevents
Ice I’s semi-major axis from decreasing fast enough; Ice I needs
to drag Jupiter and Saturn with it. Instead, as is well known
from the dynamics of the Galilean satellites and the Kuiper
Belt’s plutinos, the preservation of an adiabatic invariant forces
a slow increase of its orbital eccentricity that compensates for
the slow drift in a (Henrard 1993; Peale 1986).

The hypothesis described in the last paragraph can be tested
by performing a simulation similar to the one used to generate
Figure 3 and the purple curve in Figure 5, but without Ice II. The
green curve in Figure 5(a) shows the eccentricity of Ice I in this
simulation. As can be seen, the eccentricity increases at roughly
the same rate as in the original run. This result strongly suggests
that the main coupling between the disk and the planets is
through the inner ice giant. This is a surprising result, given that
Ice I is much farther from the disk than Ice II. Recall, however,
that Ice I has an initial eccentricity of 0.053, while the rest of the
planets have eccentricities less than 0.017. Thus, in order for Ice I
to play a decisive role, the dynamical mechanism responsible
for the coupling must be a strong function of the eccentricity.
Given the results thus far, we can infer that the observed energy
exchange is related to secular interactions between the planets
and the disk.

It may seem absurd that a secular interaction results in an
energy exchange, but it turns out to be the case. It was Milani
et al. (1986) that first noticed in their numerical integrations that
the semi-major axes of the planets were exhibiting long-period
oscillations, correlated to the evolution of their eccentricities.
This was unexpected at the time, because it was thought that

the semi-major axes could have only short-periodic oscillations
associated with the mean motion. This belief is, however, only
approximately correct, as Milani et al. (1987) have analytically
proved. In particular, they showed that, computing the relation-
ship between the osculating and mean semi-major axes (the
latter being constants of motion) using series expansions and
rigorous perturbation techniques, one finds terms with ampli-
tudes that are a function of the product of the masses of the
interacting bodies and independent of their mean longitudes.
This is because for every short-periodic term that one eliminates
when averaging using canonical perturbation theory, a higher-
order secular term has to be added in the expansion of the
Hamiltonian as well as in the transformation equations between
the new and old coordinates. As a result, the semi-major axes are
not only a function of the mean longitudes, but of the secular an-
gles as well. These additional terms may be small in amplitude,
but describe secular oscillations of the osculating semi-major
axes. Since the semi-major axes are, of course, related to the or-
bital energies of the planets, the latter have secular oscillations
as well.

In short, Milani et al. (1987) demonstrated that, in the general
case of two interacting massive bodies, the energy of the first
body has a secular oscillation around its mean value. In general,
this oscillation, to lowest order in the eccentricities, is given by
the formula

E = Ē + C1e
2 + C2e

′2 + C3ee
′ cos (� − � ′), (4)

where e and � denote the mean-motion-averaged eccentricity
and longitude of perihelion, and the primed quantities refer to the
inner body. The C’s are constants that depend, very sensitively,
on the geometry of the system. For example, in the case of
Uranus and Neptune in the current solar system, Uranus’s energy
is at minimum when its eccentricity is at minimum. However,
if Neptune were to be placed on the other side of the 1:2 MMR
with Uranus, the phase would shift and Uranus’s energy would
be at maximum when its eccentricity is at minimum.

In our case, the planets are interacting with a disk of
planetesimals. If the planetesimals were not interacting with
each other, the secular evolution of the energy of a planet would
still be described by Equation (4), but with a sum over the
unprimed quantities, denoting the collection of all disk particles.
Hence, the energy of the planet would have a complicated, but
still quasi-periodic evolution—given by the sum of many small-
amplitude and long-period oscillations—but NO net drift.

However, when two disk particles gravitationally scatter one
another, their � and e suffer instantaneous changes that depend
on the details of the encounter, and are unrelated to the secular
forcing exerted by the planet. If the ensemble of disk particles
undergoes a non-periodic drift, then we would expect the energy
of the planet to change as well. In particular, it is well known
that the addition of viscous stirring causes the rms eccentricity
of the disk to increase with time (Figure 2). Since, according to
Equation (4), E of the planet is a function of the eccentricity of
the disk, it seems reasonable to investigate whether this is the
culprit.

Unfortunately, it is not trivial to perform a direct comparison
between Equation (4) and our systems. As mentioned above,
computing the C’s for each particle and adding their effects
together would be extremely cumbersome. However, we can
qualitatively compare the behavior of our systems to that
predicted by this equation. The first step in this comparison
is to note that, according to Milani et al. (1987), |dE/dt | should
roughly scale as MUranus × Mdisk when Equation (4) is summed
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over all the disk particles. Figure 4(c) shows that |dE/dt | is
indeed linear in Mdisk, confirming this prediction.

Next, Equation (4) shows that |dE/dt | should be dependent
on a combination of the eccentricities of the planet and the disk
particles. Because the observed secular change in the orbital
energy of the planets is clearly linked to changes in the disk
caused by viscous stirring, we believe that the C2 term in
Equation (4) can be ignored. The C1 term is independent of the
eccentricity of the planet. So, since, as we described above, the
strongest coupling between the planets and the disk is through
Ice I, which has a large eccentricity, we conclude that in the
framework of our theory, the third term in the equation must
dominate in the case of interest here.

The next issue to address is whether after making the above
conclusion, we can explain the behavior that we see. Defining a
new angle φ ≡ (� − � ′), the change in energy of the planet as
determined by the dominant C3 term should be

dE

dt
∝ de

dt
e′ cos (φ) + e

de′

dt
cos (φ) + ee′ sin (φ)

dφ

dt
. (5)

We now estimate the magnitude of each term in this equation.
It is well known that an eccentric planet will try to force a pop-

ulation of non-interacting particles to be uniformly distributed
around a single point in the h–k plane, where h ≡ e cos (φ),
and k ≡ e sin (φ). This forced equilibrium lies on the h-axis at
distance ef from the origin, where ef is known as the forced
eccentricity. Therefore, once a quasi-equilibrium is set up in
the disk, the average value of cos (φ) for our disk particles
should be a positive constant smaller than 1, while the av-
erage sin (φ) ≈ 0. Thus, we can ignore the third term in
Equation (5).

We next turn our attention to the eccentricities. Unfortunately,
in our full simulations, the eccentricity of Ice I is contaminated
by its MMR with Saturn. Thus, to help in this analysis we
turn to more simplistic simulations. In particular, we ran three
experiments in which we picked up one of our simulations
at t = 50 Myr and continued the integration after removing
all planets except Ice I (i.e., the system consisted of the Sun,
Ice I, and the disk). The eccentricity of Ice I (equal to 0.054
after 50 Myr in our original simulation) is varied in the three
experiments (0.02, 0.05, and 0.07). We observe, as expected,
that the higher the initial eccentricity of Ice I, the faster its
eccentricity damped and the faster the rms eccentricity of the
disk’s particles increased. In all cases, the semi-major axis of the
planet decreased with a rate roughly proportional to the planet’s
initial eccentricity: da/dt = −1.1 × 10−11, −2.0 × 10−11, and
−3.6 × 10−11 AU yr−1 for initial e′ = 0.02, 0.05, and 0.07,
respectively. We deduce from these experiments that (1) inward
migration of the planet is generic (which was unclear since we
do not know the value, or even the sign, of C3) and that (2) its
magnitude linearly depends on the planet’s eccentricity, which
governs its secular coupling to the disk.

In addition, we find that the planetary energy drift in the
simulation with only Ice I is the same as in the full simulation.
In particular, recall that in the e = 0.05 run, we found that
da/dt = −2.0 × 10−11. Since

dE

dt
= GM�MUra

2a2

da

dt
,

dE/dt = 1.5×10−14 in natural units. In the full system, we find
that dE/dt = 1.6 × 10−14 (this is the rin = 20 AU, Np = 1000
run in Figure 4). This result is insightful because not only does

it confirm that the main coupling is through Ice I, but in our full
runs de′/dt is positive (∼5 × 10−5 Myr−1), while it is negative
in these new runs (∼ − 3 × 10−4 Myr−1 for the simulation
with an initial eccentricity of 0.05). This, in turn, indicates that
the first term in Equation (5) dominates. We can understand
why this is the case by comparing the first and second terms
in the equation. In this problem, erms and e′ are of the same
order. However, because of viscous stirring, derms/dt , which
has a value of roughly 2 × 10−3 Myr−1, is at least an order of
magnitude larger than de′/dt .

Thus, we conclude that |dE/dt | ∝ Mdiskde/dte′, at least
in the linear regime. According to the classic viscous stirring
equations, de/dt is linear in the number density of scatterers
(cf. Wetherill & Stewart 1993), which is proportional to Np in
our case. Thus, our analysis of Equations (4) and (5) suggests
that dE/dt should be linear in Np, e′, and Mdisk, which is what
we observe.

With this information in hand, we can now revisit the appro-
priateness of the simplifications we employ in our numerical
techniques. As we describe in Section 2, we smoothly and sym-
plectically truncate the force that the disk particles feel from
the Pluto-mass objects at roughly 2rH (see Figure 1) in order
to decrease the amount of CPU time required for the calcula-
tions. There are two consequences of this simplification that
affect |dE/dt |. First, we are missing distant, small angle en-
counters. This mainly will affect the growth of the eccentric-
ities of the disk. As shown in Figure 2, our code handles this
fairly well.

The second issue arises from the fact that the disk particles
do not feel the bulk gravitational potential of the disk, and
so their secular precession frequencies, and thus dφ/dt , are
in error. In order to test the importance of this we performed
a calculation similar to the single planet simulations above,
but we added a fixed gravitational potential corresponding to a
50 M⊕ disk spread from 18 to 34 AU with an r−1 profile. Ice
I, which was the only planet in the simulation, had an initial
eccentricity of 0.05. We found that it drifted inward at a rate
of −3 × 10−11 AU yr−1—only slightly larger than the value of
da/dt = −2×10−11 AU yr−1 observed when the disk potential
was not included. Given that changes in disk parameters have
a much larger effect than this (see Figure 4), we feel this is
an acceptable compromise. Thus, we can conclude that our
simplifications are, indeed, valid for the problem at hand. Note
that this exercise supports the above conclusion that the dφ/dt
term in Equation (5) is unimportant.

One final note on this topic: although we studied only one
of a large number of possible resonant configurations for
the planets, we believe that the same basic behavior would
occur in any multi-resonant configuration. Our study of an
isolated planet shows that the energy coupling of an eccentric
planet with a disk is generic. In addition, all of the planetary
systems that have been produced thus far have at least one
eccentric planet (Morbidelli et al. 2007; Batygin & Brown
2010). Indeed, in all resonant configurations found in Morbidelli
et al. (who used hydrodynamic simulations and thus generated
the most realistic systems), the most eccentric planet is Ice I,
as is the case here. In all cases, the resonant locks between
the planets will turn the energy decay into an eccentricity
growth. Since |dE/dt | is a function of the planet’s eccentricity,
this pumping sustains the coupling process. Thus, the same
kind of evolution observed in Figures 3 and 4 should repeat
whatever multi-resonant configuration the giant planets had at
the time.
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(a) (b)

Figure 6. (a) The dynamical lifetime of systems, as a function of the inner edge of the disk. All runs are for a disk of 50 M⊕ and Np > 500. (b) The dynamical lifetime
of all the systems shown in Figure 4 as a function of |dE/dt |. The median lifetime of unstable systems is 730 Myr.

3.2. Leading to a Planet Orbital Instability

As described in Section 1, one of the main criticisms of
the original Nice model was that the timing of the instability,
and thus whether it could explain the LHB, was very sensitive
to the choice of the inner edge of the disk. In particular, for
rin � 14.5 AU the system went unstable in a very short period
of time, and yet if rin � 15.5 AU the system was stable for
1 Gyr. And so, although this limitation only affects one aspect
of the Nice-model story, the only way for the Nice model can
explain the LHB is for the disk to have an edge within a narrow
region of the solar system.

The question naturally arises whether (1) the Nice II model
can lead to late instability, and (2) it also suffers from the
same limitation as the original Nice model. In order to test
the sensitivity of the new model to rin, we have plotted the
dynamical lifetimes of the 22 simulations from Figure 4(b) that
have Mdisk = 50 M⊕, mp = 1M�, and Np > 500, but rin
that ranged from 15.8 to 20 AU, in Figure 6(a). In particular,
each dot represents one simulation. Small dots are systems that
were stable for 1 Gyr, while large dots represent systems that
became unstable. It is interesting to note that (1) the dynamical
lifetime is not a monotonic function of rin and, more importantly,
(2) the systems that go unstable tend to have dynamical lifetimes
that are close to the value needed to explain the LHB (∼600 Myr
after the solar system formed). Our unstable systems have
dynamical lifetimes between 366 and 964 Myr, with a median
of 730 million years. These late instabilities provide a natural
explanation for the LHB. We return to the issue of the timescale
below.

The fact that some systems remain stable while others do
not was surprising to us. To understand this result, we must
first understand what causes the instability. As explained above,
planets should radially migrate due to the exchange of energy
and angular momentum with the trans-planetary disk. Ice I,
which has the largest eccentricity (0.053), exchanges far more
energy/angular momentum with the disk and should therefore
migrate faster than the other planets. Since it is locked in MMRs
with Saturn and Jupiter, however, its orbital eccentricity should
increase instead, which is exactly what we see in our simulations
(Figure 5).

The eccentricity growth, in turn, causes the precession fre-
quencies of the planetary system to slowly vary. This raises

the possibility that some of these frequencies become similar
to one another, thereby giving rise to secular resonances. The
perturbations induced by secular resonances can undermine the
system’s fragile mutli-resonant architecture by disrupting some
of the resonant “locks” that hold the planets together. The sys-
tem is doomed if that happens, because non-resonant systems
as compact as ours (i.e., separated by only a few Hill radii)
are naturally unstable if not locked in MMRs (Gladman 1993;
Chambers et al. 1996).

An example of the typical unstable system is shown in
Figure 7, which shows the evolution of Ice I’s eccentricity
and the critical argument of the 3:4 MMR between Ice I
and Ice II (σI,II ≡ 3λI − 4λII + �I) immediately before the
instability. As described above, initially Ice I’s eccentricity is
slowly increasing. However, at approximately 325 Myr, Ice I’s
eccentricity suddenly drops. This drop destroys the 3:4 MMR,
which leads to instability. We believe that this drop is due to the
crossing of a secular resonance.

We employed Fourier analysis of the orbital elements time
series of the planets (Šidlichovský & Nesvorný 1996) to get
insight into the nature of possible secular resonances crossings
in our simulations. This analysis was complicated by the fact
that the planetary orbits are strongly coupled. Thus, it was not
clear which of the (many) peaks found in the time series of a
given quantity corresponded to the fundamental mode of the
given planet/element, which peaks were combinations of the
fundamental modes, and which ones were “projected” into
this element from other degrees of freedom. In addition, the
presence of the disk, with its 1500 particles—each with its own
secular frequencies—makes the analysis of our systems very
challenging.

As a result, we decided to analyze a simpler system containing
only Jupiter, Saturn, and Ice I; Ice II and the disk were
removed. We mimicked the effects of the disk by adding
a fictitious force to Ice I’s equations of motion that slowly
draws energy from its orbit (Malhotra 1995). We integrated
the system for 1.5 Gyr. We found that Ice I suffered the
sudden drop in eccentricity observed in our full simulations (as
shown in Figure 7). Fortunately, this system did not suffer an
instability (presumably because of the absence of Ice II), which
allowed us to continue to study its evolution after the drop in e
was observed.
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(a)

(b)

Figure 7. (a) Evolution of Ice I’s eccentricity with time in the run with
Np = 1000, Mdisk = 50 M⊕, and rin = 20 AU near the time of the instability
observed in the full system. (b) The eccentricity drop seen at t ≈ 325 Myr is
correlated with a transition of the critical angle of the 3:4 MMR between the
two ice giants from libration to circulation.

We determined the secular frequencies of this reduced plan-
etary system at several different time snapshots: before, during,
and after the eccentricity drop. This allowed us to judge which
of the frequencies are drifting with time and which ones have
similar values during the eccentricity drop, thus revealing the
nature of the potentially destabilizing agent. In the case studied
here, we found that the drop was caused by the crossing of a
secular resonance produced by the beat between the libration of
�J − �S and the circulation of �S − �IceI.

At the time shown in Figure 8, which corresponds to 47 Myr
before the eccentricity drop, the period of �J − �S (P�J−�S )
is slightly larger than that of �S − �IceI (P�S−�IceI )—178.3
and 172.6 yr, respectively. As eIceI grows, P�J−�S decreases
while P�S−�IceI increases. Thus, these frequencies are on a
collision course. In our reduced (stable) system we found that,
53 Myr after the eccentricity drop, P�J−�S = 171.7 yr and
P�S−�IceI = 176.2 yr. Hence, the secular resonance was crossed.

Before we can proceed, we must make sure that by removing
Ice II from our system we have not oversimplified the problem.
In particular, we need to make sure that the secular frequencies
of the primary angles involved in the above resonance do not
significantly change when Ice II is removed. We tested this by
performing three experiments. Each of these started with an
orbital configuration taken at 325 Myr, which is immediately
before the time when Ice I’s eccentricity dropped, from our full
simulation shown in Figure 7. Each simulation consisted of a
different system: (1) the four planets plus the disk particles (but

Figure 8. Time evolution of the arguments �J − �S (top) and �S − �IceI
(bottom), for the reduced planetary system described in the text. The initial
condition corresponds to the run of Figure 7, ∼47 Myr before the eccentricity
drop occurred. As seen in these plots, the period of libration of �J −�S is very
close to the period of circulation of �S − �IceI.

suppressing self-stirring), (2) the four planets without the disk,
and (3) three planets only (removing Ice II). We find that the
mean frequencies of �J −�S and �S −�IceI vary by at most 2%
between the runs. Hence, we are confident that what we see in
our simplified three-planet model is not substantially different
from the full system.

The above results lead us to conclude that the eccentricity
drop seen in our full simulation is caused by the crossing of
the secular resonance identified above. This, in turn, leads to an
increase in the libration amplitude associated with the MMRs
between the planets, as shown in Figure 7. Although we argue
below that different secular resonances are involved in different
runs, a similar drop in Ice I’s eccentricity was observed in all
our systems. In some cases, this causes the planets to break out
of the MMRs, thereby forcing the system becoming unstable.
However, in other runs, the MMRs are not disrupted by the
secular resonance crossing. We believe that the difference is
likely related to the different phases at the time the secular
resonance is crossed.

While this argument naturally explains why some of our
systems are stable and others are not, it does not explain the
dynamical lifetimes we observe. Recall that we find that |dE/dt |
is a monotonically decreasing function of rin (Figure 4(b)).
If the identified secular resonance were responsible for all of
our unstable systems, we would expect a relationship between
the dynamical lifetime of our systems and |dE/dt | because the
smaller |dE/dt | the longer it would take to reach the resonance.
In Figure 6(b), we plot the dynamical lifetime of the 42 systems
shown in Figure 4. Recall that these runs include systems with
rin between 15.8 and 20 AU and disk masses between 25 and
150 M⊕, and have |dE/dt | that range over a factor of 30, yet
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there is no apparent relationship between dynamical lifetime
and |dE/dt |.

Therefore, we believe that the systems that evolve more
slowly (i.e., smaller |dE/dt |) are destabilized by crossing
different resonances that are weaker than the one described
above, but are crossed more slowly. Recall that the effect of
a resonance is not simply proportional to its strength (i.e., the
magnitude of the coefficient of its related harmonic term), but
increases if the resonance is crossed at a slower rate (up to
some adiabatic limit). Therefore, it is possible that a resonance
that does not have a significant effect when crossed at large
|dE/dt |, will provide a strong change to the orbits, possibly
leading to escape from the MMRs, if crossed at significantly
smaller |dE/dt |.

The probability that a system will go unstable in a given time
interval roughly scales as the number of potentially destabilizing
resonances that are crossed. Since the weak resonances are
more numerous than strong ones, the density of potentially
destabilizing resonances increases as |dE/dt | decreases, and
so the number crossed in a given amount of time could be
roughly independent of |dE/dt |. If true, we would not expect
any strong relationship between the physical parameters in the
model (which set |dE/dt |) and the dynamical lifetime of our
systems.

Finally, we need to consider whether these simulations
will eventually produce systems like the solar system. The
instability that our multi-resonant planetary system suffers is
quite likely to be more severe than that described in the original
Nice model, given that the initial interplanetary separations
are smaller in the present work. This was actually seen in
Morbidelli et al. (2007) and Batygin & Brown (2010), who
studied a large set of initial multi-resonant configurations,
starting from the time where the planets were extracted from
their resonances and until they effectively stopped migrating.
The statistics of their final systems suggest that multi-resonant
systems in which Jupiter and Saturn are initially in a 3:2 MMR,
have a ∼10%–30% probability to evolve into a four-planet
configuration that closely resembles our solar system. However,
the exact success rate varies from initial configuration to initial
configuration. Unfortunately, the configuration we chose to
study in this paper is not among their best cases. It is thus
clear that, in order to obtain proper statistics on final planetary
systems, we would need to study several initial planetary
configurations starting from the very beginning (as in the present
paper), using a number of clones for each configuration and
repeating for different values of the disk’s mass. Given that each
1 Gyr simulation that includes viscous stirring takes months of
CPU time, we decided to leave this matter for future work.

We note, however, that the exact way in which our unsta-
ble systems would evolve may be systematically different from
those seen in previous simulations. This is because our planetes-
imal disk is still far from the planets, when the latter are extracted
from their initial resonances. Thus, right after the instability sets
in, encounters between planets and planetesimals are scarce and
dynamical friction is weak. In the previous works the planets are
“adiabatically” extracted from their resonances by encounters
with planetesimals, hence their orbits are nearly circular when
they leave their resonances. In our case, the multi-resonant state
is suddenly broken by a secular resonance, and this leaves at
least one planet (Ice I) with a significant eccentricity. There-
fore, we cannot directly use the statistics from Morbidelli et al.
(2007) and Batygin & Brown (2010), but must wait until the
survey described in the last paragraph is complete.

4. CONCLUSIONS

In this paper, we have shown that a planet can irreversibly
exchange energy with a planetesimal disk even in the absence
of close encounters between planet and disk particles. We
demonstrated that, for this to happen, it is essential that the
viscous stirring in the disk is taken into account and the planet
is eccentric. This energy exchange is related to a new form
of gravitational friction that occurs through distant secular
interactions and not through a process of scattering.

If the giant planets of the solar system got trapped in a multi-
resonant configuration as a result of their convergent migration
in the gas disk, the innermost ice giant (Ice I) is expected to have
had an orbit with non-negligible eccentricity, unlike the other
three planets (Morbidelli et al. 2007). In this configuration, Ice
I would have lost energy if the system were surrounded by a
planetesimal disk consisting, in part, of Pluto-mass objects. The
resonances among the planets would have forced this energy
decay to increase Ice I’s eccentricity, thereby sustaining its
energy exchange with the disk. Eventually, these modifications
in orbital eccentricities might have turned the planetary system
unstable. In our simulations, the giant planets become unstable
after a time ranging between 300 Myr and 1 Gyr in ∼25% of
the cases, for a wide range of disk masses and locations of the
disk inner edge. This mechanism is therefore a powerful one
to explain the late instability of the giant planet system, related
to the trigger of the late heavy bombardment of the terrestrial
planets.

Together, the paper by Morbidelli et al. (2007) and this new
work, build a new version of the “Nice model.” This new
version, which we call Nice II, has distinct advantages over
the original version (Tsiganis et al. 2005; Gomes et al. 2005)
because: (1) it removes the arbitrary character of the initial
conditions by adopting a planetary configuration derived from
hydrodynamical simulations and (2) it removes the sensitive
dependence of the instability time on the location of the inner
edge of the disk. Indeed, a late instability seems to be a generic
outcome.

Our new dynamical coupling may also have important impli-
cations for extra-solar systems as well. Many observed planetary
systems contain planets in MMRs (Marois et al. 2008; Rivera
et al. 2010) with one another, while others appear to have under-
gone a global dynamical instability (Ford et al. 2001; Matsumura
et al. 2010). Our new coupling supplies a natural mechanism for
driving resonant systems unstable—thereby turning the former
into the latter.
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