
THE ASTROPHYSICAL JOURNAL, 567 :596È609, 2002 March 1
( 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

DYNAMICS AND ORIGIN OF THE 2:1 ORBITAL RESONANCES OF THE GJ 876 PLANETS

MAN HOI LEE AND S. J. PEALE

Department of Physics, University of California, Santa Barbara, CA 93106 ; mhlee=europa.physics.ucsb.edu, peale=io.physics.ucsb.edu
Received 2001 August 2 ; accepted 2001 November 6

ABSTRACT
The discovery by Marcy and coworkers of two planets in 2 :1 orbital resonance about the star GJ 876

has been supplemented by a dynamical Ðt to the data by Laughlin & Chambers, which places the
planets in coplanar orbits deep in three resonances at the 2 :1 mean-motion commensurability. The selec-
tion of this almost singular state by the dynamical Ðt means that the resonances are almost certainly
real, and with the small amplitudes of libration of the resonance variables, indeÐnitely stable. Several
unusual properties of the 2 :1 resonances are revealed by the GJ 876 system. The libration of both lowest
order mean-motion resonance variables and the secular resonance variable, h1\ j1[ 2j2 ] -1, h2\ j1and about 0¡ (where are the mean longitudes of the inner and outer[ 2j2] -2, h3\ -1[ -2, j1,2planet and are the longitudes of periapse) di†ers from the familiar geometry of the Io-Europa pair,-1,2where and librate about 180¡. By considering the condition that for stable simultaneoush2 h3 -5

1\ -5
2librations of and we show that the GJ 876 geometry results from the large orbital eccentricitiesh1 h2, e

i
,

whereas the very small eccentricities in the Io-Europa system lead to the latterÏs geometry. Surprisingly,
the GJ 876 conÐguration, with and all librating, remains stable for up to 0.86 and forh1, h2, h3 e1amplitude of libration of approaching 45¡ with the current eccentricitiesÈfurther supporting theh1indeÐnite stability of the existing system.

Any process that drives originally widely separated orbits toward each other could result in capture
into the observed resonances at the 2 :1 commensurability. We Ðnd that forced inward migration of the
outer planet of the GJ 876 system results in certain capture into the observed resonances if initially

and and the migration rate yr~1. Larger eccentric-e1[ 0.06 e2 [ 0.03 o a5 2/a2 o[ 3 ] 10~2(a2/AU)~3@2
ities lead to likely capture into higher order resonances before the 2:1 commensurability is reached. The
planets are sufficiently massive to open gaps in the nebular disk surrounding the young GJ 876 and to
clear the disk material between them, and the resulting planet-nebular interaction typically forces the
outer planet to migrate inward on the disk viscous timescale, whose inverse is about 3 orders of magni-
tude less than the above upper bound on for certain capture. If there is no eccentricity damping,o a5 2/a2 o
eccentricity growth is rapid with continued migration within the resonance, with exceeding thee

iobserved values after a further reduction in the semimajor axes of only 7%. With eccentricity dampinga
ithe eccentricities reach equilibrium values that remain constant for arbitrarily longe5
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migration within the resonances. The equilibrium eccentricities are close to the observed eccentricities for
K B 100 if there is migration and damping of the outer planet only, but for K B 10 if there is also
migration and damping of the inner planet. This result is independent of the magnitude or functional
form of the migration rate as long as Although existing analytic estimates of thea5
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e†ects of planet-nebula interaction are consistent with this form of eccentricity damping for certain disk
parameter values, it is as yet unclear that such interaction can produce the large value of K required to
obtain the observed eccentricities. The alternative eccentricity damping by tidal dissipation within the
star or the planets is completely negligible, so the observed dynamical properties of the GJ 876 system
may require an unlikely Ðne-tuning of the time of resonance capture to be near the end of the nebula
lifetime.
Subject headings : celestial mechanics È planetary systems È planets and satellites : general

1. INTRODUCTION

Marcy et al. (2001) have discovered two planets about the
nearby M dwarf star GJ 876. A preliminary Ðt of the stellar
radial velocity (RV) variations due to two unperturbed
Kepler orbits implies that the orbital periods of the two
planets are nearly in the ratio 2 :1. This resonance is an
analog to the orbital resonances among the satellites of
Jupiter and Saturn (e.g., Peale 1999), but it is the Ðrst to be
discovered among extrasolar planetary systems. Table 1
shows the system parameters from the Marcy et al. analysis
based on data taken at both the Keck and Lick Observa-
tories and an adopted stellar mass of 0.32 The orbitalM

_
.

periods are approximately 30 and 60 days. The reduced s2
statistic of indicates that the two-Kepler system issl2 \ 1.88
an adequate Ðt to the data. However, the rather large

minimum masses of the planets of 0.56 and 1.89 (JupiterMJmasses) mean that the two-Kepler Ðt may not be a good
determination of the system characteristics because the
large mutual perturbations will ensure that the orbits
deviate from Kepler orbits. In fact, substitution of the
Marcy et al. parameters from Table 1 (with sin i\ 1 for
both planets, where i is the inclination of the orbital plane
to the plane of the sky) into a calculation of the perturbed
orbital motions beginning at the speciÐed initial epoch
leads to large variations in the orbital elements that were
assumed constant in the Ðt. On the other hand, projecting
the orbital parameters in Table 1 to those at a di†erent
epoch within the time span of the data set leads to much less
variation in the orbital elements and apparent long-term
stability of the system (Marcy et al. 2001). For some choices
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TABLE 1

BEST-FIT ORBITAL PARAMETERS FOR THE GJ 876 PLANETS

DYNAMICAL FITa
TWO-KEPLER FITa

KECK ] LICK KECK, sin i\ 0.55 KECK ] LICK, sin i\ 0.78

PARAMETERb Inner Outer Inner Outer Inner Outer

M (MJ) . . . . . . 0.56/sin i 1.89/sin i 1.06 3.39 0.766 2.403
P (day) . . . . . . . 30.12 61.02 29.995 62.092 30.569 60.128
a (AU) . . . . . . . 0.130 0.208 0.1294 0.2108 0.1309 0.2061
e . . . . . . . . . . . . . . 0.27 0.10 0.314 0.051 0.244 0.039
- (deg) . . . . . . . 330 333 51.8 40.0 159.1 163.3
T (JD) . . . . . . . 2450091.6 2450091.6 2450602.09 2450602.09 2449679.63 2449679.63
M (deg) . . . . . . 0.0 [85.9 289 340 356 173

a Two-Kepler Ðt by Marcy et al. 2001 and dynamical Ðt using a Levenberg-Marquardt N-body integration
scheme by Laughlin & Chambers 2001.

b The parameters are the planetary mass M in terms of Jupiter mass the period P, the semimajor axis a,MJ,the orbital eccentricity e, the longitude of the periapse -, the epoch T , and the mean anomaly M. The stellar
mass is 0.32M

_
.

of epoch, the system is not in the 2:1 resonance, and it
eventually becomes unstable (Laughlin & Chambers 2001).
Clearly, a dynamical Ðt of system characteristics to the RV
observations is necessary to constrain the parameters that
deÐne an RV curve for GJ 876.

The publication of the data set by Marcy et al. (2001)
allowed Laughlin & Chambers (2001) to perform such a Ðt.
They assumed that the two planets are on coplanar orbits,
and used two methods to minimize as a function of thesl2initial system parameters. Starting with the two-Kepler Ðt, a
Levenberg-Marquardt minimization scheme driving an
N-body integrator was used to Ðnd a local minimum in sl2.A second method uses a genetic algorithm combined with a
simple model for the variations of the orbital elements due
to the 2:1 orbital resonance to search for the global
minimum in Both methods converged to similar solu-sl2.tions. The dynamical Ðts are sensitive to sin i, since the
determined masses (and perturbations) grow as i is
decreased. The best-Ðt solutions obtained using the
Levenberg-Marquardt method are included in Table 1 for
both the Keck ] Lick data and Keck data alone. The Keck
data are much more accurate than the Lick data, and the
solution for these data alone has a minimum withsl2\ 1.59
an rms scatter of 6.86 m s~1 for sin i\0.55. Although the
Lick data are less accurate than the Keck data, the longer
time span of observation that includes the Lick data may
give the better solution. The solution for the Keck] Lick
data has a minimum with an rms scatter ofsl2\ 1.46
13.95 m s~1 for sin i\0.78, but the minimum is broad,sl2with several nearby solutions giving nearly as good a Ðt.
The conclusion of Laughlin & Chambers is that the broad
minimum in allows probable values of 0.5\ sin i \ 0.8.sl2(Rivera & Lissauer 2001 examined mutually inclined orbits
and got similarly small values for several di†erent con-sl2Ðgurations, but they conÐrmed the Laughlin & Chambers
results for coplanar orbits.)

Figure 1 shows the trajectories of the motions for 3100
days (the average periapse precession period for both
planets) for the two Laughlin-Chambers best-Ðt solutions in
plots of versus where is the eccentricitye

j
sin h

j
e
j
cos h

j
, e

jof the jth planet (with j\ 1 and 2 for the inner and outer
planets, respectively),

h1\ j1 [ 2j2] -1 ,

h2\ j1 [ 2j2] -2 , (1)

are the two lowest order, eccentricity-type mean-motion
resonance variables at the 2 :1 commensurability, and j

jand are the mean longitude and longitude of periapse of-
jthe jth planet. The two Laughlin-Chambers solutions place

the system deep in both mean-motion resonances, with h1and librating about 0¡ with remarkably small ampli-h2tudes. The simultaneous librations of and about 0¡h1 h2mean that the secular resonance variable

h3\ -1[ -2 \ h1[ h2 (2)

also librates about 0¡. Although the parameters will be
more tightly deÐned as more data is acquired, the almost
singular nature of the low-amplitude librations indicates

FIG. 1.ÈSmall-amplitude librations of the two 2:1 mean-motion reso-
nance variables, and about 0¡h1\ j1[ 2j2] -1 h2\ j1[ 2j2] -2,for the GJ 876 planets. Trajectories for 3100 days (the average periapse
precession period for both planets) are shown in plots of vs.e

j
sin h

jfor the Laughlin & Chambers (2001) best-Ðt solutions to the Kecke
j
cos h

jdata alone and the combined Keck and Lick data.
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that the real system is most likely indeed locked in multi-
resonance librations at the 2:1 mean-motion commensur-
ability. This means that the line of apsides of the two orbits
are nearly aligned, with conjunctions of the two planets
always occurring very close to the periapse longitudes. The
resonance conÐguration ensures that the planets can never
make close approaches in spite of their large masses, and
barring external perturbations or an unreasonably high dis-
sipation of tidal energy in the planets, the system should be
stable for the lifetime of the star. In fact, we Ðnd that the
librations are stable even for amplitudes of the inner planet
resonance variable approaching 45¡ if we induce largerh1amplitudes of libration of the resonance variables by chang-
ing the initial value of the mean anomaly of the inner planet.
The existence of the mean-motion resonances means that
the assumption that the orbits are nearly coplanar should
be correct, and such coplanarity is consistent with the accre-
tion of planetary bodies in a nebular disk surrounding the
forming star. We hereafter assume that the orbits are copla-
nar. Furthermore, there is not much to distinguish the two
Laughlin-Chambers solutions in Figure 1, and we assume
the parameters appropriate to the solution based on both
the Keck and Lick data.

Figure 2 shows the variations in the semimajor axes and
eccentricities of both planets for 104 days for the Laughlin-
Chambers Keck] Lick solution. The small-amplitude
librations of the resonance variables about 0¡ ensure that
both the eccentricities and the semimajor axes have little
variation in spite of the large mutual perturbations. This is
why the two-Kepler Ðt of Marcy et al. (2001) could produce
a Ðt that was not too bad.

The fact that both 2:1 mean-motion resonance variables
librate about 0¡ in Figure 1 contrasts with the geometry of
the Io-Europa 2:1 orbital resonances at Jupiter, where the
resonance variable involving IoÏs longitude of periapse, h1,
librates about 0¡, but the resonance variable involving

FIG. 2.ÈVariations in the semimajor axes, and and eccentricities,a1 a2,and of the GJ 876 planets for the Laughlin-Chambers Keck ] Licke1 e2,solution. The small-amplitude librations of the resonance variables ensure
that the semimajor axes and eccentricities have little variation.

EuropaÏs longitude of periapse, librates about 180¡ (e.g.,h2,Peale 1999). This means that in the Io-Europa case the lines
of apsides are anti-aligned, with the periapses 180¡ apart
(i.e., librates about 180¡). Conjunctions occur when Io ish3near periapse and Europa is near apoapse. In ° 2 we explain
why the GJ 876 and Io-Europa systems have di†erent reso-
nance conÐgurations by considering a condition for stable
simultaneous librations of the two mean-motion resonance
variables. In particular, the longitudes of periapse should
precess in the same direction at the same average rate, so
that the relative alignment of the lines of apsides is main-
tained. In the Io-Europa case, the orbital eccentricities are
sufficiently small that the precession rate is domi-d-

i
/dt

nated by a single term of lowest order in eccentricities and
containing The overall sign of the coefficient for thiscos h

i
.

term is \0 for i \ 1 (inner satellite) but [0 for i\ 2 (outer
satellite), and retrograde precessions of both satellites
require to librate about 0¡ and to librate about 180¡.h1 h2In the case of GJ 876, the eccentricities are sufficiently large
that there are large contributions to the precession rates
from higher order terms whose cosine arguments are linear
combinations of the resonance variables. Summing over all
contributing terms, coincident retrograde precessions of the
GJ 876 planets require both and to librate about 0¡.h1 h2If the orbits of the two planets about GJ 876 were orig-
inally much farther apart, with the ratio of their mean
motions considerably greater than 2:1, any process that
drives the orbits toward each other could lead to capture
into the 2:1 orbital resonances that we observe. In ° 3 we
describe a particular migration process due to the gravita-
tional interaction between the planets and the nebular disk
surrounding the young GJ 876. We note the simulations by
Bryden et al. (2000) and Kley (2000), which show that two
planets that are massive enough to open gaps individually
in the gas disk can rather quickly clear out the disk material
between them, if they are not separated too far. Disk
material outside the outer planet exerts torques on the
planet that are not opposed by disk material on the inside,
and the outer planet migrates toward the star on the disk
viscous timescale. Any disk material left on the inside of the
inner planet exerts torques on the inner planet that push it
away from the star. Thus, the condition of approaching
orbits necessary to form the resonances is established. We
discuss the e†ect of planet-nebula interaction on orbital
eccentricities and note that the GJ 876 system is in the
interesting regime where it is uncertain whether eccentricity
damping or growth is expected because of the rather large
planet :star mass ratio of the outer planet. (Although the
mass of the outer planet, for the Laughlin-ChambersM2,Keck] Lick solution is only 2.40MJ, M2/M0 \ 7.17
] 10~3 because the stellar mass M0\ 0.32M

_
.)

In ° 4 we present the results of a series of numerical orbit
integrations in which the orbits of the GJ 876 planets, ini-
tially far from the 2:1 mean-motion commensurability, are
forced to approach each other. (The numerical methods are
described in the Appendix.) We show that capture into the
two 2:1 mean-motion resonances and the secular resonance
is certain if the orbital eccentricities start reasonably small
and the rate of migration is not too fast. If there is no
eccentricity damping, the eccentricities of both planets
increase rapidly after resonance capture and exceed the
observed values after a very short migration of the reso-
nantly locked planets. Eccentricity damping of the form

where a dot over a symbol denotes d/dt ande5
i
/e

i
P a5

i
/a

i
, a5

i



No. 1, 2002 2:1 ORBITAL RESONANCES OF GJ 876 PLANETS 599

is the forced migration rate, leads to a termination in the
eccentricity growth, and the eccentricities reach equilibrium
values that remain constant for arbitrarily long migration
in the resonances. We Ðnd that signiÐcant eccentricity
damping with is required to produce theo e5
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i
o? o a5

i
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i
o

observed eccentricities of the GJ 876 system. In ° 5.1 we
show that alternative damping of the eccentricities by tidal
dissipation within the star or planets is insigniÐcant, and in
° 5.2 we discuss other related studies. Our conclusions are
summarized in ° 6.

2. COMPARISON WITH THE IO-EUROPA SYSTEM

As shown in Figure 1, the GJ 876 system has both lowest
order, eccentricity-type mean-motion resonance variables
at the 2 :1 commensurability, andh1 \ j1[ 2j2] -1and hence the secular resonance vari-h2\ j1[ 2j2] -2,able, librating about 0¡. This resonance con-h3\ -1[ -2,
Ðguration is di†erent from that of Io and Europa, where h2and librate about 180¡. It should be noted that the di†er-h3ences are not due to the additional resonances involving
Ganymede in the Io-Europa case. In the scenario in which
the resonances among the inner three Galilean satellites of
Jupiter are assembled by di†erential tidal expansion of the
orbits (Yoder 1979 ; Yoder & Peale 1981), Io is driven out
most rapidly, and the resonance variables involving Io and
Europa only are captured into libration Ðrst. These reso-
nance variables have the same centers of libration before
and after the 2 :1 commensurability between Europa and
Ganymede is encountered. The di†erences in the resonance
conÐgurations of GJ 876 and Io-Europa are instead due to
the magnitudes of the eccentricities involved and can be
understood from a condition for stable simultaneous libra-
tions of the two mean-motion resonance variables.

This condition for stable simultaneous librations of h1and is that the longitudes of periapse, and onh2 -1 -2,
average precess at the same rate. For coplanar orbits, the
equations for the variation of and in Jacobi coordi--

i
, a

i
, e

inates are (e.g., Peale 1986)
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@, M0is the mass of the star (or Jupiter), is the mass of the ithM
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and the disturbing potential

'\ [GM1M2
r12

[ GM0M2
A 1
r02

[ 1
r2

B
. (7)

If we neglect terms of order and higher and(M1/M0)2assume that ' can be expanded to the forma1\ a2,

'\ [GM1M2
a2

; C
klmn
j (b)e1@ k @`2m e2@ l @`2n cos /

jkl
, (8)

where

/
jkl

\ ( j [ k)j1[ ( j [ l)j2] k-1[ l-2 , (9)

and the summation is over the range 0 ¹ j¹ O,
[O ¹ k, l ¹ O, and 0 ¹ m, n ¹ O. The coefficient

where can be written in terms of theC
klmn
j (b), b \ a1/a2,Laplace coefficient and its derivatives (Brouwer &b1@2j (b)

Clemence 1961). For a given cosine argument the term/
jkl

,
lowest order in eccentricities is of the order of e1@ k @ e2@ l @ .Within the 2:1 mean-motion resonances and the secular
resonance, the perturbations are dominated by the terms
whose arguments are nearly Ðxed because of the resonances,
i.e., those terms involving the resonance variables h1, h2, h3,and their linear combinations. Since the terms in equation
(4) for and equation (5) for are proportional toda

i
/dt de

i
/dt

and and and appear in the cosineLH/Lj
i

LH/L-
i
, j

i
-

iarguments only, the cosines are changed into sines and
there is no secular change in and the forced if thea

i
e
iresonance variables and librate about either 0¡ orh1, h2, h3180¡. (Note, however, that if the eccentricities are not small

and and are not dominated by a single term,da
i
/dt de

i
/dt

there is also the possibility that the sums of all contributing
terms are zero for resonance variables having values other
than 0¡ and 180¡.)

We have calculated the contributions to the precession
rate from secular terms in equation (8) with argumentd-

i
/dt

of the form (including the k \ 0 nonresonant secularkh3term), up to fourth order in eccentricities, and from mean-
motion resonance terms with argument of the form kh1up to third order in eccentricities, and they[ lh2 (k D l),
are listed in Table 2. We set the resonance variables to their
average values, i.e., the libration center values. In addition,
we ignore the small deviation of b from 2~2@3 (since the
commensurability is not exact) and evaluate atC

klmn
j (b)

b \ 2~2@3. For Io and Europa, we adopt ande1\ 0.0026
which are the equilibrium eccentricities beforee2\ 0.0013,

the resonances with Ganymede are encountered in the tidal
scenario (Yoder & Peale 1981). The numerical values in
Table 2 are for the current semimajor axis of Io, but they
can be scaled to other values of the semimajor axis since the
precession rates are proportional to As we can see ina1~3@2.
Table 2, because the orbital eccentricities of Io and Europa
are small, the precession rate is dominated by a singled-

i
/dt

term of lowest order in the eccentricities. This is the term
with argument and proportional to in the disturbingh

i
e
ipotential (eq. [8]), and whose contribution to d-

i
/dt

is proportional to (eq. [3]). Since the coefficients1/e
iof the and terms aree1 cos h1 e2 cos h2 C10002 \[1.19

and respectively, retrograde precessionsC0~1001 \ ]0.43,
of both Io and Europa require andh1\ 0¡ h2\ 180¡.
Furthermore, the requirement that the regression rates
are identical implies a simple relationship between the
eccentricities :

bn1
M2
M0

C10002
e1

] -5
sec,1 \ [n2

M1
M0

C0~1001
e2

] -5
sec,2 ,

(10)

where is the mean motion, and the secular motionn
i

-5
sec,iincludes contributions from secular terms in the disturbing

potential and the additional secular motion induced by the
oblateness of Jupiter. As we can see in Table 2, the contribu-
tions from the secular terms in the disturbing potential and
even the secular motion induced by the oblateness of
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TABLE 2

COMPARISON OF CONTRIBUTION OF VARIOUS TERMS TO THE PERIAPSE PRECESSION RATES FOR THE

IO-EUROPA AND GJ 876 SYSTEMS

IO-EUROPA : GJ 876 PLANETS :
h1\ 0¡, h2\ h3\ 180¡ h1\ h2\ h3\ 0¡,
e1\ 0.0026, e2\ 0.0013 e1\ 0.255, e2\ 0.035

d-1/dt d-2/dt d-1/dt d-2/dt
TERMS ORDERa (deg day~1) (deg day~1) (deg day~1) (deg day~1)

cos kh3 . . . . . . . . . . . . . . e2 0.0034 0.0092 0.0374 [0.0470
e4 0.0000 0.0000 0.0032 [0.0080

cos (kh1[lh2 ) . . . . . . e1 [1.4832 [1.5778 [0.2503 0.1677
e2 0.0190 0.0820 0.1456 [0.3983
e3 [0.0002 [0.0011 [0.0809 0.2471

Total . . . . . . . . . . . . . . . . [1.46 [1.49 [0.145 [0.039
Actual . . . . . . . . . . . . . . . [0.116

a Terms of order with o k o] o l o] 2m] 2n \ N, in the disturbing potential (eq.e1@ k @`2m e2@ l @`2n,
[8]) are grouped together under order eN.

Jupiter (which is day~1 for IoÏs orbit) are small]0¡.12
compared with the day~1 precession inducedD[1¡.5
by the Ðrst-order mean-motion resonance terms with argu-
ments and Thus,h1 h2. e1/e2 B[b~1@2(C10002 /C0~1001 )

where the last equality is for the masses of(M2/M1)\ 1.9,
Io and Europa.

For GJ 876, we know from numerical orbit integration of
the Laughlin-Chambers Keck] Lick solution that on
average The numericald-1/dt \ d-2/dt \ [0¡.116 day~1.
values in Table 2 are obtained using e1\ 0.255, e2\ 0.035,
and which are the average values for thea1\ 0.130 AU,
Laughlin-Chambers Keck] Lick solution (see Fig. 2). As
we would expect from the analysis above for the Io-Europa
case, with the contributions to andh1\ h2\ 0¡, d-1/dt

from the and terms, respectively,d-2/dt e1 cos h1 e2 cos h2have opposite signs. However, because the eccentricities are
large, these terms no longer dominate the precession rates.
In particular, the largest contribution to comes fromd-2/dt
terms of second order in eccentricitiesÈthe largest of which
is the term, which is of the order ofe1 e2 cos (h1] h2)lower than the term, but whose coeffi-e1(\ 0.255) e2 cos h2cient is large and negative We can also(C1~1003 \ [4.97).
see from Table 2 that both and converge onlyd-1/dt d-2/dt
slowly with the order of the terms. With the inclu-kh1[ lh2sion of terms up to e3, the precession rates have the correct,
negative signs when but the magnitudeh1\ h2\ h3\ 0¡,
of the precession rate for the inner (outer) planet is signiÐ-
cantly larger (smaller) than that for both planets from
numerical orbit integration. Based on the magnitudes and
the alternating signs of the contributions from the lower
order terms, the expected contributions from the e4 (and
higher order) terms are consistent with their bringing the
results into agreement with the actual precession rates.
There is no simple analytic expression relating toe1 e2when the eccentricities are large, but as in the small eccen-
tricity limit, the eccentricities are related by the requirement
that the periapses precess at the same rate.

Although the analysis in this section is able to explain
why the GJ 876 and Io-Europa systems have di†erent reso-
nance conÐgurations, the slow convergence of the series for
moderate to large eccentricities means that it has limited
usefulness if one is interested in the more general question
of what stable conÐgurations are possible for di†erent

periapse precession rates and masses. A practical way to
investigate this latter question is through numerical migra-
tion calculations like those in ° 4.1, which drive a system
through a sequence of conÐgurations with di†erent precess-
ion rates. As we shall see, for systems with masses like those
in GJ 876, there are stable conÐgurations with andh1, h2, h3librating about 0¡ for (see Fig. 3). We have0.15[ e1[ 0.86
also found that conÐgurations with resonance variables
librating about angles other than 0¡ and 180¡ are possible
when the masses are di†erent from those in GJ 876 ; these
conÐgurations will be discussed in a subsequent paper.

3. MIGRATION SCENARIO FOR ORIGIN OF RESONANCES

We now turn to the question of the origin of the two 2:1
mean-motion resonances and the secular resonance in the
GJ 876 system. A scenario for the origin of this resonance
conÐguration is that it was assembled by di†erential migra-
tion of orbits that were initially much farther apart. We
shall see in ° 4 that libration of all three resonance variables
is easily established by any process that drives the orbits
toward each other. Although the results presented in ° 4 are
quite general, they will be interpreted in the context of a
particular di†erential migration process, namely, via the
gravitational interaction between the planets and the
nebula from which they form.

It is generally accepted that planets form in a disk of gas
and dust that surrounds a young star. Since the two planets
around GJ 876 are of the order of Jupiter mass and are
presumably gas giants, they must have formed within the
lifetime of the gas disk. If a planet is sufficiently massive, the
torques exerted by the planet on the gas disk can open an
annular gap in the disk about the planetÏs orbit. The condi-
tions for gap formation are that the Roche radius of the
planet, exceeds the scale height H of therR\ (M/3M0)1@3a,
disk, or equivalently,

M/M0Z 3(H/a)3\ 3.75] 10~4
AH/a
0.05
B3

, (11)

and that the viscous condition

M
M0

Z
40l
)a2\ 40a

AH
a
B2\4]10~4

A a
4]10~3

BAH/a
0.05
B2

(12)
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is satisÐed (e.g., Lin & Papaloizou 1993). In the above equa-
tions, M and are the masses of the planet and the star,M0respectively, a is the semimajor axis of the planetÏs orbit, )
is the angular Kepler speed at a, and the kinematic viscosity
l is expressed using the Shakura-Sunyaev a prescription :
l\ aH2). Since the planet :star mass ratios of the planets
around GJ 876 are andM1/M0\ 2.28] 10~3 M2/M0\
7.17] 10~3, these planets are expected to open gaps indi-
vidually during their growth to their Ðnal masses if their
orbits are sufficiently far apart, unless orH/a Z 0.09
a1@2(H/a)Z 7.5] 10~3.

The numerical values a \ 4 ] 10~3 and H/a \ 0.05 are
typical of models of protoplanetary disks (e.g., Bryden et al.
2000 ; Kley 2000 ; Papaloizou, Nelson, & Masset 2001).
Hartmann et al. (1998) have also inferred from observed
properties of T Tauri disks that a D 10~2. The most prom-
ising source of an e†ective viscosity in accretion disks is
magnetohydrodynamic (MHD) turbulence initiated and
sustained by the magnetorotational instability, which is
capable of producing an e†ective a as large as 0.1 (e.g., Stone
et al. 2000). However, protoplanetary disks are probably
too weakly ionized for MHD turbulence to develop fully,
except at small radii AU) and possibly in a layer near([0.1
the surface of the disk at larger radii (Gammie 1996).
Another possible source of e†ective viscosity is damping of
density waves excited by many small (of the order of Earth
mass) planets, which is capable of producing an e†ective

(Goodman & RaÐkov 2001).a [ 10~3
Bryden et al. (2000) and Kley (2000) have performed

hydrodynamic simulations of a system consisting of a
central star, a gas disk, and two planets. The planets are
massive enough to open gaps individually,(M/M0B 10~3)
and the ratio of their initial semimajor axes is a1/a2B 1/2.
They found that the planets clear out nearly all of the
nebular material between them in a few hundred orbital
periods. Then the torques exerted by the nebular material
outside the outer planet drives that planet toward the star,
whereas any nebular material left on the inside of the inner
planet drives that planet away from the star. The depletion
of the inner disk means that the inner planet may not move
out very far, but the net e†ect is always to drive the orbits of
two massive planets toward each other. The timescale on
which the planets migrate is the disk viscous timescale,
whose inverse is (Ward 1997)

K a5
a
K
B

3l
2a2 \ 3

2
a
AH

a
B2

)\ 5.3] 10~5
A a
4 ] 10~3

B

]
AH/a
0.05
B2A M0

0.32 M
_

B1@2A a
AU
B~3@2

yr~1 , (13)

where a dot over a symbol denotes d/dt.
In addition to its e†ect on the semimajor axis, planet-

nebula interaction can also a†ect the orbital eccentricity of
a planet (e.g., Goldreich & Tremaine 1980 ; Artymowicz
1992, 1993 ; Papaloizou et al. 2001). A planet interacts with
a disk in the vicinity of Lindblad and corotation resonances.
The leading contribution to is due to Lindblad resonancesa5
with the l\ m Fourier components of the planetÏs pertur-
bation potential. (The indices l and m for the Fourier series
in time and azimuthal angle in this context should not be
confused with l and m in eq. [8].) For a planet orbiting in a
disk gap, the so-called co-orbital Lindblad and corotation
resonances are not important, and the leading contribu-

tions to are damping due to l \ m^ 1 corotation reso-e5
nances and excitation due to l \ m[ 1 outer and l\ m] 1
inner Lindblad resonances. The net e†ect of the corotation
resonance damping and the Lindblad resonance excitation
depends on the distribution of the nebular material, which
is itself determined by the interaction with the planet. If the
gap is not too wide and many resonances of both types are
present, previous calculations indicate that there is net
eccentricity damping. For example, if we consider an outer
disk of constant surface mass density & that extends radially
from a ] * to O, with *> a, then integration of
equations (30) and (31) of Goldreich & Tremaine (1980)
yields

e5
e
\ [0.116

AM
M0

BA&a2
M0

BAa
*
B4

) , (14)

a5
a

\ [1.67
AM
M0

BA&a2
M0

BAa
*
B3

) . (15)

(Note that the above equations are identical to eqs. [109]
and [110] of Goldreich & Tremaine, where they set *\
2a/3mmax.)In the case of GJ 876, since the planets clear out nearly all
of the nebular material between them and the inner disk is
likely to be depleted, the dominant resonant interactions
are expected to be those between the outer disk and the
outer planet. However, the estimate given by equation (14)
for is not adequate because, in addition to the fact that thee5
mass distribution near the inner edge of the outer disk is not
modeled properly, the outer planet is sufficiently massive
that only a few low-m resonances are likely to be present in
the disk. In fact, if the outer planet is able to open a gap out
to the 2:1 commensurability, there would be no corotation
resonances and only one Lindblad resonance with
l \ m[ 1 \ 1 at the 3:1 commensurability, and there
would be eccentricity growth instead of damping
(Artymowicz 1992). (In addition, the disk can become
eccentric and the growth of the planetÏs orbital eccentricity
can be enhanced by the interaction with the eccentric disk, if
the planetary mass is comparable to a characteristic mass of
the disk ; Papaloizou et al. 2001.) From a comparison of the
resonant and viscous torques, an approximate condition for
opening a gap out to the 2:1 commensurability is
(Artymowicz 1992 ; Lin & Papaloizou 1993)

M
M0

Z 2.8a1@2
AH

a
B

\ 8.9] 10~3
A a
4 ] 10~3

B1@2AH/a
0.05
B

.

(16)

Since the planet :star mass ratio of the outer planet around
GJ 876 is and close to the criticalM2/M0\ 7.17] 10~3
value in equation (16), without knowing the exact values of
the disk parameters, it is unclear whether one should expect
eccentricity damping or growth. However, as we shall see in
° 4, signiÐcant eccentricity damping with iso e5 /e o? o a5 /a o
required to produce the observed eccentricities of the GJ
876 system, unless the migration after resonance capture is
severely limited. Therefore, at least the condition of equa-
tion (16) must not be satisÐed, implying that

a1@2
AH

a
B

Z
0.36M2

M0
\ 2.6] 10~3

A M2/M0
7.17] 10~3

B
(17)
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for the outer disk of the young GJ 876 system. A more
detailed analysis using hydrodynamic simulations is neces-
sary to determine whether sufficient eccentricity damping
can be produced by such an outer disk.

4. NUMERICAL RESULTS FOR MIGRATION SCENARIO

In this section we present the results of a series of numeri-
cal orbit integrations designed to determine the conditions
under which the dynamical properties of the current GJ 876
system could be produced by any process (such as the
planet-nebular interaction discussed in ° 3) that drives the
orbits of the two planets toward each other. We consider a
system consisting of a central star and two planets, where
the stellar and planetary masses are those for the Laughlin-
Chambers Keck] Lick solution (Table 1). Unless stated
otherwise, the planets are initially on coplanar, circular
orbits, with the mean longitudes di†ering by 180¡ and the
ratio of the semimajor axes far from the 2:1a1/a2\ 1/2,
mean-motion commensurability.

In addition to the mutual gravitational interactions of the
star and the planets, we force the osculating semimajor axis
of planet i to migrate at a rate In most cases, we assumea5

i
.

that only the outer planet is forced to migrate inward, with
a migration rate of the form The e†ects ofa5 2/a2\ constant.
adopting a more general form of the migration rate (e.g.,

being a function of or forcing the inner planet toa5 2/a2 a2)migrate outward are discussed in ° 4.2. For the calculations
in ° 4.2, we also damp the osculating eccentricity at a rate e5

i
.

We adopt a damping rate of the form e5
i
/e

i
\ [K o a5

i
/a

i
o ,

where K is a positive constant. As we shall see, this form of
eccentricity damping has the convenient property that the
eccentricities reach equilibrium values after capture into the
2:1 resonances. We note that the relation is valide5 /eP a5 /a
for the simple estimates of equations (14) and (15) for the
interaction of a massive planet with an outer disk if */
a B constant and that the same relation between the
damping and migration rates also holds for a planet that is
too small to open a gap in a gas disk with constant H/a and
undergoes the so-called type I migration (Artymowicz 1993 ;
Ward 1997).

The numerical orbit integrations were performed using
the symplectic integrator SyMBA (Duncan, Levison, & Lee
1998) modiÐed to include the orbital migration and eccen-
tricity damping terms. SyMBA is based on a variant of the
Wisdom-Holman (1991) method and employs a multiple
time step technique to handle close encounters. (The latter
feature is not essential for the integrations presented here.)
We conÐrmed the results by repeating some of the integra-
tions using a Bulirsch-Stoer integrator that has also been
modiÐed to include migration and damping. We also
checked that both modiÐed integrators give the correct
exponential decays in a and e when they are used to inte-
grate the orbit of a single planet with anda5 /a \ constant

We describe how the integrators were modi-e5 /e\ constant.
Ðed in the Appendix.

4.1. Migration without Eccentricity Damping
We consider Ðrst inward migration of the outer planet

without eccentricity damping. In Figure 3 we show the
results of a calculation with anda1\ 0.5 AU a2\ 1.0 AU
initially and The migration ratea5 2/a2\ [5 ] 10~5 yr~1.
is consistent with that due to planet-nebular interaction at
D1 AU (eq. [13]). Figure 3a shows the time evolution of the
semimajor axes and eccentricities, and Figure 3b shows the

evolution of the two 2:1 mean-motion resonance variables,
and in plots of versus Initially, onlyh1 h2, e

i
sin h

i
e
i
cos h

i
.

the outer planet migrates inward at the prescribed rate.
When the 2:1 mean-motion commensurability is encoun-
tered, both and (and hence the secular resonance vari-h1 h2able are captured into libration about 0¡. We do not seeh3)libration of and about 180¡, which is expected forh2 h3small eccentricities (see ° 2), because the planetary masses
are so large that fairly large eccentricities (with reachinge1about 0.15) are generated before the 2:1 commensurability
is encountered. Because of the forced migration, the centers
of libration are actually slightly o†set from 0¡. The resulting
resonant interaction slows down the migration of the outer
planet and forces the inner planet to migrate inward, while
keeping the ratio of the semimajor axes nearly constant

it also causes the eccentricities to increase(a1/a2B 2~2@3) ;
rapidly. The centers of libration remain near 0¡ and the
amplitudes of libration remain small as the eccentricities
increase.

The sequence of conÐgurations with increasing eccentric-
ities that the system is driven through after resonance
capture is in fact a sequence with increasingly less negative
periapse precession rates. As we discussed in ° 2, the forced
eccentricities (and the libration centers) for a system with
stable simultaneous librations of and are determinedh1 h2by the requirement that the longitudes of periapse on
average precess at the same rate (which in turn is deter-
mined by Although a longer integra-j5 1[ 2j5 2] -5

i
\ 0).

tion indicates that the system does eventually become
unstable when the existence of stably libratinge1B 0.86,
conÐgurations with up to 0.86 is remarkable. In particu-e1lar, the conÐgurations with have progradee1Z 0.71
periapse precessions. We have integrated the conÐgurations
at t \ 2 ] 104 yr (with and retrograde periapsee1 B 0.59
precessions) and 5 ] 104 yr (with and progradee1B 0.81
periapse precessions) forward with migration turned o† and
conÐrmed that the system remains stable with seemingly
indeÐnitely repeating conÐgurations.

As we can see in Figure 3a, without eccentricity damping,
the eccentricities exceed the observed values for the GJ 876
planets (dashed lines) when the semimajor axes of the reso-
nantly locked planets have decreased by only B7% after
capture into the resonances. This result is insensitive to the
adopted parameters. If the migration rate is not too fast (see
below), the evolution of a system with di†erent initial a2(but for convenience, the same or is essentiallya1/a2) a5 2/a2identical to that shown in Figure 3 if we plot the semimajor
axes in units of initial and time in units ofa2 (a5 2/a2)~1.
Therefore, unless by coincidence resonance capture occurs
just before migration stops because of, e.g., nebula dispersal,
eccentricity damping is necessary to produce the observed
eccentricities of the GJ 876 system.

From a set of calculations similar to that shown in Figure
3, with initial 2, and 4 AU, and di†erenta1/a2\ 1/2, a2\ 1,

we Ðnd that certain capture of both 2:1 mean-a5 2/a2,motion resonance variables requires

K a5 2
a2

K
[ 3 ] 10~2

A a2
AU
B~3@2

yr~1 , (18)

where is the semimajor axis of the outer planet when thea22:1 commensurability is encountered. For migration rate
within a factor of a few of, but below, the above limit, both
resonance variables are captured into libration, but the
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FIG. 3.È(a) Time evolution of the semimajor axes and eccentricities and (b) evolution of the mean-motion resonance variables andh1\ j1[ 2j2] -1in plots of vs. for a calculation where the outer planet is forced to migrate inward with andh2\ j1[ 2j2] -2 e
i
sin h

i
e
i
cos h

i
a5 2/a2\[5 ] 10~5yr~1

there is no eccentricity damping. Both and are captured into small-amplitude libration about 0¡, but the eccentricities exceed the observed values for theh1 h2GJ 876 planets (dashed lines) shortly after resonance capture, when the semimajor axes of the resonantly locked planets decrease by only B7%.

centers of libration can be signiÐcantly di†erent from 0¡ and
the amplitudes of libration can be large. The condition of
equation (18) is satisÐed by a migration rate due to planet-
nebular interaction with the nominal parameter values in
equation (13) by almost 3 orders of magnitude.

To examine the e†ects of orbital eccentricities on capture
into the 2:1 resonances, we performed a series of calcu-
lations with nonzero initial eccentricities. Four types of
initial conditions were considered : the outer planet was ini-
tially at either periapse or apoapse, and either the initial e1or was Ðxed at 0.01, while the other initial eccentricitye2was varied. The inner planet was always started at periapse,
with its mean longitude di†ering from that of the outer
planet by 180¡, and the remaining parameters were identical
to those used in the calculation shown in Figure 3. Since
gravitational interaction between the planets causes the
eccentricities to Ñuctuate even when and are close toa1 a2their initial values, the eccentricities quoted below are the
maximum eccentricities when and are close to theira1 a2initial values and not the initial eccentricities. We Ðnd that
certain capture of both 2:1 mean-motion resonance vari-
ables requires

e1[ 0.06 and e2 [ 0.03 . (19)

For eccentricities above these limits, there is nonzero
probability for the planets to be captured into higher order
resonances (e.g., 5 :2) encountered before the 2:1
commensurability.

4.2. Migration with Eccentricity Damping
Figure 4 shows the results of a calculation similar to that

shown in Figure 3, but with eccentricity damping of the

form where K \ 100. The capture ofe5 2/e2 \[K o a5 2/a2 o ,
the resonance variables and into libration about 0¡h1 h2and the initial evolution after resonance capture are similar
to the case without damping. However, the eccentricity
growth eventually terminates when the damping balances
the excitation due to resonant interaction between the
planets. The eccentricities reach equilibrium values that
remain constant for arbitrarily long migration in the reso-
nances. With K \ 100, the equilibrium eccentricities are
close to the observed eccentricities of the GJ 876 system. At
the end of the calculation shown in Figure 4, when
t \ 4.6] 104 yr, the semimajor axes are also similar to
those of the GJ 876 planets.

We have integrated the conÐguration at the end of the
calculation shown in Figure 4 forward with migration and
damping turned o†. The system remains stable, with almost
no change in the amplitudes of libration (compare Figs. 4b
and 5), which are somewhat smaller than those of the GJ
876 system (compare Figs. 1 and 5). Although the libration
amplitudes are fairly similar in the two Laughlin-Chambers
best-Ðt solutions, we may Ðnd in the future, as more data is
acquired, that improved best-Ðt solutions will have smaller
libration amplitudes. Alternatively, larger amplitudes could
be generated after termination of migration and damping
by encounters with remaining planetesimals.

In Figure 6 we show the time evolutions of the eccentric-
ities for a set of calculations with a5 2/a2\ [5 ] 10~5 yr~1,

and di†erent K. The equilibriume5 2/e2\[K o a5 2/a2 o ,
eccentricities decrease with increasing K and are signiÐ-
cantly di†erent from the observed eccentricities of the GJ
876 system if K is more than a factor of 2È3 larger or
smaller than K \ 100.
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FIG. 4.ÈSame as Fig. 3, but for a calculation with eccentricity damping of the form where K \ 100. After resonance capture, ine5 2/e2\[K o a5 2/a2 o ,
addition to librations of and about 0¡, the eccentricities reach equilibrium values close to the observed values for the GJ 876 planets (dashed lines) andh1 h2remain constant for arbitrarily long migration in the resonances. (The jagged nature of the plot in panel b prior to equilibrium is due to sparse sampling.)

As long as where K is a positivee5 2/e2 \[K o a5 2/a2 o ,
constant, the equilibrium eccentricities are determined by
the value of K only and are insensitive to either the magni-
tude or functional form of This is demonstrated ina5 2/a2.

FIG. 5.ÈContinued small-amplitude librations of the mean-motion
resonance variables and after termination of planet migration andh1 h2eccentricity damping. The conÐguration at the end of the calculation
shown in Fig. 4 is integrated forward for 500 yr with migration and
damping turned o†.

Figure 7, where we plot the results of a calculation with the
same K( \ 100) as that shown in Figure 4 but with a di†er-
ent form of the migration rate : ora5 2\ constant a5 2/a2P

The equilibrium eccentricities are identical in Figures1/a2.

FIG. 6.ÈDecrease of the equilibrium eccentricities with increasing
eccentricity damping rate. Time evolutions of the eccentricities for a set of
calculations with and dif-a5 2/a2\ [5 ] 10~5yr~1, e5 2/e2\[K o a5 2/a2 o ,
ferent K are shown.
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FIG. 7.ÈExample demonstrating that the equilibrium eccentricities are
determined by the ratio of damping to migration rates, K, and do not
depend on the functional form of the migration rate. The results of a
calculation with the same ratio (K \ 100) as that shown in Fig. 4, but with
a di†erent form of the migration rate constant) are shown.(a5 2\

FIG. 8.ÈTime evolution of the semimajor axes and eccentricities for a
calculation in which the inner planet is also forced to migrate outward,
with and K \ 10.a5 1/a1\ [a5 2/a2\ 5 ] 10~5yr~1, e5

i
/e

i
\[K o a5

i
/a

i
o ,

Even with eccentricity damping of both planets, K B 10 is required to
produce the observed eccentricities of the GJ 876 planets (dashed lines).

4 and 7. If is not exactly proportional to thee5 2/e2 o a5 2/a2 o ,
eccentricities would decrease slowly (after reaching maxima)
or increase slowly as the resonantly locked planets migrate,
but the ratio of damping to migration rates,

just before migration and damping stopo (e5 2/e2)/(a5 2/a2) o ,should be close to 100 for the Ðnal eccentricities to be close
to the observed values of the GJ 876 system.

Thus far we have considered forced inward migration of
the outer planet only. This is the most likely situation in the
planet-nebular interaction scenario discussed in ° 3, since
the inner disk is likely to be depleted and the dominant
interactions are expected to be those between the outer disk
and the outer planet. However, if the inner disk is not
depleted, at least initially, or migration and damping are
due to another process, the inner planet may also be forced
to migrate outward. In Figure 8 we show the results of a
calculation where, for simplicity, the inner planet is forced
to migrate outward at the same rate that the outer planet is
forced to migrate inward (a5 1/a1\ [a5 2/a2\ 5 ] 10~5
yr~1) and Initially, the inner (outer)e5

i
/e

i
\ [K o a5

i
/a

i
o .

planet migrates outward (inward) at the prescribed rate.
After resonance capture, resonant interaction overcomes
the forced outward migration of the inner planet, and
both planets migrate inward slowly. The equilibrium eccen-
tricities are close to the observed eccentricities of the GJ 876
system when K \ 10. Therefore, even with eccentricity
damping of both planets, signiÐcant eccentricity damping
with is required to produce the observedo e5

i
/e

i
o? o a5

i
/a

i
o

orbital eccentricities of the GJ 876 planets.

5. DISCUSSION

5.1. Eccentricity Damping by T idal Dissipation in the
Star and Planets

We have found in ° 4 that signiÐcant eccentricity
damping with is required to produce theo e5

i
/e

i
o? o a5

i
/a

i
o

observed eccentricities of the GJ 876 system if the migration
has been at all extensive after resonance capture. As we
discussed in ° 3, it is as yet unclear whether sufficient
damping could be produced by planet-nebula interaction,
even if the condition of equation (17) is satisÐed and eccen-
tricity damping is expected (see also ° 5.2). In this subsection
we show that alternative eccentricity damping by tidal dissi-
pation within the star and planets during planet migration
is completely negligible.

The star GJ 876 would most likely still be in its preÈmain-
sequence contracting phase during disk evolution and
planet migration. To estimate the rate of circularization of
an orbit due to tidal dissipation in the star, we use the
stellar radius when the time t since initial contraction
is approximately the migration timescale of o a/a5 o\ 2
] 104 yr (eq. [13]) and keep the planets at their current
distances from the star. The planets would have migrated
for longer than the migration timescale (see, e.g., Fig. 4) and
it would take time for the planets to form. But by adopting
this minimum time to yield the maximum probable stellar
radius and by keeping the planets at their current distances,
we maximize our estimate of the tidal rate of circularization
of an orbit.

Since the mass of GJ 876 is only 0.32 we assume thatM
_

,
GJ 876 follows the nearly vertical Hayashi track in the HR
diagram and remains fully convective during its contracting
phase. Hence, the star remains a polytrope of index n \ 1.5,
with e†ective temperature (e.g., DÏAntona &T

e
B 3500K
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Mazzitelli 1994). From the virial theorem, the stellar
luminosity

L \ 4nR02 pT
e
4\ 1

2
d
dt
A 3
5 [ n

GM02
R0

B
\ [3

2(5 [ n)
GM02
R02

dR0
dt

,

(20)

where p is the Stefan-Boltzmann constant, G is the gravita-
tional constant, and are the stellar mass and radius,M0 R0and the form of the gravitational energy for a polytrope of
index n is given by Chandrasekhar (1939). Integration
of equation (20), with 3/[2(5[ n)]\ 3/7 for a polytrope
of index n \ 1.5, gives afterR0B 3.85] 1011 cm
t \ 2 ] 104 yr, leading to a ratio of the stellar radius to the
orbital semimajor axis for the inner planetR0/a B 0.197
and for the outer planet.R0/a B 0.125

Since the present orbital period of the inner planet of the
GJ 876 system is about 30 days, which is long compared to
the periods of free oscillation of the star, we can use the rate
for circularizing an orbit corresponding to dissipation
dominated by the equilibrium tide for the star, which is
given by (Zahn 1989)

1
tcirc

\
K e5
e
K
\ 21q(1] q)

jcirc
t
f

AR0
a
B8

, (21)

where is the planet :star mass ratio andq \ M/M0 t
f
\

We neglect the reduction of the turbulent vis-(M0R02/L )1@3.
cosity when the tidal period is short compared to the turn-
over time of the largest convective eddies and adopt the
maximum for a fully convective star. Substitut-jcirc B 0.048
ion of from the previous paragraph, along with q forR0/athe Laughlin-Chambers Keck] Lick solution (Table 1),

and intot
f
\ (M0/4npT

e
4)1@3 B 0.574 yr, jcirc B 0.048,

equation (21) gives

1

tcirc
B4

5
6
0
0
9.1]10~9 yr~1 for the inner planet ,
7.6]10~10 yr~1 for the outer planet .

(22)

Since we have assumed that the planets are at their closest
proximity to the star for the whole time the tidal e†ects are
damping the eccentricities and that the star is inÑated to a
maximum size, these values are extreme upper bounds on
the rate of eccentricity damping by tides raised on the star.
Even in its inÑated state, the dissipation in the star can have
essentially no e†ect on the orbital eccentricities.

The theoretical circularization rate in equation (21) has
been tested by comparing with the observed circularization
rates of binaries. It is in good agreement with the observed
rates for binaries containing giant stars (Verbunt &
Phinney 1995), but even with the maximum it is aboutjcirc,50È100 times slower than the observed rates for binaries
containing main-sequence solar-type stars, which have radi-
ative cores (Claret & Cunha 1997 ; Goodman & Oh 1997). It
is not yet clear why there is a discrepancy in the latter case
or that this discrepancy is relevant for a fully convective
preÈmain-sequence star. Nevertheless, even if we increase
the circularization rates in equation (22) by a factor of 100,
they are still much smaller than the migration rate due to
planet-nebula interaction.

Tidal dissipation within a gaseous planet damps its
orbital eccentricity at a rate given by (e.g., Peale, Cassen, &

Reynolds 1980)

K e5
e
K
\ 21

2
k2
qQ

2n
P
AR

a
B5

, (23)

where R, and Q are the radius, the potential Lovek2,number, and the dissipation function of the planet. If we
adopt values for R, and Q similar to those of Jupiter,k2,with R\ 7 ] 104 km, (Gavrilov & Zharkovk2\ 0.38
1977), and Q\ 5 ] 104 (which is approximately the lower
bound on Q for Jupiter ; Yoder & Peale 1981), o e5 /e oB 1.5
] 10~12 yr~1 for the inner planet of the GJ 876 system.
The rate for damping the outer planetÏs orbital eccentricity
from dissipation within itself is of course even smaller. The
planets would most likely be larger and contracting during
their migration. However, unless the planetary radii are
unrealistically large and comparable to the Roche radii, the
eccentricity damping rate due to tidal dissipation within the
planets is smaller than the migration rate due to planet-
nebula interaction by several orders of magnitude.

5.2. Other Studies
After completing our calculations (Lee & Peale 2001),

two papers with complementary calculations came to our
attention (Snellgrove, Papaloizou, & Nelson 2001 ; Murray,
Paskowitz, & Holman 2001).

Snellgrove et al. (2001) also Ðnd from numerical orbit
integrations with forced migration and eccentricity
damping of the outer planet that the orbital eccentricities of
the GJ 876 planets require a short timescale for eccentricity
damping compared to the migration timescale. Note,
however, that they adopt the minimum planetary masses
from the two-Kepler Ðt by Marcy et al. (2001) and, not
surprisingly, have difficulties matching both and frome1 e2their calculations to those from the same Ðt, since the eccen-
tricities from the two-Kepler Ðt are not consistent with
small-amplitude simultaneous librations of and Snell-h1 h2.grove et al. also develop an analytic resonance theory that is
Ðrst order in the eccentricities. As we showed in ° 2, a Ðrst-
order theory is inadequate for understanding the current GJ
876 resonance conÐguration, which has and allh1, h2, h3librating about 0¡. Furthermore, as we found in ° 4 (see, e.g.,
Fig. 3), because the eccentricities are excited to large values
in the GJ 876 evolution before resonance capture, there is
no time during the evolution when a Ðrst-order theory can
be useful for this system. Thus, all predictions coming from
this theory should be viewed with caution. Snellgrove et al.
also present a hydrodynamic simulation of the planet-
nebula interaction, where both planets are inside a cavity
with almost no disk material. At the end of this simulation,

and the semimajor axes of the planets havee1B 0.34
decreased by about 13% since resonance capture. We have
performed a numerical orbit integration without eccentricity
damping similar to that shown in Figure 3 but with the
planetary masses adopted by Snellgrove et al. and Ðnd that

for the same reduction in semimajor axes. Thus, ite1B 0.38
is not clear that the eccentricities have reached equilibrium
values at the end of this simulation ; even if they have, these
equilibrium values are too large for the GJ 876 system. It
appears that the disk model used in this hydrodynamic
simulation is not very e†ective in damping the eccentricities,
which emphasizes the uncertainty in such damping.

Murray et al. (2001) consider mainly an alternative sce-
nario in which the migration and eccentricity damping of
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the outer planet are due to scattering of planetesimals in the
disk population. Their numerical simulations conÐrm our
results (and those of Snellgrove et al. 2001) of easy capture
of an inner planet into resonance, the dual migration of
both planets in the resonance, and the growth of the eccen-
tricities, although they limit their numerical and analytical
studies to an outer planet of Jupiter mass and inner planets
of several Earth masses and devote much of the discussion
to resonances of higher order than those at the 2:1 mean-
motion commensurability. Thus, their results are not
directly applicable to the GJ 876 system.

6. CONCLUSIONS

Radial velocity measurements by Marcy et al. (2001) have
revealed two planets in resonant orbits about the star GJ
876. The remarkable orbital Ðt obtained by Laughlin &
Chambers (2001), which Ðnds both lowest order,
eccentricity-type mean-motion resonance variables at the
2 :1 commensurability librating with small amplitudes,
means that the resonances are almost certainly real and
indeÐnitely stable. The existence of the eccentricity-type
resonances implies that the assumed coplanarity of the
orbits is probably close to reality.

The GJ 876 planetary system has revealed properties of
the 2 :1 orbital resonances that have not been observed nor
analyzed before. The libration of both lowest order mean-
motion resonance variables, andh1\ j1[ 2j2] -1 h2\

and the secular resonance variable,j1[ 2j2] -2, h3\ -1about 0¡ was not anticipated, since the familiar Io-[ -2,Europa 2:1 resonance has librating about 0¡, but andh1 h2librating about 180¡Èa conÐguration that would persisth3in the absence of Ganymede. Thus conjunctions for the
Jovian satellites occur when Io is near periapse and Europa
is near apoapse, whereas conjunctions of the two planets
about GJ 876 occur when both planets are near periapse.
We understood this to be mainly a function of the eccentric-
ities of the orbits, where the resonance conÐguration with

and must obtain when the eccen-h1B 0¡ h2Bh3 B 180¡
tricities are small, but the resonance conÐguration with

prevails for a system with masses likeh1Bh2B h3B 0¡
those in GJ 876 when the eccentricities are large. A neces-
sary condition for stable simultaneous librations of both
mean-motion resonance variables is that on-5

1\ -5
2average, so that the relative alignment of the lines of apsides

of the two orbits is maintained. The periapse precessions are
dominated by resonant terms in the disturbing potential
whose arguments are and their linear com-h1, h2, h3,binations. The dominance of the lowest order terms when
the eccentricities are small allows equal precession rates
only if the lines of apsides are anti-aligned (h1B 0¡, h2B

whereas dominance of higher order terms whenh3B 180¡),
the eccentricities are large results in equal precession rates
for a system with masses like those in GJ 876 when h1B

The equality of the precession rates alsoh2Bh3B 0¡.
determines a relationship between the eccentricities of the
two orbits, although there is no simple analytic expression
for this relationship when the eccentricities are large, since
the Ðrst-order theory is not a good representation. The sta-
bility of the GJ 876 resonance conÐguration for values of e1up to 0.86 was also a surprise.

Any process that drives the two originally widely separat-
ed orbits toward each other can result in capture of the
planets into orbital resonances at the 2 :1 commensur-
ability. The naturally occurring situation in which nebular

disk material is cleared between two planets sufficiently
massive to individually open gaps in the disk (Bryden et al.
2000 ; Kley 2000) leads to inward migration of the outer
planet and possibly outward migration of the inner planet.
Thus, the likely origin of the resonances in the GJ 876
system is this di†erential planet migration due to torques
induced by the planet-nebula interaction. We have
shown that forced inward migration of the outer planet
of the GJ 876 system results in certain capture of h1, h2,and hence into libration if initially andh3 e1[ 0.06

and Thee2[ 0.03 o a5 2/a2 o[ 3 ] 10~2(a2/AU)~3@2 yr~1.
latter rate is 3 orders of magnitude higher than the likely
rate of due to planet-nebularD5 ] 10~5(a2/AU)~3@2yr~1
interaction. The bounds on the eccentricities result not so
much from the transition from certain to probabilistic
capture at the 2:1 resonances but from likely capture into
higher order resonances such as 5 :2 before the 2:1 com-
mensurability is encountered.

Continued migration of the planets while locked in the
2:1 resonances leads to rapid growth in the orbital eccen-
tricities that exceed the observed eccentricities of the GJ 876
system after only a further decrease in the semimajor axes of
about 7% if there is no eccentricity damping. So unless
resonance capture occurred near the end of migration, the
observed values of the eccentricities require eccentricity
damping. With damping of the form e5

i
/e

i
\ [K o a5

i
/a

i
o ,

where K is a positive constant, eccentricity growth is ter-
minated at values of the eccentricities that increase with
decreasing K, and the eccentricities remain constant for
indeÐnite duration of the migration. The observed eccen-
tricities result for K B 100 if there is forced migration and
eccentricity damping of the outer planet only, but for
K B 10 if there is also forced migration and eccentricity
damping of the inner planet. This result is independent of
the magnitude or functional form of as long asa5

i
/a

i
e5
i
/e

i
\

is preserved. Relaxing the last condition leads to[K o a5
i
/a

i
o

a slow drift in the eccentricities during migration and would
require the migration to terminate as the eccentricities pass
through the observed values.

Existing analytic estimates of the e†ects of planet-nebular
interaction are consistent with eccentricity damping of the
form if the planet-star mass ratio is note5

i
/e

i
\ [K o a5

i
/a

i
o ,

too large (e.g., Goldreich & Tremaine 1980 ; Artymowicz
1992, 1993 ; Lin & Papaloizou 1993 ; Ward 1997). However,
the planet :star mass ratio of the outer planet of the GJ 876
system is sufficiently close to the critical value separating
eccentricity growth from damping for nominal values of the
disk parameters that it is uncertain whether such damping
would occur. Even if the disk parameters are such that
eccentricity damping would occur, it is not clear that the
magnitude of K would be sufficiently large to constrain the
eccentricities in the GJ 876 system to the observed values.
We have shown that the alternative eccentricity damping
mechanism involving the dissipation of tidal energy within
the star and the planets is completely negligible. Further
long-term hydrodynamic simulations with di†erent physi-
cal assumptions and parameters are required to determine
whether planet-nebular interaction could produce sufficient
eccentricity damping to allow arbitrary migration of the
planets within the resonances in the young GJ 876 system
while preserving eccentricities comparable to those
observed. If not, the migration must have been Ðnely tuned
to stop when the system had progressed to its observed
state, although this latter constraint is too ad hoc to be
believable.
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APPENDIX A

NUMERICAL METHODS

In this appendix we describe how the symplectic integrator SyMBA and the Bulirsch-Stoer integrator used for the
numerical orbit integrations presented in ° 4 were modiÐed to include the forced orbital migration and eccentricity damping
terms.

A second-order symplectic integrator for a Hamiltonian of the form where and are separatelyH \H0] H1, H0 H1integrable, can be represented as

E0
Aq
2
B
E1(q)E0

Aq
2
B

. (A1)

The three operators in equation (A1) represent a single step of an algorithm that starts with evolving the system under the
inÑuence of only for half a time step q/2, then evolving it for a full time step q under the inÑuence of and then evolvingH0 H1,it for another half a time step q/2 under For example, in the Wisdom-Holman (1991) method for the gravitational N-bodyH0.problem, the Hamiltonian in Jacobi coordinates is divided into that describes the Keplerian motion of the planets aroundH0a central star and that describes the perturbation of the planets on one another and is a function of the positions only. AH1 q

istep of the Wisdom-Holman method is thus : (1) each planet evolves along a Kepler orbit for time q/2 ; (2) each planet receives
a kick to its momentum of the amount while is unchanged (since does not involve the canonical momenta) ;[qLH1/Lq

i
q
i

H1(3) each planet evolves along a Kepler orbit for time q/2, starting with the new momentum after the kick. Recursive
application of the basic algorithm of equation (A1) allows one to construct symplectic integrators for Hamiltonians that
consist of more than two integrable parts. For example, a single step of an algorithm for a Hamiltonian of the form

isH \H0] H1] H2 E0(q/2)E1(q/2)E2(q)E1(q/2)E0(q/2).
The symplectic integrator SyMBA (Duncan et al. 1998) is based on a variant of the Wisdom-Holman method, with the

gravitational N-body Hamiltonian written in terms of positions relative to a central star and barycentric momenta, and
employs a multiple time step technique to handle close encounters. In the SyMBA algorithm, the Hamiltonian is divided into
more than two parts and the recursive application of the algorithm of equation (A1) discussed in the previous paragraph is
utilized. Although the additional forced orbital migration and eccentricity damping terms are not Hamiltonian, they can be
incorporated in an analogous manner. Our modiÐed algorithm is

E
a

Aq
2
B
E

e

Aq
2
B
Egrav(q)Ee

Aq
2
B
E

a

Aq
2
B

, (A2)

where denotes a complete time step for the conservative gravitational N-body problem using the SyMBA algorithm,Egrav(q)and and denote changing the canonical variables according to the imposed and terms, respectively, forE
a
(q/2) E

e
(q/2) a5

i
e5
itime q/2. During the application of the term, all of the other orbital elements are constant, anda5

i
a
i,1\ a

i,0 exp (qa5
i
/2a

i
),

where and are at the beginning and end of the step, respectively, if (this can be easily generalizeda
i,0 a

i,1 a
i

a5
i
/a

i
\ constant

for, e.g., Note that we do not use truncated approximation such as Similarly, the stepa5
i
/a

i
P a

i
c). a

i,1\ a
i,0(1 ] qa5

i
/2a

i
). E

e
(q/2)

changes the eccentricities according to if By modifying the algorithm in ae
i,1\ e

i,0 exp ([qK o a5
i
/a

i
o /2) e5

i
/e

i
\[K o a5

i
/a

i
o .

symmetric manner and using exact solutions in the and parts, there should be little (if any) secular growth in theE
a
(q/2) E

e
(q/2)

energy error (e.g., Mikkola 1998).
For the Bulirsch-Stoer integrator, additional terms must be included in the equations of motion in Cartesian coordinates to

account for the forced orbital migration and eccentricity damping. In the following, we simplify the notation by considering a
speciÐc planet and dropping the subscript. Let (x, y, z) be the Cartesian coordinates of the planet with respect to the star and r
be the distance of the planet from the star. The osculating orbital elements a, e, i, f, u, and ) are the semimajor axis,
eccentricity, inclination, true anomaly, argument of periapse, and longitude of the ascending node on the xy plane, respec-
tively. The additional terms in the equations of motion due to the forced migration and eccentricity damping terms area5 e5

dx
dt
K
a5
] dx

dt
K
e5
\ Lx

La
a5 ] Lx

Le
e5 , (A3)

dx5
dt
K
a5
] dx5

dt
K
e5
\ Lx5

La
a5 ] Lx5

Le
e5 , (A4)

with similar expressions for the other coordinates. To evaluate the partial derivatives in equations (A3) and (A4) and similar
expressions for the other coordinates, we need to express the position and velocity in terms of the osculating orbital elements :

x \ r cos ) cos (u] f ) [ r cos i sin ) sin (u] f ) ,

y \ r sin ) cos (u] f ) ] r cos i cos ) sin (u] f ) ,

z\ r sin i sin (u] f ) , (A5)
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and

x5 \ cos )[r5 cos (u] f )[ rf 5 sin (u] f )][ cos i sin )[r5 sin (u] f ) ] rf 5 cos (u] f )] ,

y5 \ sin )[r5 cos (u] f )[ rf 5 sin (u] f )]] cos i cos )[r5 sin (u] f ) ] rf 5 cos (u] f )] ,

z5 \ sin i[r5 sin (u] f )] rf 5 cos (u] f )] , (A6)

where r, and are in terms of a, e, and f (e.g., Murray & Dermott 1999). We also needr5 , rf 5

Lr
La

\ r
a

,
Lr
Le

\
C
[ 2er

1 [ e2[ r2 cos f
a(1[ e2)

D
,

Lr5
La

\ [ r5
2a

,

Lr5
Le

\ r5
e(1[ e2) ,

L(rf 5 )
La

\ [ rf 5
2a

,
L(rf 5)
Le

\ rf 5 (e] cos f )
(1[ e2)(1] e cos f )

. (A7)

From equations (A3), (A5), and (A7), we Ðnd that

dx
dt
K
a5
] dx

dt
K
e5
\ x

a
a5 ]

C r
a(1[ e2)[

1 ] e2
1 [ e2

D x
e

e5 ; (A8)

the additional terms for dy/dt and dz/dt are similar. The additional terms for each of and are distinct fordx5 /dt, dy5 /dt, dz5 /dt
variations in e, and we have

dx5
dt
K
a5
] dx5

dt
K
e5
\ [ x5

2a
a5 ] cos )

CLr5
Le

cos (u] f ) [ L(rf 5 )
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D
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[ cos i sin )
CLr5
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D
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dy5
dt
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] dy5

dt
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2a
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CLr5
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cos (u] f ) [ L(rf 5 )
Le

sin (u] f )
D
e5

] cos i cos )
CLr5
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sin (u] f ) ] L(rf 5 )
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cos (u] f )
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dz5
dt
K
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] dz5

dt
K
e5
\ [ z5

2a
a5 ] sin i

CLr5
Le

sin (u] f ) ] L(rf 5 )
Le

cos (u] f )
D
e5 , (A9)

where equation (A7) should be used to get the functional forms. Unfortunately, the orbital elements must be calculated at each
call to the di†erential equations when there is eccentricity damping.
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