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ABSTRACT

Having discovered 885 planet candidates in 361 multiple-planet systems, Kepler has made transits
a powerful method for studying the statistics of planetary systems. The orbits of only two pairs of
planets in these candidate systems are apparently unstable. This indicates that a high percentage
of the candidate systems are truly planets orbiting the same star, motivating physical investigations
of the population. Pairs of planets in this sample are typically not in orbital resonances. However,
pairs with orbital period ratios within a few percent of a first-order resonance (e.g. 2:1, 3:2) prefer
orbital spacings just wide of the resonance and avoid spacings just narrow of the resonance. Finally,
we investigate mutual inclinations based on transit duration ratios. We infer that the inner planets of
pairs tend to have a smaller impact parameter than their outer companions, suggesting these planetary
systems are typically coplanar to within a few degrees.

Subject headings: planetary systems; planets and satellites: detection, dynamical evolution and sta-
bility; methods: statistical

1. INTRODUCTION

Subsequent to the fortuitous discovery of an exoplan-
etary system around a pulsar via timing its pulses (Wol-
szczan & Frail 1992), the radial velocity technique has
been the dominant contributor to our understanding of
the architectures of planetary systems. This technique
has revealed both systems with numerous planets and
systems with dynamically rich architectures (Butler et al.
1999; Fischer et al. 2008; Rivera et al. 2010; Lovis et al.
2011) and enough planetary systems to perform statisti-
cal analyses of the ensemble (Wright et al. 2009). Given
that multiple planets are the most frequent outcome of
planet formation among the super-Earth and Neptune
classes of planets (Mayor et al. 2011), the number of
systems for study will continue to rise sharply as new
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Doppler sensitivities and time baselines are reached.
Nevertheless, the exoplanet community has just expe-

rienced a windfall of planetary systems via the transit
technique, courtesy of NASA’s Kepler mission. The Ke-
pler team is in the process of vetting candidates to rule
out false positives, with a special emphasis on multi-
planet candidates, which has the promise of yielding a
high-fidelity (& 98%) catalog of many hundreds of plan-
etary systems (Lissauer et al. 2012).

Previously, the Kepler team presented planetary candi-
dates discovered in the first four months of mission data
Borucki et al. (2011a,b). Now, Batalha et al. (2012;
hereafter B12) has identified candidates using the first 16
months of data. Contemporary with the previous cata-
log, Lissauer et al. (2011b) (hereafter Paper I) examined
the dynamics and architectures of the candidate multi-
planet systems. This paper extends the investigation of
Paper I to the new catalog of candidates. It also pur-
sues two additional studies: quantification of the fidelity
of these systems based on their apparent orbital stabil-
ity and the mutual inclinations of planets based on their
transit duration ratios.

We begin by defining the sample of planet candidates
(§ 2), in particular how we choose particular planet can-
didates to omit or update. Next (§ 3.1) we call attention
to a few closely-packed planetary pairs and investigate
two- and three-planet resonances. We discuss to what
extent the sample of candidates obeys orbital stability
constraints (§ 3.2), which has implications for its purity
as being composed of real planetary systems (§ 3.3). The
statistics of period ratios is examined in § 4. In § 5, we
find that the transit duration ratios in multiplanet sys-
tems limit the typical mutual inclinations to just a few
degrees. Finally, we recapitulate the results and draw
comparisons to the Solar System (§ 6).
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2. THE SAMPLE

The sample is based on the KOI (Kepler object of in-
terest) list in the appendix of B12. Stellar masses are
obtained from the reported log g and stellar radius. We
have not included some additional candidates given in
the papers of Ford et al. (2012); Steffen et al. (2012);
Fabrycky et al. (2012), as these were found by extraordi-
nary searching beyond the standard pipeline applied to
Q6 data.

In addition, we omitted a number of candidates for
various reasons. Planets with uncertain transit periods
from section 5.4 of B12 were omitted. We culled from
the sample the same candidates mentioned in section 1
of Paper I. KOI-245.04 was discarded; it has low SNR
(11.5) and poor reduced χ2 = 2.11, thus we attribute it
to red noise.

We omitted planet candidates that are based on single
transits, as their periods are too uncertain for the pur-
poses of this paper; these are denoted by negative periods
in B12.

For our analysis, we also revised the stellar and plane-
tary properties of some candidates, as follows.

We updated the period of KOI-2174.03 as described in
section 3.1.

In the new catalog, KOI-338 had a large change in stel-
lar radius (1→19 R�), due to log g determination using a
new spectrum. There is no pulsational signal which gen-
erally accompanies a giant star, however, and the tran-
sit durations match much better with the radius of a
dwarf star. We suggest either the spectroscopic result is
in error, or the candidates are planets orbiting a back-
ground dwarf. For the stellar parameters we thus use
a new analysis of the photometry in the Kepler Input
Catalog (Brown et al. 2011), yielding M? = 0.96M� and
R? = 1.65R�. We scaled down the planet candidate sizes
accordingly.

The stellar properties and radii of the planets in KOI-
961 were updated to agree with Muirhead et al. (2012).
Similarly, the depth of the transit signal is expected to
closely match the fractional occulting area, and cases in
which this is not true are likely poorly-conditioned fits.
Planetary radii Rp are generally adopted from B12, but
values outside the range 0.8-1.5 R?

√
Depth were set to

the nearest value of that range, using stellar radius R?
and Depth reported by B12. This caused a downward
revision of 4 and an upward revision of 6 planet radii for
candidates within multiple systems.

With these changes from B12, the multiplicity statis-
tics of systems of planet candidates are 1405 single sys-
tems, 242 double systems, 85 triple systems, 25 quadru-
ple systems, 8 quintuple systems, and 1 sextuple system.
The orbital period ratios (for section 4) and Hill spacings
(for section 3.2) are given14 in Tables 1-5. Overall, the
number of multiple-planet systems approximately dou-
bled from Paper I, and the biggest fractional increase was
seen in the quadruples (8→ 25) and quintuples (1→ 8).
We represent the periods and sizes of the systems of three
or more planets in figure 1.

14 Note that the labels “1”, “2”, etc. in these tables order the
planets by increasing orbital period and do not always correspond
to the planet discovery order of the KOI numbers “.01”, “.02”, etc.

3. DYNAMICS OF THE NEW SYSTEMS

Here we first discuss some special cases of planetary
systems that are especially tightly packed, then step back
to survey the stability properties and fidelity of the whole
sample.

3.1. Closely-spaced planets and other interesting
systems

Here we discuss some of the dynamically interesting
systems that are present in the new dataset.

The closest new pair of new candidates are .01 and .04
in KOI-2248 with a period ratio of 1.065. In systems with
transits detected at low signal-to-noise ratio, we must
consider that some subset of the transits were not de-
tected, or spurious transits were detected, modifying the
period of the candidate (an alias). We checked aliases at
periods 1/4, 1/3, 1/2, 2, 3, and 4 times the nominal pe-
riod by polynomial-detrending with the transits masked
out, then measuring the depth of the signal at locations
implied by those periods. The signals are consistent with
the reported periods for these planets. The pair (.01 and
.02) would be hard-pressed to remain stable if both these
planets are around the same star, the same situation as
for KOI-284 (Paper I, Lissauer et al. 2012, Bryson et al.
in prep; candidates 284.02 and 284.03 have a period ratio
of 1.038). The likely alternatives are that (a) one or both
candidates is actually a blended eclipsing binary, (b) the
two are true planets, but orbiting different members of
a wide binary star. One simple test we can consider is
whether the ratio of orbital-velocity normalized transit
durations:

ξ ≡ Tdur,1/P
1/3
1

Tdur,2/P
1/3
2

(1)

is near unity (where Tdur is the transit duration, P is
the orbital period)15, in which case it is more likely the
planets are orbiting stars of equal density (perhaps the
same star; Lissauer et al. 2012). For the unstable pairs
in KOI-284 and KOI-2248, the value of ξ is 0.96 and
0.97 respectively, which does not provide independent
evidence of them orbiting different stars. However, it
suggests that if the planets are orbiting different stars in
a physical binary, these two stars likely have similar type
and might be resolvable – this has already been achieved
for KOI-284 (Lissauer et al. 2012).

The next closest pair is KOI-2174, with a period ra-
tio 1.1542 between .03 and .01. We performed the same
alias check as above. Contrary to that case, every other
transit of the smallest planet .03 is less deep and is
marginally consistent with zero (509 ± 57 ppm versus
105 ± 63 ppm). Therefore we adopt the ephemeris BJD
= 15.4502 ×E+245509.8024, where E is an integer, a
period-doubling.

As we continue to wider period ratios, we no longer find
reason to disbelieve the following systems are truly mul-
tiple planets orbiting an individual star, but note instead
that their closely-packed nature makes them dynamically
interesting.

15 Here and elsewhere, when referring to pairs of planets, we
shall use “1” and “2” to denote the inner and outer planets of that
pair respectively, even if there are other planets in the system and
the specific pair is not the innermost two.
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Figure 1. Systems of three or more planets. Each line corresponds to one system, as labelled on the right side. Ordering is by the
innermost orbital period. Planet radii are to scale relative to one another, and are colored by decreasing size within each system: red,
orange, green, light blue, dark blue, gray.
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KOI-1665 has a period ratio 1.17219 between .01 and
.02. These are small candidates (1.2 and 1.0 R⊕) around
a solar-type star, so the alias check above is not as pow-
erful, however it raises no suspicion of the periods being
incorrect. Given the planets’ small sizes, they may also
be small mass, so even this extreme period ratio may be
dynamically stable on the long term.

KOI-262 has a nearly exact 6:5 commensurability, with
a period ratio of 1.20010±0.00003. The transits are well-
defined, and we judge both candidates as secure detec-
tions at the correct periods.

All other planet pairs have period ratios > 1.25. In
fact, in section 4, we will note that there may be a “pile-
up” just wide of that period ratio, with sizes between
Earth and Neptune. Kepler-11b and c (Lissauer et al.
2011a) is the confirmed example of this variety.

We also checked for potential 3-body resonances among
planets in systems of higher multiplicity. Following
Quillen (2011), we searched for small values of the fre-
quency

f3−body = pf1 − (p+ q)f2 + qf3, (2)

where f1, f2, and f3 are the orbital frequencies (inverse
periods) of three planets (estimated via the average tran-
sit periods) and p and q are integers. We recovered the
resonant chain of KOI-730, four planet candidates with
spacings near 4:3, 3:2, and 4:3 resonances as described by
Paper I. We also found KOI-2086, whose three planets
are also in a chain of first-order resonances, f1 : f2 = 5 : 4
and f2 : f3 = 4 : 3, an even more packed configuration.
Here both pairs are offset by the same amount from the
2-body resonances:

4f1 − 5f2 = (−30± 9)× 10−5day−1, (3)

3f2 − 4f3 = (−26± 5)× 10−5day−1, (4)

such that the combined 3-body frequency f3−body, with

(p, q) = (1, 1), is (1±1)×10−5day−1. This is considerably
closer to zero than its 2-body equivalents, suggesting it
could have additional dynamical significance. Thus this
case is intermediate between the chain of resonances in
KOI-730 and the case of KOI-500 (as described in Paper
I), whose planets are offset from the 2-body resonances,
yet strongly in 3-body resonances. Another case of a
three-body resonance is KOI-720. In that system there
are no close 2-body resonances, yet the planets 720.01,
720.03, and 720.04 have f3−body = −5f.01 +3f.03 +2f.04,

of (0± 5)× 10−5day−1. This is despite the period of .02
being intervening among them. Thus if this three-body
resonance really has dynamical significance, it is despite
the close presence of yet another planet.

There are two systems with candidate planets con-
sisting of only one transit. KOI-490 is a 4-planet sys-
tem including a possible gas giant displaying one transit.
The single transit has a duration 4.9-6.8 times longer
than the three short-period planets, suggesting that if
ξ ' 1 (i.e. eccentricities are low and impact parameters
are not near unity) the outer body’s period should be
∼ 1300 days. We do not include this additional planet
in the remaining statistics of this paper, because its pe-
riod is too crudely estimated; we analyze KOI-490 as a
3-planet system. The only other system with this trait is
KOI-435, a 2-planet system. Since KOI-435.02 only dis-
plays one transit, we drop this system from the analysis

altogether.

3.2. Stability of Multiple-Candidate systems

Next, we investigate stability of the candidate sys-
tems by proposing a mass-radius relationship, as in Pa-
per I. It is subject to the caveats that (a) the plane-
tary radii Rp scale with the uncertain stellar radii, and
(b) we anticipate real planets have a diversity of struc-
tures (e.g., Wolfgang & Laughlin 2011). Nevertheless,
we chose a simple power-law relationship for planetary
masses Mp = M⊕(Rp/R⊕)α, where M⊕/R⊕ are the
mass/radius of the Earth, α = 2.06 for Rp > R⊕ and
α = 3 for Rp ≤ R⊕. The choice for large planets is moti-
vated by Solar System planets: it is a good fit to Earth,
Uranus, Neptune, and Saturn. Continuing the power-law
below Earth would mean smaller rocky planets are more
dense, which is not likely a common outcome, so instead
we choose a constant density (Earth’s).

As noted in Paper I, in two-planet systems there ex-
ists an analytic stability criterion called Hill stability, in
which the planets are forbidden from obtaining crossing
orbits (e.g., Marchal & Bozis 1982). The relevant length
scale is called the mutual Hill radius:

RH1,2
=
[M1 +M2

3M?

]1/3 (a1 + a2)

2
, (5)

between two planets indexed by 1 and 2, M are their
masses and a are their semi-major axes, and M? is the
mass of the stellar host. If the two planets begin on
circular orbits with orbital separation in units of mutual
Hill radius: ∆ ≡ (a2 − a1)/RH1,2

> 2
√

3, then they are
Hill stable (Gladman 1993). Values of ∆ are given for
the observed pairs in doubles in Table 1. All candidate
systems obey this stability criterion, so we judge them
to be plausibly stable.

There is no analytic stability criterion for the sys-
tems with more than two planets. However, in systems
of three or more planets, instability time scales gener-
ally increase with separation, as in the two-planet case
(Chambers et al. 1996). In Paper I, we numerically in-
tegrated all the previous catalog’s systems of more than
two planets, starting from circular, coplanar orbits with a
power-law mass-radius relationship. In addition to each
pair obeying two-planet stability criteria, we developed
∆in + ∆out > 18 as a conservative heuristic criterion,
where the “in” and “out” subscripts pertain to the in-
ner pair and the outer pair of three adjacent planets.
In figure 2, we plot the ∆s for inner and outer pairs of
threesomes. There are a number of systems (Tables 2-5)
with adjacent triples that do not satisfy that criterion
(in addition to the pairwise criterion above). For all
such systems that we have not already examined else-
where (Paper I, Lissauer et al. 2012) — specifically, for
KOI-620, 1557, and 2086 — we numerically integrated
using MERCURY (Chambers 1999) as described in Pa-
per I. We found them to be plausibly stable: starting on
circular, coplanar orbits matching the phase and periods
of the data, they suffered neither ejection, nor collision,
nor a close encounter within 3 mutual Hill radii over a
timespan of 1010 innermost orbits. We also integrated
the new parameters (Muirhead et al. 2012) for KOI-961
for the same timespan and found them to remain stable.

The only new system that became unstable was KOI-
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Figure 2. Separation of inner and outer pairs of triples (and ad-
jacent 3-planet subsets of systems of multiplicity at or above 3), in
units of the mutual Hill separation. The symbols denote planets in
triples (red triangles), quadruples (purple squares), quintuples (or-
ange pentagons), sextuples (green hexagons), and the Solar System
(black dots). Systems with individual pairs that are unstable are
the gray area: a triangle denoting KOI-284 and two squares denot-
ing KOI-2248. Other systems show three planets with particularly
close spacing (below the dashed line), but these were numerically
integrated and found to be long-term stable.

2248, discussed above. Aside from the hybrid integrator,
we also ran the Burlisch-Stoer integrator in MERCURY
and the planets began violent gravitational scattering in
several synodic time scales. Clearly, this system needs a
qualitatively different understanding for its architecture,
as described above.

One more system with at least one new planet ap-
peared close to instability, KOI-707 = Kepler-33. Al-
ready in the discovery paper (Lissauer et al. 2012) an
analysis of stability was carried out, so we performed no
additional analysis here.

These outcomes of our stability analysis are for an
adopted Mp–Rp relationship. To see how many systems
would be unstable if the planets were denser, we con-
sidered various α values above and below 2R⊕ (the ap-
proximate Super-Earth / mini-Neptune boundary) and

recorded ∆ < 2
√

3 for any adjacent pairs. Below 2R⊕,
for any α below 6.9, no additional systems violate Hill’s
stability given circular orbits. Therefore all these plan-
ets may have a terrestrial structure, for which α ' 3.7
(Valencia et al. 2006). For the region above 2R⊕, no
additional systems display instability for α ≤ 2.6 [i.e.
Mp = M⊕(Rp/R⊕)2.6], but at that value the pair of
planets of KOI-523 and the outer two planets of KOI-
620 would be unstable. Such a large α would imply an
extreme density for gas-giant planets though, exceeding
that of the core-heavy transiting planet HD 149026 (Sato
et al. 2005). From this exercise, we see that our con-
clusions about stability are not sensitive to our adopted
masses. We also see that stability considerations give us

no additional insight into these planets’ physical struc-
ture.

To summarize this stability study, for all the pairs of
planet candidates, only two are expected to be unstable
given low eccentricities and inclinations: KOI-284 and
KOI-2248. Higher multiplicities do not appear unstable
either, based on numerical integrations. If a mass-radius
relationship favoring high density applies in reality, a few
more systems could be unstable. We repeat the caveat
that we have only considered instability while using ini-
tially circular orbits, and eccentric orbits could generally
cause instability.

3.3. Fidelity of Multiple-Candidate systems

Morton & Johnson (2011) have emphasized that planet
candidates from Kepler, once properly vetted, tend to be
highly reliable (> 90%), and Lissauer et al. (2012) ex-
tended and strengthened this statement for candidate
multiple-planet systems. The density of background
eclipsing binaries is so low, and the small depth and
detailed shape of transits is so difficult to mimic given
the photometric precision of Kepler, that a transit signal
(particularly several transit signals) is quite unlikely to
occur via a combination of stars only. Moreover, Kepler’s
exceptional signal-to-noise ratio and stability for centroid
analyses means transit events occurring on background
stars must lie very near the target star, in projection.

We can now address the statistical reliability of Ke-
pler’s multiplanet candidates from a new and indepen-
dent angle: with so few candidate planetary systems
showing instability (2 out of 742 pairs, including the
higher-order multiples), we expect most of these candi-
dates are truly in real systems. Consider the possibility
that pairs are “false multis,” defined as a system that
appears to be a pair of planets around a star but is not.
The most likely alternatives are (a) one or both members
of the pair of candidates is a blended eclipsing binary, or
(b) both members are planets, but they orbit different
stars (Lissauer et al. 2012). In such “false multi” cases,
there is no reason to expect the pair will obey stability
constraints with respect to each other. Therefore we can
calculate an expected rate of apparently unstable sys-
tems, given the hypothesis that all these candidate sys-
tems are false multis. If we draw two planets from the (P ,
Mp/M?) values of all the planet candidates in multis, and
consider whether that pair would be stable if in the same
system, ∆ ≤ 2

√
3 occurs in 29719/391170 ' 7.6% of the

draws (the precise numbers come from exactly sampling
all the possible pairs). That is, one would expect 56.4 to
be unstable over the whole set of pairs. Using the Poisson
distribution, to have found two or fewer unstable pairs
given the expectation value λ = 56.4 has a probability
of 5 × 10−22. On the other hand, if only a fraction f of
the systems are false multis, then the expected value of
apparently unstable systems falls to λf . Given that only
two systems in our sample appear to be unstable, we can
place simple Bayesian constraints on the fraction f . Let
us take a prior uniform in f from 0 to 1: p(f) = 1. Then
we can apply Bayes’ theorem to obtain the probability
of f given the observations:

P (f |data) =
P (data|f)∫ 1

0
df ′P (data|f ′)

, (6)
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Figure 3. Probability distribution of the fraction of “false multis”
given that we have found two pairs to be unstable.

where P (data|f) is the probability of the data given f ,
the only data we use is that we have found two appar-
ently unstable systems, and f ′ is an integration variable
which we marginalize over to determine the normaliza-
tion. This probability distribution is given in figure 3,
which shows a mode of 3.5% and a wide range of possi-
ble fractions: the 95% credible interval is 1.2% – 13%.
This estimate is larger than the . 2% of the candidates
in multiple systems not being true planets estimated by
Lissauer et al. (2012). In the present estimate, we are
counting planets that are around two different stars in a
physically bound binary as a false multi, which as dis-
cussed above, may account for our unstable pairs KOI-
284 and KOI-2248.

These estimates are based on drawing certain P and
Mp/M? values, which were in turn assumed to follow cer-
tain distributions, so let us examine those assumptions.

First, we have chosen a period distribution P matching
the planet candidates in multiple systems. This distri-
bution nearly matches the single-candidate period distri-
bution, so this is appropriate if the false multi hypoth-
esis is that a pair of planets are actually singles around
hosts that are blended together. However, this distri-
bution is narrower than the detached eclipsing binary
distribution, which may be blended into some of the tar-
gets to produce the false multi signal. To explore this,
we selected Mp/M? as above (a reflection of the distri-
bution of observed depths) but replaced the periods by
two draws from the list of eclipsing binaries labeled “de-
tached” by Slawson et al. (2011). This was done in a
Monte Carlo fashion, resulting in an unstable fraction
λ/742 = 6.05% ± 0.04%. Given that this expectation is
lower than above, the fraction of false multis would need
to be higher to have produced two apparently unstable
systems: the 95% credible interval is shifted to 1.5% –
16% under these different assumptions for the period ra-
tio.

Second, we have adopted a particular mass-radius rela-
tionship, which gave Mp/M?. If the planets are actually
denser than assumed, more would be deemed unstable,
both from the observations and from the mock-systems

simulations. These would likely scale in rough concert,
and the conclusions regarding the fraction of false mul-
tiples rest on the ratio of those two. Therefore the main
conclusion, that the strong majority of candidate planet
pairs are likely true planets around the same star, would
be robust to the mass-radius relationship chosen.

By considering stability, we have seen that ≈ 96% of
the pairs of multi-transiting candidates are actually plan-
ets around the same star. Recall that this is an indepe-
dent estimate from Lissauer et al. (2012), who used bi-
nary statistics to estimate that in fully vetted systems,
≈ 98% are real planets. In the following sections we
therefore rely on this purity, assuming all the systems
are real16 while characterizing their architectures.

4. PERIOD RATIO STATISTICS

In figure 4 we plot the histogram of the period ratios
(P ≡ P2/P1) of all pairs in all systems, not just adjacent
pairs. It spans a wide range, from quite hierarchical con-
figurations, to the edge of stability. There is an apparent
cut-off narrow of the 5:4 resonance, however KOI-262 is
likely a true system at 6:5, suggesting this region is not
totally empty. The main conclusion of Paper I is sup-
ported still: planet pairs are quite rarely in resonance.
However, as resonances do have dynamical significance,
we address their statistics presently.

To address the statistics of first-order resonances, we
use the ζ1 variable introduced in Paper I:

ζ1 = 3

(
1

P − 1
− Round

[
1

P − 1

])
, (7)

which describes how far away from a first-order resonance
a pair of planets is. This variable has a value 0.0 at
values of the period ratio P = (j + 1) : j, i.e. first-
order resonances. Its value reaches −1 and +1 at the
adjacent third-order resonances interior and exterior to
the first-order resonance, i.e. at (3j + 2):(3j − 1) and
(3j + 4):(3j + 1) respectively. The region between these
third-order resonances is called the neighborhood of a
particular first-order resonance. In figure 5 we plot the
histogram of ζ1, in which all values of j and all plan-
etary pairs contribute. As in Paper I, we find that a
value between −0.1 and −0.2 exhibits an excess: plane-
tary pairs prefer to be just wide of first-order resonances
with each other. We compare the observed |ζ1| distribu-
tion to a random distribution, which is uniform in the
logarithm of period ratios, via a K-S test. The null hy-
pothesis is that period ratios are smoothly distributed,
e.g. that they do not occur more often near ratios of inte-
gers (which correspond to dynamical resonances). A sig-
nificant difference in these distributions is detected with
p-value = 6.5 × 10−4: the systems do bunch towards
the first-order resonance locations. In Paper I it was
found that a different variable, ζ2, hinted that second-
order resonances might similarly be bunched. However,
we find with this expanded sample that |ζ2| is consistent
with a logarithmically-uniform distribution of period ra-
tios, with K-S test p-value = 0.78. Nevertheless, there

16 Because of their apparent instability, from this point on
we cull KOI-284.02, KOI-284.03, KOI-2248.01, and KOI-2248.04.
KOI-284 becomes a single-planet system and drops from the anal-
ysis, and KOI-2248 becomes a two-planet system and is analyzed
as such.
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Figure 4. Period ratio statistics of all planet pairs. Panel (a): Histogram of all period ratios in the sample (i.e. pairwise between all
planets in higher order multiples, not just adjacent planets), out to a period ratio of 4. First order (top row) and second order (lower row)
resonances are marked. The mode of the full distribution is just wide of the 3:2 resonance, and there is an asymmetric feature near the
2:1 resonance. There is a sharp cut-off interior to the 5:4 resonance. Panel (b): Planetary radii versus the period ratio for planetary pairs
near (∆P < 0.06P) the 3:2 resonance. Both radii for each pair are plotted. Panel (c): same as panel b, but near (∆P < 0.06P) the 2:1
resonance. Triangles denote planet pairs that are not adjacent, which have an intervening transiting planet.

may certainly be individual systems (e.g., KOI-738 =
Kepler-29, Fabrycky et al. 2012) which are in a dynami-
cal second-order resonance. We describe a more general
formalism for the ζ variable in appendix A, which gives
context to our choice of equation 7 and will likely be use-
ful in future investigations of the statistics of resonance.

Let us explore this preference for first-order resonances
more. First, we compare the observed |ζ1| distribution to
a random distribution solely around the neighborhood of
2:1 (between 7:4 and 5:2) alone. The distributions signif-
icantly differ, with a p-value of 0.029, however this has
weakened from 0.00099 (in Paper I) with the expanded
sample including more small planets. The more impor-
tant resonance contributing to the first-order resonance
result is that systems in the neighborhood of 3:2 (be-
tween 10:7 and 8:5) tend to be near 3:2; |ζ1| differs from
a random distribution with a p-value of 0.0046. Look-
ing back at panel a of figure 4, the global peak is just
wide of the 3:2 resonance; a smaller peak exists just wide
of 2:1. The peak at 3:2 appears to be a pile-up, in the
sense that the spike is an excess on top of a baseline.
The peak just wide of 2:1 contains only slightly more
pairs than the trough just narrow of 2:1 is missing; this
feature may imply an evolutionary “redistribution” de-
termines this distribution more than a “pile-up” at the
formation epoch. For a better view of these resonances,
we plot scatter plots near these resonances in panels b
and c of figure 4.

Figure 5. Histogram of ζ1, a variable describing the offset from
first-order resonances (eq. 7), for all planetary pairs in the neigh-
borhood of a first-order resonance, i.e. with a period ratio between
1 and 2.5. The spike between −0.1 and −0.2 means that period
ratios just wide of first-order resonances are overpopulated relative
to random.

In panel b, we focus on the region near period ratios
of 1.5, and in panel c, near 2.0. Just wide of 1.5, we
note a striking pile-up (spanning 1.505 to 1.520 for Rp .
3.0R⊕). A similar over-density wide of 2.0 is apparent,
but it is considerably more diffuse. These are the main
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features that make |ζ1| non-random, as described above.
In these panels, we see more clearly the lack of pairs

just narrow of the resonances, particularly for the 2:1
resonance. In both cases, this gap seems to be wider
at larger planet sizes. Insofar as planet masses correlate
with planet radii, this effect may be due to the fact that
resonances are wider for more massive planets. To actu-
ally clear out these gaps, a dissipative effect needs to be
invoked. This effect may simply be gravitational scatter-
ing, as in the case of the Kirkwood gaps in the asteroid
belt: the resonance chaotically pumps up eccentricities
(Wisdom 1983), and the bodies scatter off other plan-
ets, removing them from the resonance. Chaos was also
noted by Murray (1986) in the 3:2 and 2:1 resonances at
low eccentricity, which might be sufficient to produce the
gaps in panels b and c. Another possibility is the action
of tidal dissipation in the planet, pulling it towards the
star and increasing the period ratio (Novak et al. 2003;
Terquem & Papaloizou 2007). Yet another possibility is
that, while the pair is still embedded in a gaseous disk,
one planet may launch waves at its resonance location
that interact with the other planet, preventing resonance
capture (Podlewska-Gaca et al. 2012).

Last, we consider whether the pairs of planets close to
first-order resonances are statistically closer to resonance
than would be expected with random spacings. We have
already discussed (pairwise going out in period): KOI-
730 (4:3, 3:2, 4:3), KOI-2086 (5:4, 4:3), and KOI-262
(6:5); moreover KOI-1426.02/.03 are gas giants in 2:1
resonance. All these cases lie in the region |ζ1| < 0.05,
however, they do not bunch to ζ1 ' 0 significantly more
than random. So even though these pairs are so close to
exact resonances (∆P/P < 0.001) and their dynamics
is likely dominated by the resonance, they may be mem-
bers of the smooth distribution of period ratios, and they
do not necessarily point to differential migration which
would produce a pile-up in resonance.

Our confidence is strengthened in systems with multi-
ple, adjacent first-order resonances. We continue to take
as the null hypothesis uniform spacing in logP, i.e. that
near-resonant locations are not preferred. This spac-
ing results in a nearly uniform distribution of ζ1, which
means that two adjacent period ratios have |ζ1,in|+|ζ1,out|
less than or equal to x with a probability x2/2. (This
is actually conservative estimate, as a logarithmic dis-
tribution of logP yields slightly less probability than
a uniform distribution at small ζ1.) In the case of
KOI-2086, the values of the two adjacent spacings are
ζ1,in = −0.0324 and ζ1,out = −0.0276, so such sys-
tems would be this close to a first-order resonant chain
only p = 0.18% of the time. However, given n = 160
sets of three adjacent planets, the expectation value
that at least one of them will show such a close chain
is 1 − (1 − p)n = 25%, therefore KOI-2086’s chain is
rather expected even if planetary pairs do not prefer res-
onances. Having 4 planets in a resonant chain would be
less expected, and having |ζ1,in|+ |ζ1,mid|+ |ζ1,out| (where
subscript ‘mid’ refers to the middle pair) less than or
equal to x occurs with probability x3/6. For KOI-730,
ζ1,in = −0.0123, ζ1,mid = −0.0186, ζ1,out = −0.0063, and
thus p = 8.6 × 10−6. There are n = 43 sets of 4 adja-
cent planets, so the expectation value that at least one
would show such a chain is 1 − (1 − p)n = 0.05% : a

multi-resonant chain like that in KOI-730 is extremely
unlikely if the orbital periods of planet candidates with
a common host star were independent.

5. DURATION RATIO STATISTICS AND COPLANARITY

The durations in transiting planetary systems were rec-
ognized well before the Kepler launch to be a source for
information on orbital eccentricity, as the eccentricity
leads to changes in the orbital speed, and the duration is
inversely proportional to projected orbital speed (Ford
et al. 2008). Using the previous KOI catalog, Moor-
head et al. (2011) performed such an analysis, finding
evidence for moderate eccentricities among small plan-
ets. This result required knowledge of the stellar masses
and radii. Several authors (Ragozzine & Holman 2010;
Kipping et al. 2011) have also pointed out that in mul-
tiple planet systems, if one assumes that the planets are
orbiting the same star, the properties of the star (most
directly, its density) are probed by the durations and
ingress and egress time scales of the transits. In such
cases no detailed stellar model is needed, and constraints
on the eccentricity of the planets is a by-product. Fi-
nally, it has been noted that gauging the relative tran-
sit durations of planets evident in the same lightcurve
can serve as a means to validate them as planets around
the same host star (Morehead et al. 2011; Lissauer et al.
2012, Morehead et al. in prep.). In these latter works,
it is explicitly mentioned that a scaled duration should
be equal between the planetary components to give high
confidence that they are around the same star; we look
into the details of that statement in this section.

Here we assume the planetary candidates are in true
systems around the same star, and ask what the distri-
bution of duration ratios tells us about coplanarity. In
the limit that all the planetary orbits within a system are
circular and coplanar, the normalized impact parameters
b and semi-major axes a have the relationship:

b2/b1 = a2/a1 [coplanar, circular] (8)

where 1 signifies an interior planet and 2 signifies an outer
planet. Thus we expect that b2 will be larger than b1 in
systems where both planets are quite coplanar and both
transit. Conversely, we note that for the Kepler-11 g/e
and Kepler-10 b/c and pairs, the observed b2 is smaller
than that given by equation 8, which means the orbits
must be non-coplanar, to at least 1 degree and 5 degrees,
respectively. Thus we expect the distribution of impact
parameters can help us determine the distribution of mu-
tual inclinations. For this method to have sensitivity, the
typical mutual inclination must be i . R?/a, where R? is
the host’s radius and a is a typical semi-major axis. We
find below that, somewhat surprisingly, planetary sys-
tems are flat enough to fulfill this requirement.

We do not have accurate stellar properties or good
knowledge of impact parameters themselves. However,
transit durations Tdur, from first to fourth contact, are
well-measured and are ' 2

√
((1+r)2−b2)R∗/vorb, where

r = Rp/R∗ and vorb ∝ P−1/3. Given the inner planet
will be biased towards smaller b if the planets are nearly
coplanar, and in most cases r � 1, we expect the ratio
of orbit-velocity normalized transit duration, ξ (eq. 1),
to be greater than 1 for quite coplanar systems. Let us
test the null hypothesis that planets around the same
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star are quite misaligned which would destroy such cor-
relations, that their impact parameters are drawn from

the same distribution. In such a case, Tdur,1/P
1/3
1 and

Tdur,2/P
1/3
2 would follow the same distribution, therefore

their ratios ξ or ξ−1 should also follow the same distri-
bution as each other. We test that in figure 7, where
the null hypothesis is that the black and red histograms
agree. These histograms do not agree, with the center-of-
mass of ξ lying at a significantly larger value than ξ−1; a
Kolmogorov-Smirnov (K-S) p-value of 5×10−15. On the
other hand, a model distribution consisting of perfectly
coplanar and circular systems would lie entirely above 1,
and measurement error introduces additional spread at
the few-percent level only, so some mutual inclination or
eccentricity is clearly needed.

There are potential biases which could affect this con-
clusion. First, the outer planet’s r is typically larger
(perhaps due to detection limits; Paper I), so this would
bias ξ to values slightly less than 1, but we observe the
opposite. Another aspect is that the box-least squares
search that found most of these candidates (B12) was
run over a range of durations 0.003P to 0.05P . Planets
outside this range were found sub-optimally; the search
algorithm loses sensitivity to the very shortest durations
(largest impact parameters) at long period and the very
longest durations (smallest impact parameters) at short
period. Therefore this effect biases ξ downwards, again
against the observed trend. We have not identified any
straightforward instrumental or analysis bias that pushes
the distribution to larger ξ values, as observed.

To simulate the observed ξ distribution, we also should
take into account photometric noise and eccentricities.
With respect to photometric noise, the error on a dura-
tion measurement is σdur ' Tdur

√
2r/SNR (Carter et al.

2008), typically ∼ 1%. We add a gaussian-random de-
viate with this standard deviation to the simulated du-
rations. Eccentricity has two effects on the duration:
(i) at a given inclination, it results in a different impact
parameter and transit chord and (ii) the projected or-
bital speed changes; we model both these effects with
Keplerian orbits. With these effects in place, the popu-
lation model assumes mutual inclinations of planets are
excited to a scale δ, and eccentricities of both planets are
excited to a scale a factor n times δ. That is, the energy
in the eccentricity epicycles is a certain number times
equipartition with the energy in the inclination epicy-
cles. Both the mutual inclination and eccentricity distri-
butions are modeled as Rayleigh distributions, such that
the Rayleigh widths are σi = δ and σe = nδ. This al-
lows us to construct a Monte Carlo method to determine
predicted distributions of ξ as a function of δ and n. To
evaluate this distribution, we make 250 mock systems for
each observed pair of planets, where we have taken only
the pairs where both planets are detected at SNR> 7.1,
the nominal detection limit. For each mock system, step
one is to draw the eccentricities: e sinω and e cosω are
drawn from Gaussian distributions of width nδ (resulting
in a uniform distribution of ω values and a Rayleigh dis-
tribution of e values). We discard a trial if either planets’
eccentricity is above 1 or if the inner planet’s apocenter
distance exceeds the outer planet’s pericenter distance,
given their period ratio. Step two is to draw b2 uniformly
from [0,b2,max], where b2,max is the impact parameter the

Figure 6. Kolmogorov-Smirnov p-value for inclined and eccen-
tric systems. A region of acceptable probability lies in the range
∼ 1.0◦−2.3◦, for the Rayleigh parameter of the mutual inclination.
The preferred value of eccentricity is near equipartition with the
inclination, however the acceptable region (p-value=0.1%, equiva-
lent to 3− σ) spans a very wide range, from perfectly circular to 7
times equipartition.

planet would need for the total SNR of the outer planet
to drop to 7.1. This modeled SNR is taken as the ob-
served SNR times the square root of the ratio between
the modeled duration and the observed one. Step three
is to draw b1 from a distribution centered on b2(a1/a2)
(eq. [8]) and having a gaussian width δa/(R? + Rp). If
|b1| > b1,max, as above, this planet would not be detected
in transit. If the conditions for acceptance are not met
at each step, the process begins anew at step one. If
accepted, the mock system’s ξ value contributes to the
simulated ξ distribution.

Depending on the amount of inclination and eccentric-
ity in the system, the simulated ξ distribution can be
tuned to match the data. We computed a grid of models
with steps of 0.002 in δ and 1 in n, and we show in fig-
ure 6 the p-value from the K-S test for these models. The
peak (best-fit) value has a probability 0.027 and lies at
δ = 0.032, n = 2, corresponding to inclinations of ∼ 1.8◦.
The typical mutual inclinations lies firmly in the range
1.0◦ − 2.3◦ : planetary systems tend to be quite flat.

In contrast to this narrow range of mutual inclination,
the ξ distribution can be acceptably matched (p-value
> 0.01) over a wide range of eccentricities. The geo-
metrical reason for that is that if inclinations change by
1%, the duration may change by order unity, but if ec-
centricities change by 1%, the duration usually changes
by only 1%. The result is that quite good fits can be
obtained both for circular orbits and for eccentricities
twice equipartition (the black models of figure 7, pan-
els b and c respectively), and indeed up to many times
equipartion. Therefore we do not claim to have detected
eccentricity in these planet pairs, or provided any limits
beyond that from transit durations of individual candi-
dates (Moorhead et al. 2011), but we instead note that
our conclusion about mutual inclination is not sensitive
to these poorly known parameters.

Our conclusion that Kepler’s planetary systems are flat
was first investigated in Paper I, which used the num-
ber of planets of each multiplicity to show that the sys-
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Figure 7. Histograms of normalized duration ratios (equation 1).
Panel (a): the distributions of ξ itself and its inverse are contrasted.
If planetary orbital planes are not correlated, these distributions
would be equal. Instead, there is a signature of the inner planet
having a longer duration, i.e. a smaller impact parameter. Panel
(b): models of three different typical mutual inclinations, for cir-
cular orbits, are compared to the data, showing how these can be
distinguished. Panel (c): the best-fitting model is compared to the
data. This fit is not significantly better than the black line of panel
b, as a wide range of eccentricities acceptably fits the data.

tems are likely quite flat (just a few degrees). However,
it was possible that the typical inclination was higher
than 10 degrees, in the case that planetary systems have
many more planets (& 10) than expected. To rule out
the latter, the RV-sample was brought to bear to limit
planet multiplicity (Tremaine & Dong 2011; Figueira
et al. 2012), breaking the degeneracy and preferring small
planetary inclinations of just a few degrees. This con-
clusion requires significant overlap between the current
RV sample and the Kepler sample, which remains poorly
quantified. Now, having reached the same conclusion
from the Kepler sample alone, our confidence that plan-
etary systems are typically flat is bolstered.

Nevertheless, some caveats apply to our investigation.
We have used all pairs of planet candidates throughout,
such that the n-planet systems are represented more, by a
total of n(n−1)/2 pairs. Thus the architectures of larger-
n systems carry more statistical weight. Nevertheless, by
simulating all planet configurations and only comparing

the doubly-transiting simulated pairs to the data, our de-
termination of σi is unbiased. Another caveat is that the
distribution of inclinations may not be well-characterized
by a single Rayleigh distribution, and high-inclination
components of the actual distribution would contribute
less statistical weight. Thus, as with all applications of
parameter-fitting, the limits given on the parameter σi
hold only to the extent that a member of the family of
model distributions describes the actual distribution.

6. DISCUSSION

Using the new catalog from Kepler doubling the num-
bers of planet candidates (B12), we have investigated
the architecture of planetary systems anew. We have
shown that the candidates avoid close orbital spacings
that would destabilize real planets’ orbits; from this we
derived a likely fraction of ≈ 96% of the candidate pairs
are really pairs of planets orbiting the same star.

We found that planetary systems are usually not reso-
nant but do show interesting clumping just wide of first-
order resonances 2:1 and 3:2, and a gap just narrow of
them. It is not yet clear whether formation mechanisms
or evolution mechanisms account for this pattern.

The flatness of planetary systems, described based on
multiplicity statistics by Paper I, was revisited here based
on duration ratio statistics. We affirm and strengthen the
result that pairs of planets tend to be quite well aligned,
to within a few degrees. This new constraint uses the
Kepler data alone, a more direct measurement than has
been performed so far.

In future work (Ragozzine et al. in prep, Morehead et
al. in prep), we will create population synthesis models,
that propose an ansatz of planet distributions, run them
through the selection functions of Kepler, and reproduce
the planet multiplicities, period spacings, and duration
ratios actually seen. This work serves as a stepping stone,
as it has looked within the data itself for validation of the
trends, by forming period and duration ratios.

6.1. Comparison to the Solar System

In this paper we have described the architecture of a set
of multiple planets whose gross structure is completely
alien. The sample is dominated by Neptunes and Super-
Earths whose orbits are of order 10 days: nothing like
that exists in the Solar System. In that sense, the Kepler
sample of multiply-transiting planetary systems follows
the trends of exoplanetary science over the past 20 years.

However, a striking feature of the Solar System is its
extreme coplanarity. This property of planetary systems
has only started being assessed (Paper I; Tremaine &
Dong 2011; Figueira et al. 2012). Perhaps no observa-
tion is more crucial for theories of the Solar System’s
formation in a gaseous disk encircling the proto-Sun. For
exoplanetary systems detected by radial velocity, there is
typically no information on the inclination of individual
planets, and only weak information (from stability, gen-
erally) available regarding their inclination with respect
to one another. Thus it is exciting that, with the transit
discoveries, we now have a statistical sample to assess the
degree of flatness of extrasolar systems. The remarkable
conclusion is that the value for the spread in inclinations
in the Solar System (σi = 2.1◦ − 3.1◦, or 1.2◦ − 1.8◦ ex-
cluding Mercury, see appendix B) is very similar to the
value from the exoplanets (σi = 1.0◦ − 2.3◦). Moreover,
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although we have not demonstrated it with the data,
we would expect the eccentricities of these planets to be
roughly in equipartition with their mutual inclinations
(e ∼ 0.03), suggesting values compatible with the Solar
System planets. Although the radial velocity technique
has discovered many systems of super-Earths and Nep-
tunes (Mayor et al. 2011), the population we are detect-
ing here, their eccentricities have not yet been securely
measured; we suggest they will turn out to be small. This
is in contrast to the giant exoplanets found to date, but it
may continue the trend that lower mass exoplanets have
lower eccentricities (Wright et al. 2009).

Finally, we may ask whether the planets of the Solar
System show any such resonant structure. The only pair
close to a first-order mean-motion resonance is Uranus
(4.0R⊕) and Neptune (3.9R⊕), whose period ratio is
1.96. These values lie near the border of the gap in panel
c of figure 4. As the origin of this gap remains unclear, it
is hard to know whether Uranus and Neptune’s proximity
to it has physical significance.
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Figure 8. The value of ζ as a function of the period ratio of two planets. If only first order resonances are studied, then one uses
ζ1,1 (solid, blue) where all period ratios are assigned to a neighborhood of a first-order resonance. If one simultaneously considers first
and second-order resonances, then ζ2,1 (dashed, red) and ζ2,2 (dotted, red) are used where all period ratios are assigned either to the
neighborhood of a first or a second order resonance (these are ζ1 and ζ2 of the main text). Finally, if one wishes to partition the real line
into neighborhoods around only second order resonances, then n = 1 and j = 2 and the result is ζ1,2, the thin solid curves.

APPENDIX

REGARDING THE RESONANCE VARIABLE ζ

In this section we discuss in more detail the quantity ζ. The general form of ζ is given by

ζn,j = (n+ 1)

(
j

P − 1
− Round

[
j

P − 1

])
(A1)

where P is the ratio of the periods of the two planets (always greater than unity), j is the resonance order under
consideration, and n is the number of resonance orders that are simultaneously being considered. This last statement
means that the real line is partitioned into non-overlapping neighborhoods around MMRs up to order n. The boundaries
between resonances are always defined by resonances of the lowest order not considered. The motivation for defining
this quantity was to provide a means of treating equally all resonances under study, even though their neighborhoods
are different sizes (approaching zero as the index j →∞).

For example, in Paper I and in section 4, both first and second order resonances are considered (n = 2) and the
quantities ζ1 and ζ2 (here ζ2,1 and ζ2,2) are given by

ζ2,1 = 3

(
1

P − 1
− Round

[
1

P − 1

])
(A2)

and

ζ2,2 = 3

(
2

P − 1
− Round

[
2

P − 1

])
(A3)

where ζ1 is applied to those planet pairs that fall into the neighborhoods of the first order resonances and ζ2 is
applied to the pairs in the neighborhoods of the second order resonances. The boundaries between these resonance
neighborhoods is defined by the intermediate, third order resonances (the lowest order resonances not considered).

Suppose, however, that one wanted to assign all period ratios into the neighborhood of a first order resonance only,
without considering second order resonances. Then the proper quantity is ζ1,1, which is contrasted to the ζ2,1 in
figure 8. For our sample, choosing such a broad resonance neighborhood includes possible features in the continuum
or near the second or higher order resonances and hence dilutes the power of the statistical tests we employ here.
However, situations may arise where a selection criteria, such as examining only higher-index first order resonances
such as 4:3, 5:4, etc., may justify the use of ζ1,1. Therefore we recommend it for future work with Kepler, as smaller
planets are more likely to be found in such tightly packed configurations, and a longer baseline will have the sensitivity
to see them. One other possibility would be to study only second order resonances (including 4:2 and 6:4), in which
case one would use the ζ1,2 variable. Figure 8 contrasts these different choices for mapping period ratios into a space
more suitable for studying resonances.
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SOLAR SYSTEM MUTUAL INCLINATION DISTRIBUTION

Here we compute the best-fit Rayleigh distribution of the mutual inclinations for the Solar System planets. There
are a total of n(n − 1)/2 = 28 pairs for the n = 8 planets. We used on the Keplerian elements at J2000 provided by
the JPL Solar System Dynamics website17 to find the set of 28 mutual inclinations. This set was fit to a Rayleigh
distribution, and the Rayleigh parameter constrained using the same Bayesian technique as section 3.3. The 95%

credible interval was found to be σi = 2.5◦|+0.6◦

−0.4◦ . The planet Mercury is well-known as an outlier in inclination, and

when this exercise is repeated just with the other 7 planets, the result is σi = 1.4◦|+0.4◦

−0.2◦ . These results were obtained
with a uniform prior on σi, but since the allowed region is in each case rather narrow, the calculations are not sensitive
to the prior. For a comparison of these results to the Kepler sample, see section 6.1.
Facilities: Kepler.
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Lovis, C., Ségransan, D., Mayor, M., et al. 2011, A&A, 528, A112
Marchal, C., & Bozis, G. 1982, Celestial Mechanics, 26, 311
Mayor, M., Marmier, M., Lovis, C., et al. 2011, preprint (arxiv:1109.2497v1)
Moorhead, A. V., Ford, E. B., Morehead, R. C., et al. 2011, ApJS, 197, 1
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Table 1
Characteristics of Systems with Two Transiting Planets (entire table is in the source)

KOI # Rp,1 (R⊕) Rp,2 (R⊕) P2/P1 ∆

5 5.7 0.7 1.47518 8.1
46 4.3 1.0 1.72867 13.5
72 1.4 2.2 54.08308 87.4
89 4.9 6.5 2.45136 17.3
108 2.9 4.5 11.24943 44.3
112 1.2 2.9 13.77101 65.0
119 3.8 3.3 3.86939 26.8
123 2.6 2.7 3.27424 31.1
124 3.0 3.6 2.49937 21.1
139 1.5 7.3 67.26747 47.2
150 2.6 2.7 3.39808 28.9
153 2.1 2.5 1.87739 16.9
159 1.3 2.7 3.74052 39.1
171 2.7 2.1 2.19001 23.2
209 5.4 8.3 2.70221 14.0
216 1.5 7.2 2.68293 15.4
220 3.5 0.8 1.70309 14.1
222 2.0 1.7 2.02687 19.7
223 2.5 2.3 12.90608 54.2
238 2.4 1.4 1.54905 14.7
244 3.4 6.5 2.03899 12.6
251 2.6 0.8 1.38663 9.1
260 1.6 2.6 9.55471 61.4
262 2.2 2.8 1.20014 5.5
270 1.8 2.1 2.67619 31.1
271 2.5 2.6 1.65454 15.0
274 1.1 1.1 1.51041 21.5
275 1.9 2.0 5.20519 52.9
279 2.1 4.6 1.84618 13.3
282 1.2 3.4 3.25259 30.7
291 2.1 2.7 3.87681 36.9
304 1.1 4.9 1.54250 10.0
307 1.1 1.8 3.77548 52.3
312 1.9 1.8 1.41630 12.8
313 1.6 2.2 2.22082 25.5
316 2.7 2.9 9.95884 51.9
338 1.5 3.2 2.25601 22.0
339 1.6 1.7 6.48067 60.9
341 1.6 3.0 3.05158 30.3
369 1.1 1.1 1.71695 26.8
370 2.6 4.3 1.86849 14.8
379 2.6 1.8 3.44421 36.8
386 3.2 2.9 2.46264 21.2
392 1.3 2.3 2.64990 32.5
401 6.6 6.7 5.48026 21.9
413 2.8 2.1 1.62021 12.8
416 2.8 2.7 4.84703 35.5
427 4.3 2.6 1.74490 11.4
431 2.8 2.5 2.48550 21.9
433 5.6 12.9 81.43980 28.5
438 1.7 2.1 8.87876 53.0
440 2.4 2.3 3.19834 29.9
442 1.4 2.3 7.81624 60.6
446 1.8 1.7 1.70872 16.2
448 1.8 2.3 4.30085 34.8
456 1.5 3.3 3.17889 28.6
457 1.8 2.0 1.43543 11.3
459 1.2 3.1 2.81027 27.6
464 2.6 6.7 10.90841 33.5
471 1.0 2.3 2.73298 34.0
475 2.0 2.3 1.87181 17.3
497 1.5 2.7 2.98125 33.4
505 1.6 2.9 2.22206 21.9
508 3.4 3.3 2.10147 17.4
509 2.2 2.7 2.75106 26.7
511 1.3 2.2 1.87764 20.1
518 2.1 1.5 3.14698 32.4
519 2.4 2.5 2.85925 29.1
523 2.9 7.0 1.34073 5.0
534 1.7 2.4 2.33931 24.7
542 1.4 2.4 3.03135 33.3
543 1.4 2.2 1.37105 10.3
546 2.3 3.1 2.10507 20.2
551 2.0 2.2 2.04588 22.2
555 1.4 2.7 23.36546 69.4
564 2.6 6.1 6.07473 29.1
569 1.3 2.4 12.69431 64.8
572 1.2 2.4 2.15436 24.3
573 1.7 3.0 2.90831 29.0
574 1.1 2.5 1.93604 20.3
579 1.6 1.8 1.86286 21.2
582 2.2 2.1 2.98381 30.9
584 2.3 2.1 2.13802 21.8
590 2.4 2.9 4.45170 38.8
593 2.6 3.8 9.04327 44.4
597 1.4 2.6 8.27264 56.0
601 2.8 5.3 2.16105 14.9
612 4.8 5.5 2.28669 13.6
624 2.5 2.4 2.78625 27.5
638 3.6 3.8 2.83851 21.3
645 2.5 2.5 2.79695 27.2
655 2.8 2.5 5.91638 45.5
657 1.6 2.1 4.00119 40.0
661 2.1 1.4 1.78178 20.0
663 1.5 1.8 7.36913 55.1
671 1.7 1.6 3.84507 47.8
672 2.6 3.1 2.59511 23.2
676 2.6 3.3 3.24981 23.8
678 3.3 3.5 1.45956 8.5
679 0.9 2.6 1.95625 23.2
691 1.2 2.9 1.82839 18.0
692 1.1 2.0 1.95868 24.8
693 1.9 1.8 1.83773 20.9
708 1.8 2.5 2.26250 24.8
736 1.3 2.2 2.78884 28.6
738 3.6 3.2 1.28553 5.6
752 2.6 3.2 5.73535 39.9
784 2.0 1.9 1.91467 17.8
787 2.9 3.5 2.56801 21.7
800 3.3 3.4 2.65981 22.5
817 2.0 1.8 2.88925 28.4
825 1.6 2.3 1.71870 15.7
835 2.2 2.3 4.78005 39.4
837 1.4 2.1 1.91905 21.2
841 5.4 7.0 2.04315 10.5
842 2.0 2.5 2.83580 26.1
853 2.4 1.8 1.76705 16.4
857 2.3 2.7 3.50383 32.3
870 2.5 2.4 1.51984 10.8
872 1.5 7.0 4.96585 23.5
874 2.3 1.5 2.43102 27.4
877 2.4 2.4 2.02187 17.3
881 3.3 4.4 10.79278 38.7
896 3.2 4.5 2.57435 18.4
912 1.1 2.0 1.62686 14.8
936 1.5 2.7 10.60171 49.6
945 2.3 2.6 1.57528 13.0
951 3.7 2.9 2.55000 19.6
954 2.7 2.9 4.55012 35.7
986 1.9 1.5 9.28864 66.6
988 2.2 2.2 2.36685 24.8
1001 4.7 3.7 3.43304 25.2
1015 1.4 2.6 2.30588 27.3
1050 1.4 1.4 2.24817 29.8
1052 1.7 2.4 2.48732 28.5
1070 2.4 4.1 16.27497 50.0
1089 5.1 9.3 7.09416 22.8
1102 2.7 2.9 1.51419 10.6
1113 2.8 3.1 3.21746 28.7
1151 0.8 1.0 1.42034 17.8
1163 1.5 1.4 2.72943 35.7
1215 2.9 3.4 1.90517 16.1
1221 2.9 2.2 1.69363 14.7
1236 2.0 3.0 2.90368 29.3
1239 1.6 1.7 4.05226 49.9
1240 1.4 2.3 2.24676 26.0
1241 3.8 7.8 2.03791 11.8
1258 2.2 5.1 2.48104 18.1
1261 2.1 7.2 8.78339 31.5
1270 2.2 1.6 2.02629 22.0
1276 1.2 2.0 1.71855 19.6
1278 1.9 2.4 1.78788 17.6
1279 0.7 1.3 1.48928 19.5
1301 2.4 2.2 2.95407 29.5
1305 1.2 1.1 2.34891 38.0
1307 2.5 3.0 2.20486 19.6
1316 1.5 1.5 1.61799 20.5
1332 1.5 2.7 3.16626 32.8
1336 2.8 2.9 1.52411 10.6
1338 1.4 1.6 13.04249 79.5
1342 1.2 1.9 2.16816 27.5
1353 3.9 18.9 3.64367 11.5
1359 3.1 6.5 2.82528 16.1
1360 2.2 2.6 2.52029 23.9
1363 2.1 1.8 1.60742 15.8
1366 2.8 3.4 2.81279 24.1
1396 1.8 2.7 1.79028 17.3
1435 1.9 2.0 3.89755 42.0
1475 1.2 1.6 5.91077 53.1
1480 1.1 2.6 2.90986 30.4
1486 2.5 8.6 8.43365 26.5
1515 1.0 1.5 3.64536 46.0
1529 1.1 2.0 1.51499 15.9
1590 1.2 1.7 5.47166 55.9
1596 1.6 3.7 17.78535 52.6
1608 1.8 1.6 2.15103 28.1
1627 1.4 2.1 1.73371 17.9
1665 1.0 1.2 1.17232 8.1
1677 0.7 1.9 6.11744 64.1
1692 0.8 2.6 2.42185 29.2
1713 1.2 1.3 3.04744 39.1
1751 3.1 3.4 2.41611 19.0
1760 2.2 1.9 1.58848 14.6
1779 5.9 5.1 2.53393 15.0
1781 1.9 3.3 2.60702 23.2
1809 1.4 2.4 2.66387 31.7
1820 2.3 3.8 2.62243 21.8
1824 1.8 2.0 2.11745 25.8
1831 1.4 2.5 1.51443 12.8
1843 1.4 0.8 1.51531 16.4
1845 4.3 8.0 2.56721 13.3
1874 1.4 2.2 2.51937 25.2
1884 2.1 4.1 4.84185 31.0
1889 1.8 2.8 1.55798 12.5
1891 1.2 1.8 1.93167 23.5
1908 1.3 1.1 1.91924 24.6
1922 1.8 1.5 7.72334 66.0
1929 1.4 2.0 2.94376 37.1
1940 0.6 1.8 1.63202 17.4
1945 1.8 2.9 3.62999 35.1
1955 1.9 1.9 2.60121 32.8
1970 2.9 3.0 5.71829 38.0
1977 0.7 1.2 1.26595 10.8
1978 3.1 3.5 3.66315 28.2
2022 1.8 2.0 2.06546 23.9
2028 2.6 3.1 1.54501 10.7
2029 0.8 1.3 1.62428 22.6
2036 1.0 1.5 1.45134 13.5
2037 2.3 4.2 8.61379 39.5
2045 1.7 1.5 4.42091 45.8
2051 1.6 2.8 2.33540 25.1
2053 1.4 1.6 2.84468 40.0
2080 2.9 2.7 2.45114 22.4
2092 3.1 4.1 2.25656 17.8
2111 1.7 2.4 2.18455 24.1
2113 2.3 2.6 1.29289 6.9
2153 1.3 2.2 2.32968 30.8
2168 1.3 1.6 3.81373 52.0
2173 1.2 1.2 1.41684 14.6
2179 1.4 1.6 5.44197 50.0
2183 1.2 1.8 4.15404 51.6
2218 1.4 1.3 3.02173 43.5
2236 1.6 2.0 1.64827 16.7
2261 1.1 0.8 1.66638 26.0
2278 1.1 2.0 2.88035 39.4
2279 1.0 1.5 2.15961 32.4
2311 1.1 1.5 13.98102 94.6
2333 1.4 1.6 1.94109 26.5
2339 1.4 1.5 32.07523 92.3
2352 0.8 1.1 2.37899 51.6
2369 1.7 2.2 1.74492 18.4
2374 1.2 1.9 2.31129 29.1
2413 1.3 1.2 2.41771 34.2
2414 1.0 1.2 2.00664 30.8
2433 2.5 2.2 1.50981 12.4
2443 1.1 1.0 1.74292 28.4
2466 0.9 1.0 4.19030 62.1
2521 1.4 2.2 5.85135 50.7
2534 1.1 1.1 1.79212 29.0
2554 0.8 1.7 3.87062 44.2
2597 1.6 1.6 1.51537 16.4
2650 1.1 1.3 4.95974 54.8
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Table 2
Characteristics of Systems with Three Transiting Planets

KOI # Rp,1 (R⊕) Rp,2 (R⊕) P2/P1 ∆1,2 Rp,3 (R⊕) P3/P2 ∆2,3

41 4.5 6.5 1.86083 12.7 6.1 2.75701 18.6
85 3.2 4.1 2.71933 27.8 4.4 1.38758 8.6
111 4.6 5.8 2.07117 15.6 7.4 2.18673 14.1
115 2.6 2.8 1.57522 17.9 2.8 1.31665 10.6
116 2.8 3.4 2.20129 25.8 6.4 3.23081 26.4
137 2.1 3.5 2.18034 33.0 3.6 1.94449 24.5
148 2.8 3.5 2.02469 21.2 5.9 4.43418 31.4
152 5.0 6.8 2.03215 18.9 8.6 1.90096 14.4
156 2.5 2.6 1.54982 14.1 2.9 1.46446 11.6
168 5.0 6.4 1.51156 10.3 6.1 1.42187 8.3
245 3.0 3.8 1.59358 13.1 4.6 1.86802 15.2
284 3.2 3.5 1.03830 1.0 2.9 2.80755 26.9
314 2.1 2.4 1.33641 10.5 2.0 1.67545 18.6
343 2.5 3.4 2.35246 28.9 7.5 8.78033 40.9
351 7.8 12.0 3.52522 27.0 14.4 1.57482 8.5
377 1.8 4.2 12.09936 98.0 4.5 2.01864 26.9
398 1.7 2.4 2.41710 55.7 4.8 12.40337 89.6
408 3.3 4.0 1.70156 17.8 5.1 2.45423 25.2
474 3.1 3.7 2.64821 29.5 5.3 3.27334 28.8
481 1.8 2.8 4.92295 56.9 5.0 4.47836 37.5
490 2.5 2.9 1.68583 16.5 3.4 2.94410 29.9
510 2.8 3.4 2.17289 24.8 3.8 2.28942 23.8
520 2.4 3.6 2.34861 28.1 2.9 2.01809 22.4
528 3.4 2.5 2.14612 25.8 6.0 4.70359 36.4
567 3.6 4.7 1.89968 17.3 4.2 1.42949 9.3
620 5.8 2.8 1.88931 22.4 8.4 1.52595 12.0
623 3.8 4.3 1.84837 13.7 5.3 1.51478 8.3
658 1.9 2.1 1.69812 21.6 3.4 2.10959 23.7
664 4.1 4.8 1.68814 11.9 6.2 1.78436 11.3
665 3.2 4.1 1.90558 18.7 4.1 1.91044 17.3
700 3.3 3.8 1.56691 13.1 2.9 2.10428 22.1
701 2.3 3.0 3.17836 36.6 7.1 6.73808 34.5
711 3.2 6.4 12.35005 52.6 9.8 2.78581 18.0
718 3.3 5.8 4.95356 36.7 5.7 2.10897 16.0
723 1.8 1.8 2.56257 47.4 4.6 2.78349 32.9
749 2.5 3.1 1.35740 10.3 3.2 1.51589 12.9
756 2.5 3.3 1.61086 19.1 5.0 2.68342 29.9
757 2.6 3.5 2.56977 37.3 4.6 2.56355 30.7
775 2.4 3.1 2.08001 22.8 4.2 2.22435 20.5
806 4.3 6.7 2.06841 24.4 8.7 2.37410 23.1
829 4.0 4.5 1.91233 17.8 5.0 2.06759 18.4
864 2.7 1.5 2.26525 33.4 4.5 2.05281 21.9
884 2.1 2.9 2.82940 44.6 3.2 2.16925 29.8
886 3.4 5.0 1.50690 10.2 3.8 1.73922 13.3
898 2.2 2.6 1.88991 25.6 3.6 2.05616 24.1
899 1.8 2.2 2.15140 28.6 2.5 2.16037 25.8
906 2.4 2.6 1.72542 20.3 2.3 2.46593 33.5
921 1.9 3.6 2.71716 34.1 4.4 1.76229 15.9
934 3.2 3.4 2.13023 26.7 4.0 1.51034 13.6
938 1.8 2.3 5.46504 72.2 3.5 1.74052 20.2
941 1.9 3.1 2.76224 43.5 2.9 3.74756 49.2
961 0.4 0.5 2.67770 145.0 0.5 1.53662 60.9
1060 4.5 4.7 1.72215 12.4 5.6 1.47794 8.2
1078 1.5 1.5 2.05070 35.7 3.0 4.13871 49.2
1127 3.0 3.7 1.87772 19.8 4.1 1.52592 12.1
1161 2.7 3.8 2.03860 19.1 3.0 1.80557 15.6
1194 2.2 2.5 2.08501 25.8 3.0 1.70686 17.1
1203 3.6 5.4 2.25665 21.0 3.8 1.52602 11.0
1306 1.8 2.3 1.93064 22.1 2.5 1.70531 16.2
1358 2.0 2.2 1.54722 17.5 2.6 1.54883 15.9
1422 1.7 2.0 1.61304 21.4 3.0 3.39804 42.2
1426 6.1 4.9 1.92722 15.4 4.3 2.00258 18.4
1430 2.3 2.0 2.18886 30.8 4.8 3.37915 32.3
1432 2.9 3.9 2.35246 24.5 4.9 2.18634 19.0
1436 2.4 2.3 2.16024 24.2 4.0 2.53756 22.9
1445 4.6 7.0 2.79257 16.8 9.6 2.71456 12.9
1576 2.7 3.0 1.25618 8.6 2.7 1.78386 21.5
1598 2.2 5.8 4.05393 36.3 7.1 1.64456 10.5
1647 4.5 6.0 2.36461 17.5 7.3 2.15601 13.4
1805 2.3 2.2 1.59105 26.0 4.1 4.57869 61.1
1832 1.8 1.9 2.80827 50.1 3.4 3.03365 40.3
1835 2.0 2.2 2.03724 32.3 1.7 1.47738 18.9
1860 2.6 3.2 2.05409 24.0 4.2 1.93204 18.6
1867 1.6 2.2 2.04438 25.3 1.6 2.68010 34.5
1895 2.3 2.8 2.04329 23.2 2.7 1.85954 19.3
1909 3.2 4.1 2.33221 20.5 3.0 1.96727 16.7
1916 3.0 4.7 4.74106 36.5 5.1 2.15406 16.5
1931 2.6 3.3 1.40392 9.5 3.4 1.51083 10.5
1952 3.8 4.4 1.54179 10.5 6.2 3.45365 23.7
2025 5.1 6.0 1.59510 10.8 6.9 1.46432 8.0
2073 2.6 2.1 2.60343 36.3 5.9 2.93633 26.4
2086 4.2 4.4 1.25068 5.7 3.0 1.33436 8.1
2148 3.4 4.9 2.08663 20.1 6.3 1.58203 10.4
2174 2.1 2.2 2.30834 28.1 3.8 2.14478 19.8
2220 2.5 3.4 1.72979 14.4 3.4 1.53171 10.3
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Table 3
Characteristics of Systems with Four Transiting Planets

KOI # Rp,1 (R⊕) Rp,2 (R⊕) P2/P1 ∆1,2 Rp,3 (R⊕) P3/P2 ∆2,3 Rp,4 (R⊕) P4/P3 ∆3,4

94 3.6 5.2 2.78467 39.0 6.7 2.14348 24.2 8.5 2.43118 23.7
117 3.7 4.4 1.54136 12.3 4.3 1.62358 13.2 6.7 1.85339 14.0
191 1.5 2.1 3.41293 90.9 4.2 6.35081 84.2 5.3 2.51658 35.5
248 1.9 3.0 2.79590 39.0 2.9 1.51489 14.6 2.9 1.70405 18.8
250 2.1 2.9 3.46601 48.5 2.2 1.40446 13.7 2.4 2.71449 42.2
571 2.0 2.4 1.86972 21.7 2.8 1.83606 18.7 3.4 1.67933 14.1
720 2.1 2.5 2.03533 28.8 2.6 1.76459 21.8 2.4 1.82941 23.6
730 5.6 5.8 1.33379 6.6 6.1 1.50156 8.9 5.7 1.33357 6.4
733 2.1 2.6 1.89120 25.3 3.0 1.91549 22.6 1.9 1.64273 18.7
812 1.9 2.3 2.34265 34.0 3.3 2.56366 30.6 4.5 2.30217 21.8
834 3.5 4.8 2.94412 35.6 6.6 2.14984 20.8 8.3 1.78742 13.3
869 2.1 2.8 2.32629 32.3 2.4 2.33114 31.3 4.9 2.07782 20.8
880 2.2 2.8 2.47684 39.1 4.0 4.48017 49.6 6.4 1.94873 17.4
907 2.8 4.3 3.44696 39.1 5.1 1.82467 16.6 5.3 3.30662 29.8
935 3.4 5.7 2.16923 24.5 6.8 2.04360 18.6 9.3 2.05591 15.7
939 2.1 2.7 2.09080 24.2 3.1 1.72345 15.9 3.6 1.82936 16.0
952 1.8 2.3 2.03771 29.1 2.5 1.48308 14.8 3.4 2.60289 30.0
1198 0.9 4.9 10.21309 62.1 5.8 1.56180 10.7 5.8 2.21750 17.8
1557 1.4 1.8 2.19839 44.5 1.2 1.61300 28.3 2.9 1.81594 27.5
1563 2.0 3.0 1.71184 21.7 3.2 1.51105 14.6 3.0 2.01881 24.4
1567 2.3 3.1 1.55829 15.8 4.4 2.39310 24.3 5.6 2.58806 21.7
1930 5.9 7.4 1.46948 7.1 8.8 1.77102 9.2 10.3 1.82766 8.7
2038 3.8 4.4 1.50640 10.3 4.7 1.43165 8.4 5.3 1.40778 7.5
2169 2.2 2.1 1.48984 12.4 2.2 1.30789 8.3 2.2 1.27635 7.4
2248 1.4 1.9 3.47299 49.0 1.9 1.06496 2.4 1.9 3.36783 43.6

Table 4
Characteristics of Systems with Five or Six Transiting Planets

KOI # Rp,1 (R⊕) Rp,2 (R⊕) P2/P1 ∆1,2 Rp,3 (R⊕) P3/P2 ∆2,3

70 2.5 2.8 1.64997 19.7 3.8 1.77980 19.3
82 2.4 3.2 1.33748 10.3 3.2 1.45825 12.2
232 3.8 5.0 2.16191 23.2 4.9 1.73170 15.6
500 1.4 2.0 3.11330 55.1 2.1 1.51206 18.3
707 4.9 6.8 2.32460 22.9 8.2 1.65274 11.8
904 1.7 2.1 2.08832 28.7 2.4 2.20868 27.4
1364 2.0 2.5 1.43956 16.3 3.5 1.89909 23.2
1589 3.1 4.3 2.06549 19.8 4.3 1.47638 9.8
157 4.2 4.57 1.26406 4.8 5.5 1.74179 13.5

Table 5
Characteristics of Systems with Five or Six Transiting Planets, Continued

KOI # Rp,4 (R⊕) P4/P3 ∆3,4 Rp,5 (R⊕) P5/P4 ∆4,5 Rp,6 (R⊕) P6/P5 ∆4,5

70 3.6 1.80373 18.3 7.3 3.96427 29.9
82 3.7 1.56575 13.6 3.9 1.70038 15.1
232 6.5 1.76016 14.5 8.2 1.48052 8.5
500 2.5 1.51838 16.9 2.5 1.34997 11.6
707 9.0 1.45961 8.1 10.0 1.29085 5.1
904 3.5 2.74039 28.3 5.1 1.50821 9.2
1364 4.0 1.69768 16.7 4.4 1.73927 16.2
1589 5.2 2.12962 17.4 6.4 1.62371 6.3
157 4.3 1.41032 8.6 6.5 1.45917 8.8 9.5 2.53526 16.23
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