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Abstract

We investigate the long-term orbital stability of two-planet systems, both in isolation and effected by external
perturbations (e.g., a wide stellar binary companion). We perform direct N-body integrations of large ensem-
bles of planetary systems using the Swarm-NG library and NVIDIA graphics processing units. We find that
closely spaced planetary systems can be empirically stable when near mean motion resonances for Neptune
or super-Earth-mass planets and that even for giant planets closely spaced systems can be stable for high
orbital eccentricities. We also test how the volume of phase space which is apparently stable changes with
the addition of an external perturber. For the systems we consider (restricted to coplanar orbits), we find that
the volume of stable regions is only weakly affected by the presence of a wide binary companion of realistic
mass.

Jeroen, TODO NOTE TO SELF. Maybe reverse the bar order of histograms, to put them in same
order as all the other plots
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1. Introduction

The long-term stability of planetary systems has
long been an area of research. Activity has in-
creased since the discovery of exoplanetary sys-
tems with multiple planets. Exoplanet searches have
discovered over forty systems with multiple plan-
ets, mostly based on their radial velocity variations
(Wright et al., 2009). While these systems are gen-
erally presumed to be stable (at least for a time com-
parable to the system age), some of the systems are
tightly “packed”, meaning that there are “nearby”
qualitatively similar orbital solutions that are unsta-
ble on a much shorter timescale (Raymond et al.,
2009; Barnes and Quinn, 2004). In several systems
the orbital periods are near a 2:1 commensurability
and the planets may participate in a 2:1 mean motion
resonance (MMR), e.g., GJ 876 (Correia et al., 2010;
Rivera et al., 2010), HD 82943 (Lee et al., 2006),
Kepler-9 (Holman et al., 2010). In these systems,
strong planet-planet interactions can be observed on

an observable timescale. Of particular interest, two
systems have been discovered in even more tightly
packed configurations. The planets of HD 45364 ap-
pear to be in a 3:2 MMR (Correia et al., 2009) and
those of HD 200964 in a 4:3 MMR (Johnson et al.,
2010a). For giant planets, such tightly packed con-
figurations are typically only stable if the planets are
protected from close encounters by a MMR.

As exoplanet searches begin to discover less
massive planets, the population of known exoplanet
systems may grow to contain even more tightly
packed planetary systems that are not participating
in MMRs. If the actual population of planetary sys-
tems does not include systems which would be sta-
ble, then this could provide a clue to planet forma-
tion processes. In order to turn exoplanet discoveries
into tests of planet formation models, it is important
to understand the range of masses and orbitals that
are possible (i.e., long-term stable). Only then can
we ask questions such as whether the known systems
are consistent with a sample from all possible orbital
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configurations.
This study represents a first step towards under-

standing what types of planetary systems could be
long-term stable. For simplicity, we focus on two-
planet systems. For sufficiently separated systems,
some configurations are provably Hill stable (Glad-
man, 1993). However, some systems that are not
provably Hill stable may still be stable. We use direct
N-body integrations to identify such systems. The
Hill stability criterion is only applicable to isolated
systems. Therefore, we also investigate the stability
of two-planet systems under the presence of external
perturbations (e.g., a wide stellar binary). We inves-
tigate how large a region of phase space near each of
several MMRs is long-term stable. We also investi-
gate which MMRs are surrounded by nearby, stable
orbital solutions.

2. Method

2.1. Planetary integrators
Numerous numerical integration techniques have

been applied to study planetary systems. For long–
term integrations, it is important to use an algorithm
that is either symplectic, time reversible, or both.
The mixed–variable symplectic method is usually the
method of choice for long-term integrations to test
for orbital stability. In this study, we use a time–
symmetrized 4th order Hermite integrator which has
been optimized for planetary systems (Kokubo et al.,
1998; Kokubo and Makino, 2004). This integrator
is computationally efficient and provides high accu-
racy for long-term integrations. In particular, we use
the Swarm-NG package for integrating an ensemble
of few-body systems in parallel with a graphics pro-
cessing unit (GPU).

2.2. Graphics Processing Units
There is a great demand for computational power

in the fields of astronomy and astrophysics, (e.g.,
large simulations, Monte Carlo studies of large pa-
rameter spaces, analysis of large observational data
sets). Often a study is limited to a certain number of
bodies (N) that can be integrated in reasonable time.
In the case of observational research, there may be
a limit to the amount of data that can be processed
within reasonable time. Fortunately, astronomers are

not the only ones that are always in need of computa-
tional power. In the fields of computer graphics and
gaming computational power is also in high demand.
Indeed, computer gaming can drive the development
of the computer processor industry, as gamers want
more special effects and even higher levels of graph-
ical detail. While rendering those details requires
a lot of computational resources, most of the cal-
culations involved are relatively simple and can be
performed in parallel. This has shaped the devel-
opment of graphics processing units (GPUs). They
are highly parallelized, so as to perform the render-
ing methods much faster than if the rendering tasks
were performed by a standard processor (CPU). Re-
cently, the performance of GPUs has increased more
rapidly than the performance of CPUs, causing the
GPUs to have a theoretical peak performance more
than a magnitude higher than top-of-the-line CPUs.
Fortunately, GPU developers have extended the ca-
pabilities of the GPU making it possible for scien-
tists to harness the power of GPUs for science (Buck
et al., 2004). At first programming GPUs had to be
done in a language which was designed for render-
ing computer graphics and was not very efficient for
other non-game related problems. In 2006 NVIDIA
Corp. introduced the Compute Unified Device Ar-
chitecture (CUDA) programming language and com-
patible GPUs1. This made it much more efficient to
use the GPU as a co-processor to offload computa-
tional heavy parts of the algorithm and more practical
to program them for scientific computation. Today
GPUs offer over 1 TFLOP in single precision and
515 GFLOP of double precision performance2. This
allows the GPU to outperform the CPU by orders
of magnitude (in either single or double precision).
Apart from more computational power the GPUs
also have a higher memory bandwidth between the
memory and the processing unit than CPUs. This
makes the GPUs also suitable for algorithms that re-
quire a lot of data processing.

The first serious use of the GPU in astronomy
was for direct N-body simulations (Portegies Zwart
et al., 2007; Hamada and Iitaka, 2007; Belleman

1http://www.nvidia.com/cuda
2The NVIDIA Tesla C1060 that we have used in this

projects has a double precision performance of 78 GFLOP.
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et al., 2008; Gaburov et al., 2009). For large N,
these simulations are highly parallel by nature and
can make excellent use of the GPU to compute the
gravitational force. However the in these papers
discussed techniques are not applicable to small N-
body systems which require an alternative approach
which will be described in §2.4. Recently, other as-
tronomy algorithms have been successfully ported
to the GPU, including but not limited to: Gravita-
tional Lensing (Thompson et al., 2010), hierarchical
N-body methods (Gaburov et al., 2010; Bédorf et al.,
2011), Adaptive Mesh methods (Schive et al., 2010)
and radio astronomy signal convolution (Harris et al.,
2008).

2.3. Hardware Used
The GPUs used for the simulations are NVIDIA

Tesla C1060 GPUs. These cards have 78 GFLOPs
of double precision performance and have an on de-
vice bandwidth of 102GBs. The cards are connected
with the host system by a PCI-E x16 connection. The
host has 16GB of internal memory and two AMD
Opteron 2376 Quad-core processors.

2.4. Software
In this study, we use the Swarm-NG package

3 for integrating ensembles of few-body planetary
systems in parallel with a GPU. With large N-body
systems one can easily distribute the work over the
processing units of the GPU; with small N this
is not trivial since there is much less parallelism.
Swarm-NG is specifically designed for such sys-
tems. Instead of breaking up one problem into par-
allel tasks, Swarm-NG integrates thousands of few-
body systems in parallel. This makes Swarm-NG
especially suited for Monte Carlo type of simulations
where the same problem is run multiple times with
varying initial conditions and/or model parameters.

The implementation of Swarm-NG is such that
the problem setting and configurations are loaded on
the GPU. Then the configurations are simulated in
time on the GPU without intervention of the host sys-
tem. When the simulation is finished (or the memory
buffers are full), the results are written back to the

3http://www.astro.ufl.edu/∼eford/code/swarm/

host. Therefore, the performance of the software de-
pends solely on the GPUs used. The data analysis
is performed on the CPU after the simulations are
complete.

3. Initial Conditions

3.1. Configurations
The main aim of this study is to determine the

shape and size of the stable regions of parameter
space for tightly packed two-planet systems. We are
particularly interested in the potential of stable or-
bital solutions near MMRs. For three-body systems,
there are three masses and eighteen coordinates re-
quired to describe each set of initial conditions. Six
of these can be eliminated without loss of general-
ity by shifting to the center of mass frame. Thus,
we specify the initial conditions for the two plan-
ets, but not the star. Two more parameters can be
eliminated by scaling of system masses by the cen-
tral mass (mF = 1M�) and distances by the initial
semi-major axis of the inner planet (a1 = 1 AU) for
point masses where collisions are ignored. Another
four parameters can be eliminated for coplanar sys-
tems (i1 = i2 = Ω1 = Ω2 = 0◦, where i as the inclina-
tion and Ω is the longitude of the ascending node).
Still, methodically exploring an eight-dimensional
phase space is quite challenging. Thus, we choose
to perform Monte Carlo exploration of a seven di-
mensional phase space (a2/a1, e1, e2, ω1, ω2, M1,
and M2) for each of several sets of planet masses (m1
and m2). Here e is the initial orbital eccentricity, ω

is the initial argument of periapses, and M is the ini-
tial mean anomaly. Subscripts refer to the planets
according to their initial distance to the central star.
Except where otherwise noted, each of these param-
eters was varried uniformly over it’s allowed inter-
val: a2 ∈ [1.0,2.0]a1, e ∈ [emin,emax), ω ∈ [0,2π),
M ∈ [0,2π)). We choose both planets to have similar
masses, either close to Jupiter-mass, Neptune-mass
or super-Earth-mass (3.5 Earth masses). The respec-
tive masses of the planets are varied around the given
mass-ratio in a 1% interval. For each ensemble, we
integrate N = 11520 systems and integrate them in
time for over one million years.

Our simulations are subdivided in the basic, the
perturbed and the special setups. In addition to the
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above stated, we first describe the basic setup. For
three sets of simulations4, (r1aX, r2bX, r3cX),
we keep the ranges of the eccentricities very low to
study the stability of nearly circular systems. In order
to study the influence of the initial eccentricity, we
then increase emax for e1 and e2 to 0.1 in runs r1aY,
r2bY, r3cY and to 0.5 in runs r1aZ, r2bZ,
r3cZ. The results of the basic runs are shown in
Fig. 3 with the exception of the very low eccentricity
runs, since they do not show any interesting features.

In the perturbed simulations, we investigate how
the stability regions would be affected by the influ-
ence of a distant perturbing star. For these simula-
tions, the external perturber has a semi-major axis of
apert = 100 and an eccentricity of epert = 0.3. Its or-
bit lies in the same plane as the planets (i.e., ipert = 0
and Ωpert = 0). And the orbital phase is randomized
(ωpert and Mpert ∈ [0,360]deg). We consider mul-
tiple stellar masses (mpert = 1.0, 20 and 50). The
motivation for choosing such a high mass for the
pertuber in r6aYp50 03 is to see whether there is
any point where, independent of the unperturbed IC,
the system is destabilized completely by the external
mass. The results from the perturbed runs are shown
in Fig. 4.

In the case of the special simulations, we fix
the initial pericenter angles and mean anomalies to
search for more detailed phase space structure when
we reduce the number of degrees of freedom for the
initial conditions. The results from the special runs
are shown in Fig. 5.

The initial conditions for each of our ensembles
can be found in Table 1.

3.2. Data processing
During the course of integrations Swarm-NG

logs to disk snapshots of each system at specificied

4The naming of the simulations is as follows: The first
character is always ‘r’, the number indicates the global config-
uration, followed by a character that indicates the mass of the
planets (a=Jupiter mass, b=Neptune mass and c=super-Earth
mass). Then comes a character indicating the eccentricity range
(X= ∈ [10−4,10−3], Y=∈ [0.15,0.5] and Z=∈ [0.05,0.15]). If
the configuration contains a perturber this is indicated with the
‘p’ directly followed by the mass of the perturber and the ec-
centricy. The last number indicates the semi-major axis of the
perturber, if this is not indicated it is 100AU.

times. This allows us to plot orbital elements versus
time or to determine the distance between the star
and the planets. We use these snapshots to identify
which initial conditions are manifestly unstable dur-
ing the course of our integration. In particular, we
identify a system as unstable if either of the follow-
ing two criteria are met:

• Close encounters between planets

• Large changes in star-planet distance

Close encounters between planets We test for two
planets having a close encounter, defined to occur
when the two planets come within one Hill radius of
each other. According to Hill (1878), the Hill radius
is given by

RHill = a
(

mplanet

3mF

) 1
3

(1)

Large changes in star-planet distance We calcu-
late the distance between each of the planets and
the star to check if mutual planetary perturbations
have caused either planets to have been ejected from
the system or scattered onto an orbit with a signifi-
cantly different semi-major axis. For each snapshot
we compute the current distance between each planet
and the star. If any of the planets is further than
10 AU we declare the system as unstable, as the or-
bits have obviously been significantly changed.

Once the snapshots have been processed we end
up with a list of stable and a list of unstable initial
conditions. These lists are then used to create stabil-
ity maps (e.g., Fig. 2) and for performing statistics.

4. Results

Here we present the results of our stability analy-
sis of the previously described simulations. All simu-
lations are performed using the Swarm-NG software
package and its hermite gpu integrator.

The nomenclature of our runs corresponding to
their initial conditions is listed in Tab. 1.

All simulations have been run for 106 years with
a time-step of 0.003 year (1.16 days) per step, which
proves to be long enough to get good statistics on

4



Name Mass ratio e1 e2 ω1 ω2 M1 M2 mpert Mpert ωpert epert apert

r1aX 10−3 ∈ [10−4,10−3] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r1aY 10−3 ∈ [0.05,0.15] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r1aZ 10−3 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r1aZp20 01 10−3 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] 20 ∈ [0,360] 0.1 100
r1aZp02 03 10−3 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] 2.0 ∈ [0,360] 0.3 100
r2bX 5.10−5 ∈ [10−4,10−3] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r2bY 5.10−5 ∈ [0.05,0.15] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r2bZ 5.10−5 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r2bZp20 01 5.10−5 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] 20 ∈ [0,360] 0.1 100
r2bZp02 03 5.10−5 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] 2.0 ∈ [0,360] 0.3 100
r3cX 10−5 ∈ [10−4,10−3] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r3cY 10−5 ∈ [0.05,0.15] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r3cZ 10−5 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] - - - -
r3cZp20 01 10−5 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] 20 ∈ [0,360] 0.1 100
r3cZp02 03 10−5 ∈ [0.15,0.5] ∈ [0,360] ∈ [0,360] ∈ [0,360] 2.0 ∈ [0,360] 0.3 100
r1aYp02 03 50 10−3 ∈ [0.05,0.15] ∈ [0,360] ∈ [0,360] ∈ [0,360] 2.0 ∈ [0,360] 0.3 50
r1aYp02 03 20 10−3 ∈ [0.05,0.15] ∈ [0,360] ∈ [0,360] ∈ [0,360] 2.0 ∈ [0,360] 0.3 20
r4aY 10−3 ∈ [0.05,0.15] 0,0 0 0 - - - -
r5cY 10−5 ∈ [0.05,0.15] 0,0 0 180 - - - -
r6aYp50 03 10−3 ∈ [0.05,0.15] 0,0 0 0 50 ∈ [0,360] 0.3 100

Table 1: List of the simulations with their respective values or intervals from which the initial conditions were generated in a
Monte–Carlo fashion. Subscripts 1 or 2 refer to the inner and outer planet, repectively; pert refers to the external perturber.

Resonance a1/a2 a2
5:2 0.54288 1.84203
2:1 0.62996 1.58740
5:3 0.71138 1.40572
3:2 0.76314 1.31038
4:3 0.82548 1.21142
5:4 0.86177 1.16040
1:1 1.00000 1.00000

Table 2: List of numerical values of the expected resonances.

the stability regions, since most of the systems go
unstable before 105 years and are stabilized by 106

years. In Fig. 1 we show the number of systems sta-
ble over the course of the simulation. Since we only
take snapshots every ∼ 4000 years, we have to de-
termine the moment of unstability by the velocity of
the escaping planet(s). This is not always possible
and then the moment of unstability is set at the time
of the snapshot, which explains the sometimes large
drops in the number of stable systems.
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Figure 1: Number of systems stable over the course of the sim-
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the simulation (in logscale). The y-axis shows the number of
systems stable. Each line represents one of our configurations
as specified in Tab. 1 and starts with 11520 systems at T=0.

5



To determine which parameters had the most in-
fluence on the stability of the systems we conducted
a Pearson correlation test for the parameters that we
varried (i.e., e1 against ω1, e1 against a2, ω1 against
ω2, etc.). This was done for both stable and unstable
initial conditions. For both sets and for all parameter
combinations the Pearson correlation coefficient was
near zero.

Since the Pearson correlation did not give a con-
clusive method to compare the systems, we checked
for structure by plotting each parameter against all
other parameters. None of the combinations showed
sign of structure, except when we plot a2 against
e1 or against e2. In Fig. 2 we plot a selection of
the stable and unstable systems of simulation ra1X.
The selection is based on the semi-major axis of the
second planet and only shows the systems where
a2 = [1.2,1.4]. In the Figure we can see that there is
a sharp transition between unstable (a2 = [1.2,1.3])
and stable (a2 = [1.3,1.4]) systems, but within the
stable and unstable regions the points are distributed
at random. We see the same effect in the other system
configurations. Therefore in future plots we only plot
the stable systems with on the x-axis the semi-major
axis of the second planet (a2) and on the y-axis the

combined eccentricities of the planets (
√

e2
1 + e2

2).
Note that this method will not evenly distribute the
stable systems along the y-axis, but rather makes the
center of the plots more dense than the top and bot-
tom. For our analysis this is not important since we
focus on the horizontal distribution and the overal ef-
fect of the chosen eccentricity range.

The outcome of selected simulations is shown
in Figures 3, 4, 5 and Tab. 3. In the Figures we
show the stable initial conditions. In the same figures
the red line shows the normalized cumulative distri-
bution of stable systems for the simulation and the
green/shaded underlayed region is used for comput-
ing percentages in the histograms of §5. In the Table
we list the percentage of systems that where stable at
the end of the simulation.

In order to go systematically through the different
sets of initial conditions (ICs), we will first discuss
the overall effect of the ICs. Then, we will identify
the presence and strength of the expected resonances,
as given in Tab. 2. At last, we comment on the sys-
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Figure 2: Stable and unstable initial conditions in one figure.
We show a selection of r1aX where a2 = [1.2,1.4]. The x-axis
shows a2 the y-axis the combined eccentricities of the planets

(
√
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2). The stable system are indicated by the black dots,
the unstable systems by the red crosses.

tematic differences in the resonance appearances in
the different configurations.

Closely packed systems more stable for higher
e: Looking at r1aY, r2bY, r3cY (Fig. 3(a)
to 3(c), bottom panels) we see the behavior of the
systems with very low initial e, we find a clear insta-
bility strip after the 1:1 MMR, with a wide gap for
Jupiters and a small one for the lower mass planets.
The instability strip is nearly vertical, meaning that
the influence of the small e is negligible. In Fig. 3(a)
to 3(c) (top panels), we find the influence of the ec-
centricity increasing as the boundary between stable
and unstable systems is now merging together, mak-
ing the gap disappear while the population of stable
systems is thinning out towards higher e.

Phase-aligned orbits favour 5:4 MMR: Compar-
ing Fig. 5(middle) with Fig. 3(a), we find that the
prominence of resonances is significantly affected by
the fixed initial orbital phases. The 1:1 MMR for
the Jupiters is completely depopulated whereas the
5:4 MMR is clearly favoured for planets of aligned
initial phase. The disappearance of the 1:1 MMR is
easy to understand, since the planets would initially
be extremely close to each other rather than near the
leading/trailing Lagrange points.
In the anti-aligned case of r5cY (Fig. 5 top), we find
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Name stable after
106 y

r1aX 72%
r1aY 55%
r1aZ 8%
r1aZp20 01 5%
r1aZp02 03 7%
r2bX 92%
r2bY 77%
r2bZ 30%
r2bZp20 01 28%
r2bZp02 03 28%
r3cX 96%
r3cY 81%
r3cZ 38%
r3cZp20 01 28%
r3cZp02 03 39%
r1aYp02 03 50 45%
r1aYp02 03 20 14%
r4aY 66%
r5cY 91%
r6aYp50 03 47%

Table 3: Percentage of systems stable in each run after 106

years. For the configuration of each run see Tab. 1.

that the 1:1 MMR is stable. The gap between 1:1
and 5:4 is narrowed, compared to r3cY (Fig. 3(c))
and the stability of all other configurations is more
evenly distributed over the shown parameter-space;
resonances near any other MMR are not visible.

Carving out of the 5:3 MMR in the presence
of perturbers: We generally find that the effect of
the external perturber is remarkably small, even for
high perturbing masses. In the lightly perturbed runs
r1aZp02 03, r2bZp02 03 and r3cZp02 03
(Fig. 4) we hardly see any difference to their re-
lated runs r1aY, r2bZ and r3cZ (Fig. 3). How-
ever, in these runs, the perturbing mass is mod-
est, mpert = 2, and its separation, apert = 100,
very large. Keeping the separation of the per-
turber fixed to 100AU , while increasing its mass to
20M� only shows marginally more destabilization:
The more heavily perturbed runs r1aZp20 01,
r2bZp20 01 and r3cZp20 01 show, in compar-
ison to r1aY, r2bZ and r3cZ, an increasing de-
pletion of the 5:3 MMR for Jupiters and a desta-
bilization of highly eccentric orbits for the super–
earth mass planets. However, for Neptunes, no mea-
surable difference is visible. Placing the perturber
of mass mpert = 2 closer (apert = 50) has slightly
more effect as seen in r1aYp02 03 50 where the
5:3 MMR is clearly depopulated. Placing it even
closer (apert = 20) finally changes the picture dras-
tically. In run r1aYp02 03 20 (Fig. 4(b) bottom)
the stable islands have clearly moved away from the
position expected for them for the unperturbed sys-
tem. Tightly packed configurations are completely
depleted whereas some of the low eccentricity sys-
tems can survive on very wide separations. Remark-
ably, all MMRs 5:4, 4:3, 5:3, 2:1 and 5:2 are carved
out, rather than providing stability. This is confirmed
in the phase-aligned run r6aYp50 03 (Fig. 5, bot-
tom), in which a perturber of unrealistically high
mass mpert = 50 is placed at a large distance apert =
100. The effect of the perturber is weaker than in
the previous case, which is to be expected. However,
the carving out of the 5:4, 4:3 and 2:1 MMR remains
clearly visible, whereas the depopulation of the 1:1
MMR stems from the alignment of the orbits rather
than from the presence of a perturber. In this aligned
configuration, the 5:3 MMR is not clearly carved out;
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Figure 5: The stable systems of the special runs (see Tab. 1
for details). Top: SuperEarths (anti-aligned) r5cY, Middle:
Jupiters (aligned) r4aY, Bottom: Jupiters (aligned and heav-
ily perturbed) r6aYp50 03. The x-axis shows the semi-major
axis of the second planet (a2) and the y-axis the combined ec-

centricities of the planets (
√

e2
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2). The red line shows the
normalized cumulative distribution of stable systems with la-
bels on the right y-axis. The underlayed green/shaded region is
used for computing percentages in the histograms (c.f. §5).

bottom panel of Fig. 5 rather shows two surrounding
depletion strips.

To quantitatively summarize the results, we de-
termine the significance of the stability zones as seen
in Figs. 3, 4 and 5. We assign a system to a
resonance region if a2 lies within 0.025AU of the
nominal location of the MMR, based on Kepler’s
law. Then we calculate the relative number of stable
systems in each region compared to the total num-
ber of stable systems. This is to give an overview,
whereas the accurate cumulative population is al-
ways depicted as the red solid line in Figs 3, 4 and
5. For clarity, the selected resonance regions are un-
derlayed in green/shaded. In Fig. 6, we then plot
the relative population of these green areas using his-
tograms.

5. Discussion

Generally, we observe less stability for higher
planet masses, which is due to the increasingly
chaotic behaviour of the total system (is it?). Given

the overview in Fig. 4 we clearly see that for the low
mass planet systems (Figs. 6(e), 6(f), 6(h), 6(i),
6(k), 6(l)), the stability of the closely packed con-
figurations is largely unaffected by a distant stellar
companion, even for large stellar masses.

The survival fraction near the MMRs only
changes for the 5:2 and 2:1 MMRs. This means that
the perturber clearly only changes the shape of the
gravitational potential at large distances whereas the
central star dominates for closely packed configura-
tions.

In contrast the behaviour of the systems with gi-
ant planets and small eccentricities is quite different,
as depicted in Figs. 6(a), 6(g), 6(j), 6(m) the pop-
ulation of the 5:2, the 3:2 and the 1:1 MMR is virtu-
ally constant under the influence of a weak perturba-
tion. It is clear to see that the heavy systems cannot
be stable on the closely-packed MMRs 4:3 and 5:4
for low eccentric orbits. However, for highly eccen-
tric orbits (e.g. Fig. 6(d)), even these closely packed
systems can be comparably stable to wide configu-
rations. This is not unexpected, because higher ec-
centricity will lead to a higher effective distance be-
tween the planets. Moreover, the effective cross–
section for disruption will be decreased because of
the larger speeds of the planets at close separations
to the central star for higher eccentricities. Thus all
systems that do not disrupt very early after perias-
tron passage, because of counterrotation or unlucky
phase-relations, will survive as long as the time-scale
for some secular that destroys planets (?!) sets in.

Furthermore, for the Jupiters, we find that the
population of the 5:3 MMR decreases with pertur-
bation. It is interesting to observe that for low ec-
centricities and under perturbation, Jupiters can be
closely packed on the 3:2 MMR only (exception:
aligned orbits, see below). Whereas for higher ec-
centricities, the region around the 4:3 MMR pro-
vides additional stability. For wider configurations
and high e, the 2:1 and 5:2 MMR both provide some
stabilization.
In general, for the giant planets, an external perturber
always leads to destabilization of all regions whereas
for the low–mass systems the effect on the MMRs
themselves is marginal, only on regions between res-
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(c) SE: r3cZ and r3cY

Figure 3: Stable systems of a selection of the basic runs (see Tab. 1 for details). The x-axis shows the semi-major axis of the second

planet (a2) and the y-axis the combined eccentricities of the planets (
√

e2
1 + e2

2). The red line shows the normalized cumulative
distribution of stable systems with labels on the right y-axis. The configurations with eccentricity ∈ [0.15,0.5] are shown in the
top panels and with eccentricity ∈ [0.05,0.15] in the bottom panels. The underlayed green/shaded region is used for computing
percentages in the histograms (c.f. §5). J stands for Jupiter, N for Neptune, SE for SuperEarth

onances there is a clear tendency of destablization.
TODO refs to figures in lines above here

The influence of the orbital phase is evident from
Fig. 5 and is notably stronger than the influence of
(weak) perturbation: For the Super–Earths, the anti-
aligned configurations have an overall stabilizing ef-
fect as can be seen when we compare Fig. 6(c) and
Fig. 6(p). It is easy to understand that for anti-aligned
systems, it is much easier not to come within each
others Hill radii and be disrupted, wherefore stabil-
ity can be provided without MMRs. The fact, that the
gap after the 1:1 MMR still persists stems from the
fact, that Magic?! Aliens?! Maybe...42! TODO! ...
For Jupiter, in the case of aligned orbits (cf.
Figs. 6(n), 6(o), 6(q)) , the 5:3 MMR is strengthened
even in the presence of a perturber, whereas the 1:1
MMR is completely unstable. The latter can easily
be understood again because of the initial closeness
of the planets around the 1:1 MMR. However, the
strengthening of the 5:3 MMR must be due alone to
the phase-alignment. In general, the phase alignment
strengthens the stability of all giant-planet configura-
tions (cf. Fig. 6(a) to Figs. 6(o),6(q)).

Comparing our simulations with Jupiter mass
planets with recent studies of the system HD 200964,
in which Johnson et al. (2010b) have found a 4:3
MMR with an eccentricity of both planets e ∼ 0.1,
we find less than 0.1% of low-eccentricity systems
can be stable on the 4:3 MMR in our simulations
(cf Fig 3(a)). Since, however, there are surviving
configurations, we could not rule out such an inter-

pretation. In comparison with the 24Sextans sys-
tem, the eccentricity of which was determined to

be
√

e2
1 + e2

2 ∼ 0.45, we can easily support the 2:1
MMR configuration even if we consider an external
perturbation being persent (cf. Fig.s 3(a), 4), which
is reported in (literature).

6. Conclusion

In this paper we have mapped the stable regions
of phase space for closely packed coplanar, two-
planet systems. We find that pairs of giant planets
are very rarely stable between the 3:2 MMR and the
co-orbital region, even for nearly circular orbits. We
find stable, closely packed configurations for the gi-
ant planets only favoured for highly eccentric orbits.
The regions around the 2:1 and 3:2 MMRs have a
significant volume of stable phase space for sizable
eccentricities. The addition of a distance solar-mass
coplanar binary companion does not significantly re-
duce the volume of stable phase space. Only for very
large companion masses we found an increasing de-
pletion of the 5:3 MMR.

We find that systems with low-mass planets can
be much more tightly spaced than those with giant
planets. In particular, there are even stable configu-
rations inside the 5:4 MMR especially for highly ec-
centric orbits. The addition of a wide binary compan-
ion does not influence the close packed configura-
tions of low-mass systems. A weak destabilization is

9



 0.3

 0.6

 0

 0.2

 0.4

 0.6

 0.8

 11:1 5:4 4:3 3:2 2:1 5:25:3

 0.1

 0.2

 1  1.2  1.4  1.6  1.8  2
 0

 0.2

 0.4

 0.6

 0.8

(a) Top: J with heavy distant perturber r1aZp20 01 ,
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(b) Top: J with light distant pertuber r1aZp02 03 ,
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(c) Top: N with heavy distant perturber r2bZp20 01 ,
Bottom: N with light distant perturber r2bZp02 03
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(d) Top: SE with heavy distant perturber r3cZp20 01 ,
Bottom: SE with light distant perturber r3cZp02 03

Figure 4: The stable systems of the perturbed runs (see Tab. 1 for details). The x-axis shows the semi-major axis of the second

planet (a2) and the y-axis the combined eccentricities of the planets (
√

e2
1 + e2

2). The red line shows the normalized cumulative
distribution of stable systems with labels on the right y-axis. The underlayed green/shaded region is used for computing percentages
in the histograms (c.f. §5). J stands for Jupiter, N for Neptune, SE for SuperEarth
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Figure 6: Histograms showing the percentage of systems which were stable over 106 years for each of several resonance regions.
See Tab. 1 and 2 for details.
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only observed for widely spaced configurations with
high eccentricity away from resonance.

This study has shown that with the currently
available computational power (for example in the
form of GPU clusters) it is practical to perform
Monte Carlo type investigations of high-dimensional
parameter space in reasonable time. This enables re-
searchers to quickly determine regions of interest on
which to focus in future studies. An example of this
would be to define stability regions for various con-
figurations of planetary systems. In this study, we
focused on a clearly defined set of simulation param-
eters to study closely spaced systems in general. Fu-
ture research could consider the effects of additional
parameters (e.g., inclination, different mass ratios for
the individual planets). Such studies can contribute
to the study of extrasolar planetary systems, as they
can quickly explore a large parameter space to iden-
tify stable orbital configurations.
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