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ABSTRACT

In this paper, we present a new set of corotational solutions for the 2/1 commensurability,

including previously known solutions and new results. Comparisons with observed exoplanets

show that current orbital fits of three proposed resonant planetary systems are consistent with

apsidal corotations.

We also discuss the possible relationship between the current orbital elements fits of known

exoplanets in the 2/1 mean-motion resonance and the expected orbital configuration due to

migration. We find that, as long as the orbital decay was sufficiently slow to be approximated

by an adiabatic process, all captured planets should be in apsidal corotations. In other words,

they should show a simultaneous libration of both the resonant angle and the difference in

longitudes of pericenter.

Key words: celestial mechanics – planets and satellites: general.

1 I N T RO D U C T I O N

It is well known that extrasolar planets are not where we imag-

ined. Classical planetary formation theories based on planetesimal

accretion and core instability for the giant planets predict bodies

in quasi-circular orbits and large semimajor axes a. For solar-type

stars, the minimum predicted semimajor axis is about 4 au, which

is the distance where non-rocky volatile elements can condense and

accrete (e.g. Hayashi 1981; Pollack 1984; Perryman 2000). How-

ever, many exoplanets do not follow this rule, and are found in highly

eccentric orbits and/or with a < 1 au.

Two options have been proposed to explain this dilemma. First,

it is assumed that present cosmogonic theories are in fault, or at

least the formation process followed different routes in many other

planetary systems. Secondly, exoplanets really did form far from the

central star, but suffered a posterior decay of their semimajor axes

towards their present sites. This is usually referred to as the ‘hypoth-

esis of planetary migration’. However, in order for migration to be

a real possibility and not just a simplistic escapade, two conditions

must be met: (i) the existence of a plausible driving mechanism to

explain the alleged decay in orbital energy and (ii) concrete evidence

that exoplanets did undergo such an evolution.

Two different driving mechanisms have been presented in the

last few years. The first (Murray et al. 1998) is based on the inter-

action of the planets with a remnant planetesimal disc, and works

in the same manner as migration of the giant planets in our Solar

system (Fernandez & Ip 1984; Hahn & Malhotra 1999). However,

⋆E-mail: beauge@mail.oac.uncor.edu

this mechanism does not seem to be sufficiently efficient. First, it

requires a very large disc mass to explain an orbital decay of sev-

eral astronomical units. Secondly, it is not evident that all planets

in a multiplanet system should undergo a simultaneous decrease

in semimajor axis. Recall that in our system, Jupiter is believed to

have suffered decrease in semimajor axis, while Saturn, Uranus and

Neptune have increased their values of a.

The second proposed mechanism is the interaction of the plan-

ets with the gaseous disc, based on pioneering work by Lin &

Papaloizou (1979), Goldreich & Tremaine (1979, 1980) and oth-

ers. In this scenario, disc torques cause a transfer of energy and

angular momentum from the planet to the gas and, if the disc pa-

rameters are chosen correctly, the solid body undergoes an inward

migration (i.e. ȧ < 0). Several simulations have been performed for

exoplanets in recent years (e.g. Snellgrove, Papaloizou & Nelson

2001; Nelson & Papaloizou 2002; Kley 2003; Papaloizou 2003), and

these seem to indicate that the mechanism works reasonably well.

However, certain aspects of this process are complex. For some disc

parameters, such as viscosity or density profile, the migration can

be outward (i.e. ȧ > 0), which is just the opposite desired result. In

other cases, the orbital energy may even exhibit random variations

with no secular trend (Nelson & Papaloizou 2004). Nevertheless, it

seems that this mechanism is the most probable process to explain

migration.

Having found some plausible process for the orbital decay, we

must now search for evidence that this really occurred in the exoplan-

ets. This question is particularly important because such large-scale

inward migration did not happen in our Solar system. A possible

solution is to find a particular orbital characteristic of the extrasolar

bodies, intimately related to migration, which can be used as (at
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least) indirect evidence of this process. The Solar system presents

two cases of confirmed migration: the giant planets and planetary

satellites. As mentioned before, the giant planets migrated due to

interaction with a remnant planetesimal disc, while many of the reg-

ular satellites of these same planets evolved due to tidal interactions

with the central mass. In the latter case, we know that an important

consequence of the migration was capture of the satellites in exact

mean-motion resonance (MMR) (e.g. Colombo, Franklin & Shapiro

1974). A well-known example is given by the Galilean satellites of

Jupiter (Yoder 1979). Their existence in exact commensurabilities

cannot be explained solely with gravitational perturbations of point

masses, but through resonance trapping under the effects of an exte-

rior non-conservative force. The case of the giant planets is different.

They are not exactly in resonance, either due to a divergent migra-

tion, or because of certain random-walk characteristics of the driving

mechanism itself (Hahn & Malhotra 1999). Thus, we can conclude

that although migration does not always lead to resonance trapping,

the existence of massive bodies in exact MMR can be explained via

a migration mechanism.

The fact that the planets in the Solar system probably did not

suffer a significant smooth convergent migration is consistent with

the fact that none of them are trapped in resonance. In the case

of the exoplanets, a piece of good evidence in favour of migration

is the fact that some of them show MMRs. Of the 14 presently

known planetary systems, including both confirmed and uncon-

firmed cases, we restrict ourselves to those systems where the ratio

in mean motions n is sufficiently small to assure significant gravi-

tational interaction between the bodies. Choosing this upper limit

to be n1/n2 = 4, we find that four systems satisfy this condition.

They are GJ 876, the second and third planets of 55 Cnc, HD 82943

and 47 UMa. All are believed to be resonant or in the vicinity of

a MMR. A fifth case may also be the HD 128311 system. Recent

observations (Vogt et al. 2005) show evidence of a second planetary

body, close to a 2/1 MMR with the previously known planet. Since

both bodies seem to have significant eccentricities (e ∼ 0.3), they

could only be stable if trapped in a MMR configuration. Otherwise,

close encounters would be unavoidable, yielding a disruption of the

system.

Although such a considerable number of commensurability rela-

tions is very significant, they must be considered with care. Recent

data analysis (Naef et al. 2004) shows that the previous fits for the

47 UMa system may be questionable. Published orbits exist placing

the system in the 8/3, 7/3 and 5/2 MMR. However, given the small

eccentricities of the two planetary orbits, MMR is not a necessary

condition for orbital stability. The newly announced system around

HD 128311 has only preliminary orbits, and more observations are

necessary before confirmation of a resonant relation.

In view of this debate, and considering the intrinsic errors in

orbital fits, the mere proximity of these systems to MMRs is not

evidence enough for migration. Recall that if the eccentricities are

not large, resonant motion is not necessary to guarantee orbital sta-

bility. For these reasons, we feel a more detailed analysis of the

relation between resonance and migration is necessary. This paper

undertakes such an analysis. In Section 2, we present new results

on the location and characteristics of apsidal corotations in the 2/1

resonance. Section 3 discusses the problem of planetary migration

from the point of view of the adiabatic invariant theory, and we

show that only corotational-type configurations can apparently be

expected for trapped planets. A comparison between these solu-

tions and the current orbits of three exoplanetary systems is ex-

plained in Sections 4 and 5. Finally, conclusions close the paper in

Section 6.

2 G E N E R A L A P S I DA L C O ROTAT I O N S F O R

T H E 2/1 M M R

Consider two planets of masses m1 and m2 in coplanar orbits around

a star of mass M 0 ≫ m 1, m 2 Let ai denote the semimajor axis of the

ith planet (i = 1, 2), ei is the eccentricity, λi is the mean longitude

and ̟ i is the longitude of the pericenter. All orbital elements corre-

spond to Poincaré canonical relative coordinates (see Ferraz-Mello,

Michtchenko & Beaugé 2005b), which differ from the classical star-

centred orbital elements in the second order of the planetary masses.

We will suppose a1 < a2, thus the subscript 2 will correspond to

the outer orbiting body.

We now assume that both secondary masses are located in the

vicinity of a resonance such that their mean motions ni satisfy the

relation n1/n2 ≃ (p + q)/p. Both p and q are small integers and q is

usually referred to as the order of the resonance. The name ‘apsidal

corotation’ (see Ferraz-Mello, Tsuchida & Klafke 1993) is used to

denote the simultaneous libration of both resonant angles:

θ1 = (p + q)λ2 − pλ1 − q̟1,

θ2 = (p + q)λ2 − pλ1 − q̟2. (1)

It is straightforward to write θ 2 − θ 1 = q(̟ 1 − ̟ 2) = q�̟ , thus

an apsidal corotation can also be identified with the libration of both

θ 1 and the difference in longitudes of pericenter.

Once the short-period perturbations (associated with the synodic

period) are eliminated by an averaging process, the resulting system

has two degrees of freedom and can thus be specified by two angular

variables, for example (θ 1, �̟ ). Their canonical conjugates are

given by

I2 = L2

(

1 −
√

1 − e2
2

)

,

I1 = I2 + L1

(

1 −
√

1 − e2
1

)

. (2)

The quantity L i = m ′
i

√
µi ai is the modified Delaunay momentum

related to the semimajor axis in Poincaré variables (see Laskar 1991;

Ferraz-Mello et al. 2005b), µi = G(M 0 + m i) and G is the gravita-

tional constant. The factor m ′
i is a reduced mass of each body, given

by

m ′
i =

mi M0

mi + M0

. (3)

It is easy to see (e.g. Michtchenko & Ferraz-Mello 2001) that the

total planar angular momentum of the system, itself an integral of

motion, is given by

Jtot = L1 + L2 − I1. (4)

Similarly, the complete averaged Hamiltonian of the system can be

expressed in terms of the orbital elements as

F = −
2

∑

i=1

µ2
i m ′3

i

2L2
i

− F1(m1, m2, a1, a2, e1, e2, θ1, �̟ ), (5)

where the disturbing function F1 denotes the gravitational interac-

tion between both planets. Further details can be found in Beaugé

& Michtchenko (2003). With this in mind, exact apsidal corota-

tions are stationary solutions of the averaged Hamiltonian, and are

defined by the conditions

dI1

dt
= 0,

dI2

dt
= 0,

dθ1

dt
= 0 and

d�̟

dt
= 0. (6)
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It is important to emphasize two points. First, exact apsidal corota-

tions are zero-amplitude solutions in the averaged problem. To re-

produce the behaviour of the real system, we must re-introduce the

short-period (i.e. high-frequency) terms. Furthermore, the planets

in fact undergo finite-amplitude oscillations around these solutions

and describe quasi-periodic orbits in real space. The simulations by

Lee & Peale (2002) of the GJ 876 show such a behaviour. We will

refer to such a behaviour as a finite-amplitude apsidal corotation or

simply by corotation. A second, and very important, note is with

regards to the temporal behaviour of �̟ . When we plot the or-

bital evolution of the averaged system in the planes (ei cos �̟ , ei

sin �̟ ), a given exact apsidal corotation is represented by a sin-

gle point, while finite-amplitude corotations will generate a closed

curve roughly centred on the stationary solution. If the amplitude is

sufficiently large, it is possible that the closed curve also contains the

origin. As a consequence, the angle �̟ will exhibit a circulation

(and not a libration). In other words, the difference in longitudes

of pericenter may vary from 0◦ to 360◦ although topologically this

solution is not different from an apsidal corotation of smaller ampli-

tude. The reader is referred to Ferraz-Mello, Michtchenko & Beaugé

(2005a), for an example in the case of the HD 82943 planets.

In two recent studies, Beaugé, Ferraz-Mello & Michtchenko

(2003) (hereafter referred to as BFM2003) and Ferraz-Mello,

Beaugé & Michtchenko (2003) performed a systematic search for

different types of corotational solutions in the 2/1 and 3/1 reso-

nances. Among our first results, we found that, up to second order

of the masses, apsidal corotations only depend on the real masses of

the planets through the ratio m 2/m 1, which is not affected by the in-

determination of the masses due to the unknown inclinations, as long

as both planets are coplanar. This is a very interesting point because

it allows us to bypass the limitations of Doppler measurements. Sec-

ondly, we also found that these periodic orbits only depend on the

semimajor axes through a1/a2. Since this ratio is only an indication

of the proximity to exact resonance, it is independent of the individ-

ual values of the semimajor axes themselves. As a consequence of

these properties, for a given resonance and a fixed m 2/m 1, we were

able to obtain the locus of apsidal corotations as a curve in the plane

of eccentricities (e1, e2), and these results were seen to be extremely

general. They are valid for any planetary system, independent of the

values of the real masses and the distance from the central star.

For the 2/1 resonance, our results showed the existence of three

types of stable corotational solutions. Aligned apsidal corotations

are characterized by equilibrium values of the angles equal to (θ 1,

�̟ ) = (0, 0). Anti-aligned solutions are given by (θ 1, �̟ ) = (0,

π ). Both these families were previously known by other authors

(e.g. Lee & Peale 2002; Hadjidemetriou 2002). However, we also

discovered a new type of orbits, called asymmetric apsidal coro-

tations, which were characterized by values of (θ 1, �̟ ) different

from 0 or π (see Greenberg 1987 for similar results for the Galilean

satellites). Finally, to each value of (e1, e2) there seemed to corre-

spond only one equilibrium value of the mass ratio m 2/m 1. Similar

results were also obtained for the 3/1 resonance.

Due to the inherent limitations of our model, we were only able

to detect apsidal corotations with eccentricities up to ei = 0.5. Re-

cently, however, numerical studies by Hadjidemetriou & Psychoyos

(2003), Ji et al. (2003) and Lee (2004) found a new type of coro-

tational orbit, characterized by (θ 1, �̟ ) = (π , π ) for very high

values of e1 and e2. We will refer to such a solution as a (π , π ) coro-

tation. Lee (2004) also extended the results of Beaugé et al. (2003)

to higher eccentricities and used smooth mass variations to study

the dependence of the corotational orbits with respect to the mass

ratio.

However, all these studies only analyse a restricted number of

initial conditions for the (π , π ) corotations. Thus, a more general

analysis may be useful, and could allow us to determine the bound-

aries of each type of solution in the (e1, e2) plane. Since our previ-

ous model is not sufficiently adequate for very high eccentricities,

for the present paper we adopted a new semi-analytical approach

based on the so-called extended Schubart averaging (Moons 1994),

where equation (6) is constructed and solved numerically. Although

the original version of this procedure was applied to the restricted

three-body problem, it is general in nature and can be used for any

Hamiltonian function. In our particular case, given a set of initial

conditions, we determined numerically the partial derivatives of the

Hamiltonian averaged over the synodic period. The main advantage

of this method is that it is valid for any eccentricity, and does not

have any limitations with respect to initial conditions. Its accuracy

is given by the chosen integration method, and this can be checked

in situ.

Fig. 1 shows the domains of the several known types of exact

corotational solutions in the eccentricities plane. Each configura-

tion is indicated by the equilibrium values of the angles, except

the asymmetric region. Note that the (π , π ) corotations are located

at very high eccentricities, beyond the limit of possible collisions

a1(1 + e1) = a2(1 − e2) (shown as a broken line); nevertheless this

domain intersects the region of (0, 0) corotations for relatively low

values of e2. We also note a second intersection, this time between

the (π , π ) and asymmetric corotations. In both cases, two distinct

types of stable solutions exist for the same pair (e1, e2), in some

cases even for the same values of the mass ratios.

The curves for given mass ratios are shown in Figs 2 and 3. First,

we only show the solutions for eccentricities below 0.6. In contin-

uous lines, we present the symmetric (0, π ),(0, 0) and asymmetric

solutions, while the (π , π ) are presented in broken curves. Although

the latter solutions are even detected in the vicinity of the collision

curve, it must be kept in mind that, very close to a1(1 + e1) =
a2(1 − e2), the stability of a (π , π ) corotation is only guaranteed

for very small planetary masses. For larger masses, there should

appear a region around the collision curve where no stable solutions

Figure 1. Domains of different types of exact corotational solutions in the

2/1 MMR, as seen in the plane of orbital eccentricities of both planets. See

text for further explanations.
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Figure 2. Stable exact corotations, for given mass ratios m2/m1, in the 2/1

resonance, for eccentricities up to 0.6. Continuous curves: (0, π ), (0, 0) and

asymmetric solutions. Broken curves: (π , π ) corotations.
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Figure 3. Stable exact corotations in the 2/1 resonance, including the region

of very high eccentricities. Note the ‘convergence points’ for the (0, 0) and

(π , π ) families.

are possible. In such a case, the Hill stability criterion can be used

to assess the size of the region which becomes unstable upon close

approaches (Gladman 1993).

The asymmetric domain shows two families of curves. As pointed

out by Ferraz-Mello et al. (2003) and Lee (2004), if the mass ratio

satisfies the condition m 2/m 1 � 0.4, the asymmetric solutions return

to the (0, 0) domain for large values of e1. Conversely, if the mass

ratio is smaller than this limit, the asymmetric corotations seem to

converge to a thin diagonal strip for large values of e2.

A final data we wish to present at this point are the period of

motion of oscillations around apsidal corotations. It is obvious that

exoplanets do not necessarily have to be in an exact periodic or-

bit (i.e. zero-amplitude apsidal corotation), but can exhibit a finite-

amplitude oscillation around this solution with a certain period. The

frequency, at least for the linear approximation, can be determined

calculating the Hessian of the Hamiltonian evaluated at each apsidal

corotation. However, this method is very time consuming and valid

only for very small amplitude of oscillations. For these reasons, in

the present work we employed a purely numerical approach.

Considering a fixed mass ratio, we first performed numerical sim-

ulations of the evolution of the system along the family of periodic

orbits, in a manner analogous to that presented in Ferraz-Mello et al.

(2003) and Lee (2004). We then performed a Fourier analysis of the

angular variables at given times, and calculated the period τ associ-

ated with the largest amplitude. Simultaneously, we also estimated

the averaged planetary eccentricities, thus obtaining a relation be-

tween τ and e1. Results are presented in Fig. 4, in units of years,

for four different mass ratios. These periods correspond to a2 = 1

au, m 1 = M Jup and M 0 = M sun. It must be noted that the curves

have been smoothed, both to eliminate spurious differences between

adjacent points, and to soften the separatrix between symmetric and

asymmetric solutions. Thus, individual values must be considered

more qualitatively than quantitatively correct although the general

trend is fairly accurate.

Even with these notes of caution in mind, the plot still gives valu-

able information. We can see that the period of oscillation increases

for smaller values of the mass ratio, with an almost inverse linear

law. Thus, the maximum τ for m 2/m 1 = 3 (similar to the GJ 876

system) is about 300 yr, while for a mass ratio of 0.5, the maximum

period is about six times larger. In addition, comparing these re-

sults with Fig. 2, we note that asymmetric apsidal corotations have

much larger periods than symmetric solutions. This characteristic

will prove important in the later sections of this paper.

Figure 4. Period of infinitesimal oscillations around exact apsidal coro-

tations (in yr), for four different mass ratios m2/m1, as function of the

eccentricity of the inner planet. Values correspond to a2 = 1 au, stellar mass

equal to 1 M⊙ and m1 = 1 MJup.
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Finally, as mentioned before, the quantities in the graph corre-

spond to given values of a2, m 1 and the stellar mass. For other

values of these parameters, it can be shown that the resulting period

must be scaled as follows:

τ = τ0 a2
3/2

(

m1

MJup

)−1(

M0

MSun

)1/2

, (7)

where τ 0 is the corotational period given in the figure. Thus, al-

though the position of the apsidal corotations is only the function

of m 2/m 1, the periods of oscillation are dependent on the values of

the individual masses.

3 P L A N E TA RY M I G R AT I O N A N D T H E

A D I A BAT I C I N VA R I A N T T H E O RY

If all resonant exoplanetary systems acquired their present orbits as

a result of planetary migration from initial quasi-circular orbits, we

would expect them to exhibit motions very close to the stationary

exact apsidal corotations. Recent hydrodynamical simulations (e.g.

Snellgrove et al. 2001; Kley 2001, 2003; Papaloizou 2003, etc.) of

the evolution of two planets immersed in a gaseous disc, have always

shown corotational final orbits. Kley (2003) modelled 55 Cnc, and

capture occurred in the 3/1 commensurability. In the other two

papers, the simulated system was GJ 876 and trapping occurred in

the 2/1 MMR. Other works, such as Nelson & Papaloizou (2002),

have included a modelled migration in the equations of motion of the

planets, through constant perturbations in the angular momentum

and orbital energy. Solving these equations numerically, they have

also found corotations as a final result.

3.1 Numerical simulations of resonance capture

In order to test whether these results are only valid for certain values

of disc parameters or even for certain types of driving mechanisms,

we performed a series of numerical simulations of the planetary

migration. We studied the trapping process and posterior evolution

of the system inside the resonance (non-restricted planetary three-

body problem) for a wide range of exterior non-conservative forces.

Each force was modelled as an additional term added to Newton’s

equations of motion, and all runs simulated capture in the 2/1 MMR.

We adopted various types of forces, including (i) tidal interactions

(Mignard 1981), (ii) interaction with a planetesimal disc (modelled

according to Malhotra 1995) and (iii) disc torques modelled fol-

lowing Nelson & Papaloizou (2002). Most of these mechanisms

give rise to long-term effects similar to those due to a Stokes non-

conservative force of the type

d2
r

dt2
= −C(v− αvc), (8)

where r is the position vector of the body (reference frame centred in

the star), v is its velocity vector and vc is the circular velocity vector

at the same point. Unlike usual Stokes drag where α is fixed by the

characteristics of the gas, in this generic case both coefficients C

and α can be taken as external parameters and varied in each run.

C is usually considered positive while α can take any value. From

Beaugé & Ferraz-Mello (1993) and Gomes (1995a) it can be seen

that, to first order in the eccentricity and in the case of a single planet,

the effects of the force (8) in the semimajor axis and eccentricity

are given by

a(t) = a0 exp(−At), e(t) = e0 exp(−Et), (9)

where a0 and e0 are the initial conditions at t = 0, and |A|, |E |
are the inverse of the e-folding times in each orbital element. These

quantities are given by

A = 2C(1 − α), E = Cα. (10)

Thus, α = 0 represents a non-conservative force that gives an expo-

nential decrease in semimajor axis but no change in the eccentricity,

analogous to Malhotra’s (1995) model of planet–planetesimal in-

teractions. When α < 0, the force acts to increase the value of the

eccentricity, and the opposite occurs when α > 0. This can be used

to model different types of behaviour noted in planet–disc interac-

tions, depending on the dynamical characteristics of the interaction

(see Goldreich & Sari 2003).

Finally, we can consider the e-folding times as free parameters of

the simulation and deduce the coefficients accordingly:

C =
1

2
A + E, α =

E

C
. (11)

With all these options, we hope to have a fairly general idea of the

capture process in the 2/1 resonance under a variety of conditions

and physical models. Of course this list is not complete and it is not

our intention to model all possible interactions, but it does give an

insight of the type of behaviours that can be expected.

3.2 Corotational families as evolutionary tracks

Using these models for the driving mechanism, we performed a se-

ries of numerical simulations of the evolution (and resonance cap-

ture) of two planets with a given mass ratio, and initial circular orbits

with a1 = 5.2 au and a2 = 8.5 au. These semimajor axes, chosen to

be similar to the two largest planets in our own Solar system, place

the bodies outside (but close to) the 2/1 MMR. In particular, we did

several runs with a non-conservative force given by equation (8),

and adopting different values of the inverse e-folding times in the

range − A ∈ [10−7, 10−4] and − E ∈ [10−11, 10−4], in units of

yr−1. Only the exterior planet was assumed to be affected by the

dissipative force.

Typical results (using m 2/m 1 = 0.8) are shown in Fig. 5, where we

have plotted the eccentricities of the bodies prior to capture and dur-

ing the orbital evolution inside the commensurability. The results of

numerical simulations are shown in grey. Although different driving

mechanisms may yield solutions which vary in capture time-scales

or amplitudes of libration, all simulations fall along the same line. In

fact, since the initial orbits were circular, the grey curves define an

‘evolutionary path’ of the system, in which the eccentricities evolve

from the origin to the right-hand side of the graph as function of

time. Some values of A and E yield solutions that evolve to some

limiting value (e1, e2) (see Lee & Peale 2002). Conversely, for other

values of the e-folding times, evolution continues until e1 reaches

quasi-parabolic values and both planets collide.

In the same figure, we have also plotted, with black lines, the

families of stationary solutions as given in Fig. 2 for this mass ratio.

The (0, π ), (0, 0) and asymmetric families form a single curve,

here shown as a continuous line. The (π , π ) family is shown as

a broken curve. Note that the continuous lines show a very good

agreement with the numerical simulations of the evolution of the

planets. This shows that, during the capture process, the system

evolves adiabatically following the stable equilibrium solutions of

the conservative system. Thus, the family of apsidal corotations does

not only point the possible locations of extrasolar planetary systems

in the vicinity of the 2/1 resonance, but can also give information

about the routes the bodies took from initially quasi-circular orbits

towards their present locations.
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Figure 5. Relation between eccentricities of inner and outer planets during

the orbital evolution inside the 2/1 resonance, using m2/m1 = 0.8. The

stellar mass was taken equal to one solar mass. Grey symbols show the

results of a typical numerical simulation. Black lines show the families of

zero-amplitude apsidal corotations for this mass ratio.

This interpretation is valid as long as the driving mechanism of

the migration is sufficiently slow, compared to the characteristic

time-scale of the conservative perturbations, so that the system can

be well approximated by a smooth-varying Hamiltonian system.

The adiabatic invariant theory (e.g. Neishtadt 1975; Henrard 1982)

shows that this is satisfied if the ratio between the period of oscilla-

tion around the apsidal corotation (i.e. τ ) and the time derivative of

the semimajor axis is much smaller than unity. In other words,

ε ≡ τ |A| ≪ 1. (12)

In order to quantify this relation, let us recall equation (7), consider

m1 equal to one Jupiter mass, and concentrate on the maximum

values of τ . For initial semimajor axis a2 in the vicinity of 5 au,

these results seem to indicate that adiabaticity is satisfied if the

migration time-scale 1/|A| ≫ 104 yr for m 2/m 1 = 0.5 and 1/|A| ≫
103 yr for m 2/m 1 = 3. For much smaller semimajor axes (e.g. a2

= 0.3 au), these numbers fall to values of the order of 102 yr. Thus,

any dissipative force with migration time-scale much larger should

be adiabatic, and thus its evolution should be well modelled by the

families of corotational solutions.

To date, there is no concrete evidence on the duration of the

migration although it is believed to be between 105 and 107 yr (see

Trilling, Lunine & Benz 2002). If this is indeed the case, the adiabatic

approximation should be a good model, at least near the end of the

migration. Even if these limits are too conservative and an extremely

fast Type I migration dominated the evolution, the mechanism most

probably had a smooth decay in magnitude with time, thus becoming

much slower towards the end of the process. From some point on,

the mechanism should satisfy condition (12).

In order to analyse this idea, for each mass ratio shown in Fig. 4,

we have done two simulations of the capture process, one with A =
−10−6 (black) and the other considering a rapid migration: A =
−10−4 (grey). Results are shown in Fig. 6 in the eccentricity plane.

For the two larger mass ratios, both simulations follow practically

the same routes, and are consistent with the corotational families.

Recall that these mass ratios have no asymmetric apsidal corotations

and small periods of oscillation. The top graphs show a different

story. The system with m 2/m 1 = 0.8 shows fair agreement between

both simulations for symmetric apsidal corotations, but completely

different results for the asymmetric region. The results for m 2/m 1 =
0.5 are an extreme case. The fastest migration shows very little in

common with the adiabatic evolution although capture still takes

place and both eccentricities continue to grow as function of time.

Fig. 7 presents the evolution of both angular variables, as function

of the growing e1, for the two smallest mass ratios. Colours are the

same as in the previous figure, with black lines corresponding to

the slowest (adiabatic) migration and grey to the fastest. We can see

that a non-adiabatic force not only implies different evolutionary

tracks in the eccentricity plane, but also in the angular variables.

Interestingly, in both cases the fastest (non-adiabatic) dissipation

causes very evident asymmetric apsidal corotations which have no

association with the conservative equilibrium solutions. This seems

to indicate that, perhaps, the lack of adiabaticity is also accompanied

by a change in the equilibrium solutions. Only for high values of

e1, accompanied by small values of the semimajor axes (due to the

orbital decay) do both curves reasonably agree, consistent with a

decrease in τ compared with the migration time-scale.

4 P L A N E TA RY S Y S T E M S I N M M R

From the previous simulations, we can conclude that for mass ratios

m 2/m 1 larger than 1.5, even a fast planetary migration leads to

evolutionary tracks consistent with our corotational families. We can

then proceed to test this idea with the proposed planetary systems in

the vicinity of the 2/1 resonance. Recent stability analysis of several

resonant exoplanets has shown that in some cases (e.g. 47 UMa) a

corotation is not the only dynamically stable configuration (Ji et al.

2003). In fact, apart from the well-studied case of GJ 876, it is

not absolutely certain whether any other real system is in an actual

apsidal corotation.

In view of this, a good test for the migration hypothesis is to check

whether current orbital fits are consistent with apsidal corotations.

If they are not, we stand with two possibilities. Perhaps the orbital

fits are not accurate and need to be improved. Conversely, if the

data analysis is confirmed, then either these systems did not undergo

migration at all, or this process was highly non-adiabatic. Either way,

we can obtain important information of the formation process and

posterior evolution of these planetary systems. It is thus important to

stress that our aim will not be to certify whether the current planets

are in fact in apsidal corotation, but solely if the orbital fits are

consistent with these configurations.

4.1 GJ 876

Recently a third planet has been discovered around this star (Rivera

et al. 2005), with mass 7.5 M⊕ and semimajor axis equals to 0.02 au.

Due to its small mass, it should have little effect on the dynamical

evolution of the other two planets (known as GJ 876b and GJ 876c)

which are trapped in a 2/1 MMR. The latest orbital fits for the res-

onant planets (assuming sin I = 1) yield a value of m 2/m 1 = 3.13

and eccentricities of (e1, e2) = (0.224, 0.025). It is important to

mention that, for this observational data, a corotational solution is

not necessary to ensure orbital stability. Simple numerical simula-

tions show that other stable resonant solutions exist, in which only

one of the critical angles librates and � ω circulates. Nevertheless,

the deduced values for the angles show an apsidal corotation.
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Figure 6. Numerical simulations of adiabatic migration (black symbols) and non-adiabatic (grey) for four different mass ratios. All plots show the evolutionary

tracks in the eccentricities plane.
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Figure 7. Same as previous figure for the two lowest mass ratios, but now showing the temporal evolution of the resonant angle θ 1 (left) and of the difference

in longitudes of pericenter (right). The light-grey continuous lines show the analytical corotational solutions parametrized by the eccentricity of the inner planet.
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Figure 8. Corotational families for mass ratio m2/m1 = 3.2. Continuous

black lines show the (0, π ) and (0, 0) pair, while the broken curve at the top

right-hand side shows the appearance of the (π , π ) solutions. Filled circles

show four different orbital fits for the GJ 876 system (see text) while grey

curves show the orbital evolution of the initial conditions in this plane.

Fig. 8 shows the different families of corotations for this mass

ratio. The (0, π ) and (0, 0) solutions are clearly visible although the

(π , π ) family is also noted in the top right-hand side. The estimated

eccentricities of the planets obtained by Rivera et al. (2005), with

a three-planet minimum mass orbital fit, are also presented in the

figure as a filled circle, and identified by the number 2005-2. The

edge-on fit of Laughlin et al. (2005) is also shown, marked as 2005-

1. We also show two older fits, calculated by Laughlin & Chambers

(2001) with a smaller data set of observations. These are labelled as

2001-1 and 2001-2.

Together with the present orbits, we have also plotted (in grey

dots) the temporal variation of the eccentricities during a 105-yr time

span. The orbit labelled 2001-1 shows that the orbit is very close to

the actual zero-amplitude corotation, so the dots are masked within

the filled circle. The orbit 2001-2, however, shows a perceptible os-

cillation around the corotational family. The same is also noted for

the most recent fit. The path followed by the oscillation around the

exact apsidal corotation can be predicted from the invariance of the

total angular momentum. Writing this explicitly from equation (4),

and supposing that the magnitude in the temporal variation in ec-

centricity is much larger than that in semimajor axis, we find that

the curves of constant J tot in the eccentricity plane are given by the

expression

L1

√

1 − e2
1 + L2

√

1 − e2
2 = constant, (13)

where the Delaunay momenta L i can be fixed at exact resonance

(see Zhou et al. 2004, for a similar analysis).

Since all observational fits lie very close to the zero-amplitude

solutions, it is easy to deduce their evolutionary track from initially

circular orbits. Thus, we can know that the planets were initially

captured in an anti-aligned corotation, but switched to an aligned

orbit when e1 became larger than the critical value ec ≃ 0.1.

4.2 HD 82943

Although many new results were not obtained from the GJ 876

system, it is useful as an example where the adiabatic migration

scenario yields results consistent with the observational orbital fits.
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Figure 9. Same as previous figure, but for the HD 82943 planets. Top

graph corresponds to m2/m1 = 1.9 and eccentricities from data fits posted

in the Geneva extrasolar planet search programmes homepage 2002 July 31.

Bottom: m2/m1 = 1 and orbital fit from Mayor et al. (2004). Note that the

orbital fit shown in the top graph was not confirmed by later observations;

thus these results represent a ‘fictitious’ system.

The HD 82943 planets, however, are more complicated to fit into a

smooth migration scenario.

Until the beginning of 2004, the only available orbital fit for

this system was consistent with m 2/m 1 = 1.9 and eccentricities

(e1, e2) = (0.54, 0.41), as originally posted in the Geneva extraso-

lar planet search programmes homepage on 2002 July 31. Ji et al.

(2003) showed that this configuration was only stable if both planets

were trapped in a (π , π ) corotation. Fig. 9(a) shows all the fami-

lies of corotation for this mass ratio. Once again, the orbital fit is

presented by a filled circle. Using the initial conditions consistent

with those adopted by Ji et al. (2003), we obtained the temporal

variation of the eccentricities. Results are shown in grey. We note a

large-amplitude oscillation around the corotational family although

this system seems to be very stable over large time-scales. However,

a problem arises when we try to deduce the evolutionary track of

these planets from initially circular orbits since it is not possible to

pass from the family of aligned corotations to the (π , π ) case with

a smooth orbital evolution (Lee 2004). Both families are not only

disconnected, but are separated by a region unprotected from col-

lisions; thus no smooth road exists from one to the other that does

not lead to a disruption of the system.

In Lee (2004), it is argued that the existence of exoplanets in a

(π , π ) corotation is not consistent with a smooth planetary migra-

tion, unless (i) the orbits are not coplanar or (ii) this configura-

tion was attained as a consequence of a close encounter of one of

the bodies with a third planet. As a result, this hypothetical body

was ejected and engulfed by the star. Although in that paper the
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author does not mention HD 82943 as an example, it is interesting

to note that recent spectral analysis of this star shows evidence of 6 Li

(Israelian et al. 2001), consistent with the past engulfment of a

planet. With regards to the first proposition, the existence of a mu-

tual inclination sufficiently large to avoid close encounters is ques-

tionable since there is no indication from cosmogonic theories that

massive planets could form at highly non-planar orbits. Migration

simulations by Thommes & Lissauer (2003) also show no inclina-

tion excitation for eccentricities below e ∼ 0.65.

Other alternatives also exist: either the planets are in resonance

but not in apsidal corotation (thus questioning the planetary migra-

tion scenario), or the orbital fit is not correct. Recent observations

have tilted the balance towards the second alternative. Mayor et al.

(2004) presented a new orbital fit, which yields m 2/m 1 ≃ 1 and ec-

centricities (e1, e2) = (0.38, 0.18), thus significantly different from

the previously published values.

Fig. 9(b) shows our analysis of this data. Note that the lower curve

now has a hump corresponding to asymmetric solutions. Once again,

the orbital set is shown as a filled circle. Note that the new fit is closer

to exact apsidal corotations than the result shown in the top graph.

However, in order to complete the analysis, we must also consider

the values of the angular variables. The grey symbols show the result

of a numerical simulation for only 2 × 103 yr. We can see that,

although a corotation around the symmetric family is confirmed,

it shows a very large amplitude. Unfortunately, a longer numerical

simulation shows a different story. As shown in Ferraz-Mello et al.

(2005a), this orbital fit is unstable, and leads to catastrophic close

encounters in time-scales of the order of 105 yr. This is seen in both

forward and backward integrations. Since the age of the star is of

the order of 109 yr, this seems to indicate that the orbital fit is not

correct.

Ferraz-Mello et al. (2005a) presented a new detailed analysis of

the observational data with a biased Monte Carlo technique. It was

shown that the plane (e2 cos ω2, e2 sin ω2) presents a relatively large

region of orbital fits that give residuals with very similar values of

rms. Thus, it is not possible to ‘choose’ a single fit as correct and

disregard the rest. A dynamical analysis of several fits showed that

many of them also yield unstable orbital configurations. However,

those that are stable (particularly the solutions A and B in that paper)

show large-amplitude corotations around the (0, 0) family.

Recent additional observations obtained with the Keck telescope

were analysed by Lee et al. (2005) with an approach analogous

to Ferraz-Mello et al. (2005a). Although most of the results were

also similar, a stable small-amplitude corotational solution was also

found in the (0, 0) family, with rms of the order of the minimum

value. However, practically all the stable orbital fits continue to show

large-amplitude oscillations.

As a conclusion, we see that long-term simulations, plus the use

of the evolutionary tracks, can yield important information and help

to identify problematic cases. Once the problem is noted, we can

then study whether it arises from orbital uncertainties, or if it points

towards real dynamical evolution. In this particular example, the

orbital fits by Ferraz-Mello et al. (2005a) are compatible with coro-

tational solutions and thus with a planetary migration scenario.

4.3 55 Cnc

The third exoplanetary system with bodies in a MMR is 55 Cnc.

In recent months, new observations have significantly changed our

knowledge of this system. On one hand, a fourth planet was dis-

covered (McArthur et al. 2004), making this the most populated

planetary system to date. Secondly, the orbital fits of the other bod-
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Figure 10. Continuous lines show the families of apsidal corotations for

the 3/1 resonance and mass ratio m2/m1 = 0.28. Black circle indicates the

present orbital fit of the two middle planets, while grey symbols show the

results of a numerical simulation.

ies have been revised. Since the second and third planets are known

to be in a 3/1 commensurability, it is worthwhile analysing if these

data are still compatible with a corotation/migration scenario, even

if this resonant relation is not the central point of this study.

In Beaugé et al. (2003), we presented the first maps of apsi-

dal corotations applied to this system. At that time, the orbital fits

yielded a very low mass ratio of m 2/m 1 = 0.24, and probable eccen-

tricities (e1, e2) = (0.039, 0.157) (Marcy et al. 2002). We showed

that this configuration corresponded to a large-amplitude asymmet-

rical corotation, and both orbits seem stable for long time-spans.

Zhou et al. (2004) performed a more detailed analysis of this

system, considering new orbital fits given by Fischer et al. (2003).

The mass ratio remained practically unchanged, although the new

eccentricities for the resonant planets were now (e1, e2) = (0.03,

0.41). The results of the dynamical analysis also showed that this

system is compatible with a corotation/migration scenario although

the amplitude of the corotation was very large.

The latest orbital fit presented by McArthur et al. (2004) still

shows no significant change in the masses (m 2/m 1 = 0.28), but

shows further changes in the eccentricities. The new values are

(e1, e2) = (0.02, 0.44). Fig. 10 shows the curves corresponding to

symmetric (low-eccentricity region) and asymmetric exact apsidal

corotations for the mass ratio of this orbital fit. The present eccen-

tricities are indicated by a black circle. The orbital variation during

a 103-yr numerical simulation is shown in grey symbols, and shows

a very large-amplitude oscillation around an asymmetric solution.

5 W H Y A R E R E S O NA N T S Y S T E M S

D I F F E R E N T ?

Even though all the resonant systems seem to be in apsidal corota-

tions, there is a noticeable difference between them. GJ 876 shows

a small-amplitude oscillation, and this characteristic has remained

throughout all the improvements in its planetary orbits. 55 Cnc has

also seen significant changes in its orbital fits (e.g. e2 changed from

0.16 to 0.44), but the configurations have always corresponded to

large-amplitude solutions. Lastly, even though we still may not have

confident orbits for HD 82943, practically all stable fits yield large-

amplitude corotations.
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Using the well-known GJ 876 planets as a reference, the first

option would be to say that large-amplitude solutions in the other

systems arise from the uncertainties in the orbital fits. However, we

have seen that even though all systems have had changes in their or-

bits, these successive configurations have not modified significantly

the amplitude of corotation. Therefore, perhaps this property is real

and could reflect some important characteristic of the migration

process itself.

A second question is related to the consequences of migration

to planetary formation. In the introduction, we mentioned that the

hypothesis of migration was introduced to explain the presence of

planets close to the star (supposedly formed with a > 4 au). Having

shown that all resonant systems seem to have undergone migration,

does this prove that they formed far from the star? Unfortunately not,

since we have no indication of the distance scale of the migration.

Perhaps some planets formed near their present sites and did not

suffer significant migration.

Although we cannot prove that migration was large scale, it is pos-

sible to see whether it was possible. Lee & Peale (2002) performed

a series of numerical simulations of the capture in resonance and

orbital evolution of GJ 876, using different e-folding times for the

semimajor axis (τ a = |A|−1, see equation 9), and eccentricity (τ e =
|E |−1). The dissipation was assumed to affect only the outer planet,

in accordance with hydrodynamical simulations (e.g. Kley 2003).

They showed that, in the eccentricity versus semimajor axis plane,

the evolution of the system depended only on the ratio

K =
τa

τe

. (14)

As long as the migration is sufficiently slow (adiabatic), the excita-

tion or damping of the eccentricities during the orbital decay is only

function of K, and not of the individual values of τ a and τ e. More

importantly, if the planets were initially formed far from the star

and captured from quasi-circular orbits, there is only one value of

K = Kc compatible with the present configuration. For K < Kc, the

eccentricities would have been excited to values much larger than

the observed ones, and could even allow the system to be disrupted.

Conversely, for K >Kc the eccentricities at the present values of

a would be smaller than observed. Only for K = Kc, it would be

possible to explain a long-range migration with current orbits.

Murray, Paskowitz & Holman (2002) and Nelson & Papaloizou

(2002) found analytical implicit expressions for these equilibrium

eccentricities, as function of the planetary mass ratio and K. For a

generic MMR (p + q)/p, and using the notation introduced in this

work, equation (6) of Nelson & Papaloizou (2002) can be written

as an implicit expression for the eccentricities as

(1 − β2)(1 − b) +
2e2

2

β2

Kc = (1 − β1 +
q

p
) b

L1

L2

, (15)

where

βi =
√

1 − ei
2 (i = 1, 2),

b−1 = 1 +
p + q

p

L1

L2

. (16)

Note that the mass ratio is implicit in the ratio of the Delaunay

variables L i.

We can apply equation (15) to each of our resonant planetary

systems and estimate their values of Kc. Since the value of m 2/m 1

has remained fairly constant over the past orbital fits, we can con-

sider them fixed values. Furthermore, we can also assume that the

ratio of semimajor axes is equal to exact resonance. This gives us a

relation between three parameters e1, e2 and Kc. If we now vary the

Figure 11. Values of K necessary for current planetary eccentricities to be

equilibrium values of the migration process. Symbols show different orbital

fits for each resonant system. Most recent values are marked by an empty

circle.

eccentricities over the families of exact apsidal corotations for the

given mass ratio, we can then obtain an explicit relation between

the present eccentricities of the planets and the value of K necessary

for the system to have undergone a large-scale migration.

Results are shown in Fig. 11 for all the three systems. Black lines

show the solution to equation (15), where the values of (e1, e2) have

been obtained from the apsidal corotations; dashed line corresponds

to the 2/1 resonance and mass ratio of GJ 876, the continuous line

corresponds to the parameters of HD 82943, while the dotted line

shows the results for 55 Cnc. In symbols, we have also plotted the

different orbital fits obtained for each system over the last few years.

Current fits are overlaid with an empty circle. We can see that all

the three planetary systems have varied values of K: very large for

GJ 876, smaller for HD 82943 and of the order of unity for 55 Cnc.

From hydrodynamical simulations and analytical studies of disc-

planet interactions (e.g. Kley 2001, 2003; Goldreich & Sari 2003), it

is possible to show that different values of the disc parameters (such

as mass and viscosity) yield different values of K. Consequently, it is

conceivable that the three resonant planetary systems were formed

in protoplanetary discs with significantly different characteristics.

Unfortunately, it is not yet possible to deduce unique disc parameters

solely from the value of Kc.

Nevertheless, we can obtain some partial information. Numeri-

cal simulations by Nelson & Papaloizou (2002) showed that if the

eccentricity of the outer planet reaches a value above ∼0.2, the mi-

gration process could be marked by periodic incursions of the planet

inside the gaseous disc. In such a scenario, the authors found that

the migration process could suffer temporary inversions in direc-

tion and that, although capture in corotation may still take place, the

resulting orbits display large-amplitude solutions. This was found

to occur in association with a driving mechanism that had a low

eccentricity damping (i.e. small value of K).

An alternative explanation may lie in the adiabaticity condition.

It has been shown in numerical simulations for the restricted three-

body problem (see Gomes 1995b) that a non-adiabatic capture can

lead to larger amplitudes of libration than slower migration ratios.

Since the adiabatic limit is inversely proportional to the mass ratio

m 2/m 1 (see Section 3), it is plausible that the GJ 876 migrated adi-

abatically, while the opposite occurred to 55 Cnc. However, further
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studies are necessary in order to adequately evaluate the probability

of this hypothesis.

In consequence, even though we have no rigorous explanation

for the differences found in all three resonant systems, we do have

at least two concrete possibilities. If proved, the large amplitude of

the apsidal corotation for HD 82943 and 55 Cnc may even come to

be an additional evidence in favour of a large-scale migration in the

systems’ past.

6 C O N C L U S I O N S

In this paper, we have presented a new catalogue of general coro-

tational solutions for the 2/1 MMR. Apart from the well-known

aligned and anti-aligned solutions, we have also extended our knowl-

edge of asymmetric configurations and have mapped the recently

discovered (π , π ) corotations. Since these periodic orbits depend

on the planetary masses only through the ratio m 2/m 1, and on the

semimajor axes only by a1/a2, they are very general in nature and

should be valid for any exoplanetary system showing two planets

trapped in this commensurability.

The determination of the period of oscillation τ around these fixed

points of the averaged problem shows that any migration mech-

anism with characteristic time-scale τ a ≫ τ should be adiabatic.

Thus, starting from quasi-circular orbits, the evolutionary track of

the planets inside the resonance should be well reproduced by the

families of apsidal corotations for that particular mass ratio. This,

together with the fitted values of the orbital eccentricities, allow us

to stipulate whether present orbits are consistent with apsidal coro-

tations, and consequently with a planetary migration of the system

from cosmogonic locations far from the star. In other words, we are

able to suggest a simple test which relates the present orbits with

restrictions on the properties of the formation process of resonant

planets.

Application to the 2/1 and 3/1 MMRs shows that all presently

known systems seem to satisfy the corotation/migration conditions

satisfactorily. However, there are peculiarities. While GJ 876 shows

a small-amplitude oscillation round the apsidal corotation, the most

reliable orbits for HD 82943 and 55 Cnc both show large-amplitude

solutions. Although this could be a signal of orbital uncertainties,

it may be indicative of different parameters of the primordial discs,

or a non-monotonic and/or non-adiabatic migration process.
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