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ABSTRACT 
 
We have explored the stability of the inner Uranian satellites using simulations based on the 

most recent observational data.  We find that, across a wide range of mass assumptions, the 
system is chaotic, resulting in the eventual crossing of orbits.  Cupid and Belinda are usually the 
first satellites to cross orbits, and they do so on a time scale of 103107 years.  Cressida and 
Desdemona are generally the next pair to cross, on a time scale of 105107 years.  We show that 
the crossing times are highly sensitive to initial conditions and that Cupid’s instability is related 
to its resonant interactions with Belinda.  We also show that a previously discovered power law, 
with which the orbit crossing time can be predicted using multiple, shorter simulations with 
higher mass assumptions, is valid across a wide range of masses.  We generalize the power law 
to handle two unstable orbital pairs with overlapping lifetimes, and show it can be used to further 
extend the range of mass assumptions in a computationally efficient manner. 
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1. INTRODUCTION 

Uranus has the most densely-packed system of low-mass satellites close to the planet (semi-
major axes a = 59,16697,736 km or 2.33.8 Uranian radii) in the solar system.  Ten of these 
satellites were discovered by Voyager 2 (Smith et al., 1986).  Perdita was discovered later in 
archival Voyager 2 imagery (Karkoschka, 2001a), and Cupid and Mab were discovered using the 
Hubble Space Telescope (HST) (Showalter and Lissauer, 2006).  In addition to these inner 
satellites, Uranus has five large “classical” satellites (a = 129,848583,520 km) as well as nine 
very distant “irregular” satellites (a = 4.21062.1107 km). 

Multiple observations of the inner satellites provided by Voyager 2 (Smith et al., 1986), 
simultaneous analysis of data from HST and Voyager 2 (Owen and Synnott, 1987; Jacobson, 
1998), and 15 years of HST observations (Showalter et al., 2008; 2010) have shown that the 
orbits of the inner satellites are variable over periods shorter than two decades.  If the system is 
chaotic, the orbits of two or more satellites may eventually cross.  Such a crossing is likely to 
lead to close approaches and possibly an eventual collision of the two satellites because of the 
unequal precession of the orbits as well as continued interactions between the various satellites 
(Mikkola and Innanen, 1995). 

Several prior studies of the orbital stability of the inner satellites have been conducted.  
Duncan and Lissauer (1997, henceforth DL97) studied the orbital dynamics of a subset of eight 
of the inner satellites along with the five classical satellites using the SWIFT Regularized Mixed 
Variable Symplectic simulator (Levison and Duncan, 1994).  They ran simulations until two 
satellites crossed orbits or until a preset time limit was exceeded.  Initial orbital state vectors for 
the inner satellites were taken from Voyager 2 images (Owen and Synnott, 1987), and those for 
the classical satellites were taken from previously unpublished measurements.  Because the 
dynamical masses of the inner satellites are unknown, DL97 used mass estimates by Lissauer 
(1995), which are based on estimated radii from unresolved images (Thomas et al., 1989) and the 
assumption that the densities are the same as that of Miranda,  = 1.2 g/cm3 (Jacobson et al., 
1992). 

Due to the time required to execute their simulations, DL97 were unable to explore a wide 
range of realistic mass estimates.  Instead, they assumed a single set of mass estimates and then 
introduced a mass scaling factor, mf, that was uniformly applied to all satellites.  Comparing the 
time to first orbit crossing, tc, with mf, they found that orbit crossing time generally decreased 
with increasing mass, presumably due to the stronger mutual perturbations.  The results were 
well-described by a power law of the form tc = mf 

.  Thus, by running a large number of 
simulations with mf  > 1, DL97 could find  and  and thus extrapolate to tc(mf =1).  They found 
that the five classical satellites, by themselves, were stable over a period much longer than the 
age of the solar system (~2.51017 years), while the inner satellites were stable over a much 
shorter period (~4100 million years), with either Cressida and Desdemona or Desdemona and 
Juliet crossing orbits within this time.  When the oblateness of Uranus was taken into account (an 
assumption used throughout our analysis), the presence of the classical satellites did not 
substantially affect the orbit-crossing times, presumably because the resulting orbital precession 
disrupted any secular resonances that would otherwise form. 

Meyer and Lissauer (2005) used the Mercury hybrid symplectic integrator (Chambers, 1999) 
to simulate the same 13 satellites used by DL97.  They explored a range of possible masses by 
assuming densities from 0.130 g/cm3 and replicated the fundamental results of DL97 by 
showing that the inner satellites generally experienced collisions in less than 3106 years, with 
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lower densities corresponding to longer times between collisions.  By assuming perfectly 
inelastic collisions, they also continued the simulations past the first collision to explore further 
system development and modeled the effects of tidal damping on eccentricities.  The fact that the 
simulations of Meyer and Lissauer (2005) experienced collisions over time periods similar to the 
orbit crossings found by DL97 adds weight to the argument that a collision will shortly follow 
the crossing of two orbits. 

Dawson et al. (2009; 2010; 2011) explored the short-term evolution of the orbits of the inner 
Uranian satellites by analyzing the effects of overlapping resonances and also by computing the 
Lyapunov characteristic exponent for each satellite.  They found that the orbital evolution was 
very sensitive to the assumed masses and attributed this sensitivity to the dependence of the 
widths of the overlapping resonances to the masses.  They also found that the Lyapunov time 
increased with decreased mass, but numerical artifacts prevented them from determining if the 
system ever became stable with sufficiently small masses. 

In this study, we take advantage of the increase in computational speed since 1997 and 
expand upon the results of DL97.  We first examine the orbital stability of the Uranian satellites 
by direct integration without using the power law.  We explore a range of mass estimates and 
densities for the inner satellites, include the inner satellites omitted by DL97 (Cordelia and 
Ophelia), and add the three more recently discovered satellites Cupid, Perdita, and Mab.  We 
also investigate the effect of including the classical satellites, as well as removing individual 
satellites from the model, and examine the resonant interactions between various satellite pairs.  
However, as the power law does have its uses for low-mass systems when simulation times 
become prohibitive, we also test the validity of the power law with a wide range of mass factors 
and extend the power law to the case where there are two independent unstable systems with 
overlapping orbit crossing times.  Finally, we investigate the possible future evolution of the 
satellite system. 

The paper is organized as follows.  In Section 2 we discuss the simulation methodology, 
including the choice of simulator and computation environment, the selection of satellite masses 
and orbital parameters, and the analysis of the numerical stability of the simulation.  In Section 3 
we analyze the stability of the orbits under the various mass assumptions without using the 
power law, and we examine the effect of including the classical satellites in the model as well as 
the effect of removing individual inner satellites.  In Section 4 we reproduce and expand upon 
the results of DL97 to verify the applicability of the power law over a larger range of mass 
factors, extend the power law to the handle the case of two overlapping unstable satellite 
systems, and analyze our new models using the power law.  In Section 5 we examine other 
indicators of orbital chaos and discuss the long-term evolution of the satellite system.  Finally, in 
Section 6 we discuss the implications of our results and present concluding remarks. 

2. METHODOLOGY 

2.1. Simulator and Environment 

All simulations were performed using the SWIFT1 simulator and the RMVS3 Regularized 
Mixed Variable Symplectic integrator (Levison and Duncan, 1994), which is based on the 
symplectic mapping method of Wisdom and Holman (1991).  We applied minor modifications to 

                                                 
1 SWIFT is available at http://www.boulder.swri.edu/~hal/swift.html. 
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the SWIFT driver to check for orbit crossings and to change the format of the output file, but the 
core algorithm was unchanged. 

We define the crossing time, tc, as the time when the apoapsis of any one satellite becomes 
larger than the periapsis of the next satellite out from Uranus.  For convenience, we will often 
refer to log tc, the base 10 logarithm with tc measured in seconds; to convert to units of years, 
subtract 7.5.  We used the traditional osculating element definitions for the eccentricity and semi-
major axis to compute the periapses and apoapses.  These are known to contain errors in the 
presence of an oblate central body, but are simple and fast to compute.  Crossing times using 
osculating elements were compared across a wide range of simulations to crossing times 
computed using the geometric orbital elements of Borderies-Rappaport and Longaretti (1994), 
and in 99% of the cases the crossing times did not differ.  In the remaining small number of 
cases, the difference was minor, and we do not expect the use of osculating elements to compute 
crossing times to materially affect our analysis. 

The majority of the runs, as well as the computationally-intensive orbital fits, were 
performed using the 1,160-processor supercomputer at the Centre for Astrophysics and 
Supercomputing at the Swinburne University of Technology.  Additional simulations were 
performed on various desktop PCs running the 64-bit version of Windows 7.  In all cases, 
SWIFT was compiled with the GNU 3.4 32-bit FORTRAN 77 compiler.  A direct comparison of 
simulation results from the various systems showed no difference. 

As the numerical stability of the SWIFT simulator has already been well-established in 
previous studies (e.g., Levison and Duncan, 1994; DL97), we did not repeat this work.  
However, to determine the appropriate simulation parameters, we characterized the sensitivity of 
orbit crossing time to integration step size.  As expected, we found no systematic dependence as 
long as the step size was kept sufficiently small.  After balancing the tradeoffs between precision 
and integration speed, we settled on a step size of 1/20th the period of the innermost satellite, the 
same step size used by DL97 for the majority of their simulations.  This resulted in a step size of 
1,887.381 sec when simulating the set of satellites used by DL97 (with Bianca innermost) and 
1,447.347 sec when simulating our more complete set (with Cordelia innermost). 

2.2. Satellites and mass estimates 

We used two different sets of satellites, masses, and physical parameters in this study.  The 
first set included those used by DL97 as part of their “8J” and “13J” models, which we will refer 
to as DL97(8J) and DL97(13J), respectively.  The DL97(8J) model used the satellites in the 
“Portia group” (Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, and Puck).  The 
DL97(13J) model added the five classical satellites Miranda, Ariel, Umbriel, Titania, and 
Oberon.  The assumed masses can be found in Table 1 and the initial state vectors can be found 
in DL97.  DL97 assumed a radius for Uranus of RU = 26,200 km and quadrupole and octopole 
gravitational moments for Uranus of J2 = 3.34343103 and J4 = 2.885105 from French et al. 
(1991).  Since DL97 did not publish their assumptions for the GM of Uranus, we assumed a 
value of 5793965.663939 km3s2 in our simulations.2,3 

                                                 
2 From the ura083.bsp SPICE kernel, available at http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/ 

satellites/ura083.bsp. 
3 Throughout this paper, we present full 16-digit machine precision for all physical quantities that are used 

during simulation.  This should not be construed to represent the level of precision actually available in the 
measurements, which is usually substantially less.  Instead, because of the sensitivity of the chaotic systems to small 
changes in input parameters, we provide the full precision so that our results may be reproduced. 
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We produced a second set of satellites, masses, and physical parameters based on updated 
data.  We included Cordelia and Ophelia, and we also added the three inner satellites discovered 
since 1997, Cupid, Perdita, and Mab.  No dynamical mass estimates are available for the 13 inner 
satellites, and masses computed based on volume and density are subject to errors in observed 
radius as well as unknown density.  Measurements of radii are particularly error-prone because 
the inner satellites have very low (< 0.07) and poorly measured albedos (Smith et al., 1986; 
Karkoschka, 2001b).  As an extreme example, if Mab has the albedo of the next innermost 
satellite, Puck, it has a radius of 12 km, while if it has the albedo of the next outermost satellite, 
Miranda, it has a radius of 6 km, resulting in a factor of eight uncertainty in volume (Showalter 
and Lissauer, 2006).  However, resolved Voyager images have permitted the determination of 
the albedo of many of the satellites with reasonable accuracy, and this has permitted the 
calculation of updated size estimates (Karkoschka, 2001a). 

We have assumed that all of the inner satellites except Cupid, Perdita, and Mab have the 
radii and 1  errors found by Karkoschka (2001a).  For the remaining three satellites, we have 
used the radii found by Showalter and Lissauer (2006) and assumed a 20% uncertainty in albedo 
and a 20% uncertainty in disk-integrated photometry.  This yields a 40% error in area and thus a 
~20% 1  error in radius.  In all cases, we have assumed an initial density of 1 g/cm3, which is 
less than the density of 1.2 g/cm3 assumed by DL97, and computed the mass accordingly (Table 
1).  We call this set of assumptions I(baseline), where the “I” indicates the use of the inner 13 
satellites and the “baseline” indicates the use of the baseline radius assumption.  Despite the 
lower density assumption, the increased radii nevertheless result in baseline masses that are, on 
average, ~55% larger than those assumed by DL97, and we expect these larger masses to cause 
greater perturbations and thus shorter orbit crossing times. 

To account for uncertainties in radius, we created additional sets of mass assumptions.  For 
each of the 13 satellites, we assumed that its radius was 1  below, and also 1  above, the 
baseline estimate, while the rest of the satellites were held at their baseline radius.  This resulted 
in an additional 26 mass combinations labeled I(sat) and I(sat+), where sat is one of the 13 
Uranian satellites that has had its radius perturbed (as indicated in Table 1), and the  or + 
indicates the direction in which it was changed.  In addition, several models were created to 
account for the uncertainty in density.  In these cases, the model name has an additional 
parameter indicated by “/density”, such as I(baseline/1.5), where density is in units of g/cm3.  If 
no density is specified, a density of 1 g/cm3 is assumed. 

We have also created models that include the five classical satellites.  The model containing 
only these five satellites, with none of the inner satellites, is called O().  The models containing 
all 18 satellites are called IO(baseline) and C(baseline), where the masses are the same but the 
initial state vectors are determined differently as described in the following section.  The masses 
of the classical satellites, which are known dynamically, are never modified. 

For our new models, we assume a radius for Uranus of RU = 26,200 km, quadrupole and 
octopole gravitational moments for Uranus of J2 = 3.344247802666718103 and 
J4 = 2.772599495619087105, and a GM for Uranus of 5793965.663939 km3s2 (all from the 
SPICE “ura083.bsp” kernel). 

2.3. Initial orbital state vectors 

The orbits of the inner satellites are constrained by a series of unevenly spaced observations 
made over the past 24 years, first by Voyager 2 and more recently by the Hubble Space 
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Telescope.  We wish our simulations to agree as closely as possible with these observations over 
this time period, and thus must find a set of initial state vectors (three-dimensional position and 
velocity) for our simulations that result in the best positional matches.  All relevant astrometric 
data has been collected by the Navigation and Ancillary Information Facility (NAIF) at NASA’s 
Jet Propulsion Laboratory and used to create a set of standard orbital models that are published in 
the form of data kernels for the SPICE information system.4  The orbits for the inner satellites are 
modeled as simple precessing ellipses because perturbations are expected to be small over such a 
short time, and because insufficient observations are available for more elaborate modeling 
(Jacobson, 1998).  The model orbits for the classical satellites are provided from numerical 
integration orbital fits of available astrometric data.  We used these models to provide 
observational constraints for our orbital fits, with “ura091.bsp”5 containing the models of the 
inner satellites and “ura083.bsp” containing the models of the classical satellites. 

The SPICE library provides the ability to calculate the state vector of each satellite from its 
model at any time from January 3, 1910 to January 4, 2050.  However, because of the highly 
variable mutual perturbations of the satellites, a simulation initialized from state vectors derived 
from these models at one time and run until a later time will not produce the same sequence of 
satellite positions as would be retrieved from the SPICE models over that time interval.  In 
addition, the amount that the initial state vectors must be modified to make the simulation results 
agree as closely as possible with the models over the valid time will depend heavily on the 
masses of the satellites, which in turn govern the extent of the perturbations.  Thus any change in 
the masses requires a new computation of the initial state vectors. 

To compute the initial state vectors that result in the best agreement between simulation and 
model over a reasonable time period, we performed an iterative orbital fit over the period 
January 1, 1986 to January 1, 2010, the approximate range of available observations.  The fit 
consisted of a four-pass Powell optimization (Powell, 1964) over the six-dimensional vector of 
orbital elements for each satellite, which was sufficient to produce state vector components 
accurate to less than 1 mm or 1 mm/sec.  The orbital elements were initialized for 00:00:00 UTC 
on January 1, 1986 based on conversion from the state vectors provided by the SPICE library.  
We chose to use the geometric orbital elements of Borderies-Rappaport and Longaretti (1994), as 
implemented in closed-form solution by Renner and Sicardy (2006), during the fit procedure 
because they are not subject to the short-term oscillations present in the osculating elements 
caused by Uranus’ oblateness. 

The optimization attempted to minimize the rootmeansquare (RMS) residual between the 
positions produced by a SWIFT simulation and the positions produced by the models contained 
in the SPICE kernels.  Optimization was initially performed over 1.5 days, and the time period 
was progressively increased to cover the entire 24-year period after seven passes.  To fully 
optimize the state vectors for 13 satellites would require a Powell-style optimization over a 78-
dimensional space (13 state vectors times six parameters per state vector).  Such an optimization 
is computationally impractical.  Thus, for each time span, each satellite was optimized 
separately, starting from the outermost and proceeding inwards, while the initial state vectors of 
the other satellites were held constant.  The outer-to-inner optimization direction was chosen 
because the more massive outer satellites are more likely to perturb the less massive inner 
satellites than the reverse, and thus the initial state vectors of the inner satellites depend more 
strongly on the orbital solution chosen for the outer satellites. 

                                                 
4 For more information on SPICE, see http://naif.jpl.nasa.gov/naif/toolkit.html. 
5 Available at http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/ura091.bsp. 
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Resulting orbital fits were on the order of 10105 km RMS over the 24-year simulation 
period.  The larger residuals were present for those satellites that had highly sensitive 
interactions with their neighbors.  Perdita is located at the 43:44 outer Lindblad resonance of 
Belinda, and, while the mean perturbation caused by this resonance is modeled in the SPICE 
kernel, the short-term perturbations are not, resulting in an unusually large residual for Perdita.  
Mab is also known to show large, unexplained perturbations, including a 100-km longitudinal 
shift over a six-day period (Showalter and Lissauer, 2006), and these unmodeled effects cause 
larger residuals as well. 

For the IO(baseline) and C(baseline) models, a simultaneous orbital fit was required for all 
18 satellites.  DL97 found that, in the presence of a J2/J4 oblateness for Uranus, the five classical 
satellites did not substantially affect the orbital evolution of the inner satellites.  To test this 
result, we optimized the orbital parameters of the I(baseline) model, which consists of only the 
inner satellites, and the O() model, which consists of only the classical satellites, separately.  We 
then generated a combined model, C(baseline), containing all 18 satellites using the masses and 
initial state vectors from the union of the I(baseline) and O() models.  We simulated the 
C(baseline) model for 24 years, comparing the simulated satellite positions with the SPICE-
derived models.  If the inner and outer satellite groups do not interact at all, the residuals of the 
C(baseline) model would be the same as the combined residuals of I(baseline) and O().  
However, this is not the case.  The presence of the inner satellites has only a small effect on the 
outer satellites, as would be expected, but the presence of the outer satellites has a noticeable 
effect on the inner satellites.  The implications of the presence of the outer satellites will be 
discussed more in Section 3.1. 

Because of the effect of the classical satellites on the inner satellites, it was necessary to 
perform a complete orbital fit of all 18 satellites, and the result is the IO(baseline) model.  The 
IO(baseline) model has smaller residuals for the inner satellites than the C(baseline) model, 
while the reverse is true for the classical satellites.  As a result, we include both models in our 
analysis below.  We expect that a more thorough orbital fit procedure would provide an overall 
model superior to both IO(baseline) and C(baseline), but such a procedure was computationally 
impractical for this study. 

3. STABILITY OF THE INNER SATELLITES 

3.1. Predictions of instability 

Gladman (1993) found that a system with a central body and two close planets on circular 
orbits will be Hill stable (disallow close approaches) as long as the initial orbital separation of 
the two planets, 2 1a a   , is greater than 1/3

1 22.4( )  , where 1  and 2  are the mass ratios 

of the two planets to the central body.  Chambers et al. (1996) expanded this result to multi-
planet systems and found that, across a wide range of assumptions, a system is always unstable 
as long as the initial orbital separations,  , now measured in units of the mutual Hill radii, 

1/3
1 2 1 2[( ) / 3 ] [( ) / 2]HR m m M a a   , are less than 10, while systems with 10   are 

decreasingly likely to be unstable. 
We used the mass assumptions in our I(baseline) model to compute   for each pair of 

adjacent satellites and found that the two closest separations were CupidBelinda (=10.12) and 
CressidaDesdemona (=11.78).  Additional close separations were provided by 
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BelindaPerdita (=13.37), JulietPortia (=13.38) and DesdemonaJuliet (=18.39).  All other 
pairings had >30.  Thus we expect that the CupidBelindaPerdita and 
CressidaDesdemonaJulietPortia systems are particularly unstable. 

3.2. Simulation results 

We can analyze the stability of the inner satellites by looking at the orbit crossing times 
found from direct integration.  We have found this value for 32 inner satellite models (Table 2).  
For the models that assume a density of 1.0 g/cm3, Cupid and Belinda are almost always the first 
to cross, with log tc = 11.6 to 13.2 (1.3104 5.0105 years).  Allowing a wider range of densities 
( = 0.53.0) expands the range to 10.6 to 13.7 (1.31031.6106 years).  As an example of 
orbital evolution, the apoapse and periapse of Cupid and Belinda using the I(baseline) model are 
shown until orbit crossing in Fig. 1. 

This first crossing of Cupid and Belinda is in contrast to the results of DL97, where Cressida 
and Desdemona, or Desdemona and Juliet, were the first satellites to cross.  As Cupid was not 
yet discovered at the time of DL97 and thus not included in their models, a reasonable 
explanation is that the CupidBelinda system is more unstable than the 
CressidaDesdemonaJuliet system, resulting in the earlier orbit crossing of Cupid and Belinda 
effectively hiding a later crossing of Cressida and Desdemona.  To verify this result, we 
conducted simulations with either Cupid or Belinda removed.  The orbital fits were not 
recomputed and the initial state vectors from the I(baseline) model were used.  The results are 
shown in Table 3.  In these simulations, Cressida and Desdemona are the first satellites to cross, 
with crossing times approximately an order of magnitude longer than those found when Cupid 
and Belinda are present.  Although DL97 was not able to find the crossing time for many of their 
models with direct integration, the predicted log crossing times for Cressida and Desdemona 
from application of the power law ranged from 12.5 to 15.7 (tc,pred =  1.01051.6108 years).  
Their most realistic models, DL97(8J) and DL97(13J), both had predicted log crossing times of 
14.1 (tc,pred  = 4106 years).  This is in comparison to log crossing times of 13.5 and 13.7 
(1.01061.6106  years) in our simulations.  The shorter crossing times can be accounted for by 
our new mass assumptions, which are ~55% higher than those used by DL97. 

We also explored the effect of removing each of the other inner satellites on the crossing 
time (Table 3).  In general, the removal of a single satellite does not dramatically change the time 
of first orbit crossing, and Cupid and Belinda remain the first pair of satellites to cross.  
However, when Perdita, a very low mass satellite not present in the DL97 models, is removed, 
Cressida and Desdemona are once again the first satellites to cross, even though Cupid and 
Belinda are still present in the system, implying that the presence of Perdita destabilizes the 
CupidBelinda system.  The effect of Perdita will be discussed further in Section 4.4. 

Finally, we can also investigate the influence of the five classical satellites on orbit crossing 
time.  DL97 found that the addition of these satellites did not significantly change their results as 
long as Uranus was assumed to be oblate (an assumption we make throughout this paper).  In 
fact, their predicted log orbit crossing times were the same for their DL97(8J) and DL97(13J) 
models.  To verify that the classical satellites continue to be unimportant in our new models, we 
analyzed the C(baseline) and IO(baseline) models (see Table 2).  The result, log crossing times 
of 12.9 and 13.1 (2.5105 and 4.0105 years), respectively, are close to the log crossing time of 
the I(baseline) model, 12.5, and are comfortably within the range of 11.613.2 (1.3104 
5.0105 years) for all I(sat) models.  Thus it appears that the presence of the classical satellites 
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does not significantly change the chaotic behavior of the inner satellites, even though there is 
evidently some effect on the orbits, and we will ignore the classical satellites for the rest of this 
paper. 

Although we predict that the CupidBelindaPerdita and 
CressidaDesdemonaJulietPortia subsets will be unstable in isolation, our simulations so far 
were performed with the full complement of inner satellites present.  Examining the instability of 
these two groups of satellites in isolation permits us to determine what effect, if any, the 
remaining satellites have on their stability.  However, it is worth noting that Juliet and Portia, 
despite their predicted instability, almost never cross in our simulations.  The reason for this is 
unclear, although it is probably related to their near-resonant interaction discussed in Section 3.3, 
but as a result of this observation we will remove Portia from our isolation studies. 

A simulation containing only Cupid, Belinda, and Perdita, with a new orbital fit, resulted in 
a log crossing time of 14.1 (~3.8106 years).  While this is noticeably longer than any of our 13-
satellite models, most of which have Cupid and Belinda crossing first, it is nevertheless clear that 
the CupidBelindaPerdita system is unstable on astronomically short timescales even in 
isolation. 

Likewise, a simulation containing only Cressida, Desdemona, and Juliet, with a new orbital 
fit, resulted in a log crossing time of 14.7 (~1.6107 years).  This is noticeably longer than the 
log crossing times of any of our 13 satellite models, and in particular is longer than the log 
crossing times of 13.513.7 from the I(baseline) model with Cupid, Belinda, or Perdita deleted, 
the most similar of our models that result in a crossing of Cressida and Desdemona.  Like the 
CupidBelindaPerdita system, the CressidaDesdemonaJuliet system is apparently unstable 
on its own, although on a much longer timescale.  In both cases, the addition of other satellites 
decreases the overall stability and thus decreases the crossing time. 

3.3. Sensitivity to initial conditions 

To explore the accuracy of our crossing times and the nature of the chaos, it is worthwhile to 
analyze the sensitivity of the results to small perturbations in initial conditions.  To do this, we 
started with the I(baseline) model as a reference.  This model has a log tc of 12.5, with Cupid and 
Belinda crossing first.  We then perturbed the initial conditions by moving, alone or in 
combination, the X, Y, and Z components of the initial state vector by2, 1, 0, +1, and +2 mm, 
resulting in 124 additional models.  The result was a dramatic spread in crossing times, with a 
minimum of log tc = 11.7 and a maximum of log tc = 13.4, a factor of ~50.  The crossing times 
were approximately normally distributed around a mean of 12.5 with a standard deviation of 0.4.  
There was no correlation between the crossing times and the change made in the X, Y, or Z axes.  
In addition to the spread in crossing times, some simulations had different pairs of satellites 
(Rosalind and Cupid, or Belinda and Perdita) crossing first as well. 

We further analyzed the sensitivity to initial conditions by taking the I(baseline) model and 
perturbing the mass of Cupid by 6.2108 g to +6.2108 g in increments of 107 g (a change of 
approximately one part in 1011).  Again the resulting crossing times showed a wide spread (a 
factor of ~130) with no obvious correlation to mass, as well as a variety of crossing satellites, 
with the same mean and standard deviation as the position perturbation. 

There is little doubt that the simulations are extremely sensitive to initial conditions, and 
there is no reason to believe that the precise conditions we have chosen result in representative 
crossing times.  Thus all individual crossing times discussed in this paper must be considered to 
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be only one sample of a set of possible crossing times that span approximately two orders of 
magnitude. 

3.4. Resonant interactions 

Much of the orbital instability of the Uranian satellites can be attributed to resonant 
interactions.  Belinda and Perdita are the most well-known example of interacting satellites, with 
Perdita located at Belinda’s 43:44 outer Lindblad resonance (OLR).  This interaction is known to 
cause libration in the orbit of Perdita (Showalter and Lissauer, 2006).  Other resonant 
relationships are not as exact, but nevertheless have a clear effect on orbital evolution. 

One measure of satellite interaction is the statistical correlation of the semi-major axes, a 
proxy for orbital energy.  We generated a series of correlations using a sliding time window for 
each pair of satellites in the I(baseline) model and then computed the mean and standard 
deviation () of the resulting correlations.  A pair of satellites that has no interaction would have 
a mean and standard deviation of zero, while a pair that is perfectly anticorrelated would have a 
mean of 1 and a standard deviation of zero.  A non-zero standard deviation implies that the 
correlation changes during the simulation, perhaps as a result of a satellite approaching and then 
retreating from a resonance. 

In each case where we found a mean significantly different from zero, the pair of satellites 
was also related by a resonance.  Bianca and Cressida have a mean correlation of 0.14 and  of 
0.24, with Bianca 4.0 km from the 16:15 inner Lindblad resonance (ILR) of Cressida.  Nearby 
first-order resonances are spaced ~160 km apart.  Cressida and Desdemona are strongly 
anticorrelated, with a mean of 0.93 and  of 0.05.  Cressida is located 0.9 km from the 47:46 
ILR of Desdemona, with first-order resonances spaced ~19 km. 

Juliet and Portia have the strongest consistent anticorrelation, with a mean of 0.95 and  of 
0.05.  In this case, a second-order resonance is important, with Juliet 1.8 km from the 51:49 ILR 
of Portia.  Nearby second-order resonances are spaced 34.5 km apart.  This resonance is 
particularly interesting because, in our simulations, Juliet and Portia almost never cross orbits.  
Visual inspection of the orbital elements shows that whenever Juliet approaches the 51:49 ILR of 
Portia, it is repelled.  This prevents Juliet and Portia from getting close enough to cross orbits. 

As previously discussed, Belinda and Perdita interact through Belinda’s 43:44 outer 
Lindblad resonance.  They have a mean correlation of 0.63 with a  of 0.33.  Belinda and Puck 
have a mean correlation of 0.26 and  of 0.14.  Puck is 10.1 km from the 9:11 OLR of Belinda, 
with second-order resonances separated by ~925 km. 

Perhaps the most interesting resonant interaction is found between Cupid and Belinda.  
These satellites have a mean correlation of 0.36 with a  of 0.26.  Although the exact position 
of Cupid is sufficiently uncertain (Showalter and Lissauer, 2006) that placing its current position 
precisely in a resonance of Belinda is unlikely to be accurate, it is nevertheless enlightening to 
observe the orbital interaction of these satellites over time.  For example, we can explore the 
relationship between Cupid and Belinda both before and after the onset of significant instability 
seen in Fig. 1.  Fig. 2 shows the semi-major axis of Cupid plotted against the first- and second-
order ILRs of Belinda.  It is clear that Cupid tends to maintain a stable orbit at one of Belinda’s 
ILRs, but it is occasionally kicked out of a resonance and settles into a different resonance.  
During the period when Cupid is moving between resonances, the semi-major axes of Cupid and 
Belinda become highly anti-correlated as they exchange angular momentum.  However, due to 
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the much larger mass of Belinda, its orbit is mostly unaffected while Cupid undergoes major 
orbital changes. 

Starting at approximately 3.281012 sec in this simulation, the semi-major axes of Cupid and 
Belinda once again become perfectly anti-correlated, and remain so until the orbit crossing 
occurs.  Fig. 3 shows the semi-major axis of Cupid plotted against the ILRs of Belinda during 
this time.  Cupid rapidly hops between a wide variety of first- and second-order resonances, with 
occasional brief periods of stability.  It is clear that this interaction between Cupid and Belinda is 
the primary cause of Cupid’s instability and their eventual orbital crossing. 

4. THE POWER LAW 

4.1. Introduction 

DL97 found that the time of orbit crossing, tc, could be predicted by running many 
simulations with the satellite masses increased by mass factors, mf, and fitting the results to a 
power law of the form tc(mf ) = mf 

.  The time of orbit crossing is then easy to find, because 
when mf  = 1, tc = .  DL97 relied heavily on the power law to make their prediction that the 
Uranian satellite system was unstable on the time span of 4100 million years.  However, due to 
computational limitations, they were only able to verify the operation of the power law for a 
small subset of their models.  It is thus reasonable for us to ask whether the power law is truly 
applicable for their models and whether it is applicable to our new models as well.  Of the nine 
models analyzed by DL97, only two were able to fully demonstrate the power law by including a 
simulation at mf  = 1.  Both of these models, DL97(8H) and DL97(13H), did not include the 
Uranian J2/J4 terms and also did not adjust the initial state vectors to account for the now-
inaccurate orbital elements, making the results less relevant to the current study.  The DL97(8C) 
model was able to get close to mf  = 1, but again did not include the Uranian J2/J4 terms, although 
the initial state vectors were adjusted in a simple manner to compensate for the lack of 
oblateness.  The DL97(8J) model, referenced extensively in the current work, was also able to 
get close to mf  = 1 and included the Uranian oblateness.  However, these latter two models did 
not fully demonstrate the power law, since they did not actually verify the case of mf  = 1.  With 
today’s increasing computational capabilities, satellite systems with lower masses can be 
simulated all the way to orbit crossing.  Nevertheless it is still true that the simulation time 
increases by approximately the fourth power of the reduction in mass for the Uranian system.  
This quickly results in an impractical simulation time for very low mass systems.  As a result, the 
power law found by DL97 is still useful in many circumstances, and in this section we further 
explore its validity. 

4.2. The validity of the power law 

The simulations of the DL97(8J) model performed by DL97 covered a mass factor range of 
~1.340.  Smaller mass factors were not simulated due to the long simulation times required, and 
thus it was unproven whether the power law would continue to work at smaller mass factors.  We 
started our exploration by reproducing their results.  We ran a series of simulations with varying 
mass factors, in all cases represented by 2n/10 for integer n.  The initial orbital state vectors were 
not recomputed based on the new masses.  For each simulation, we recorded the earliest time, 
tc(mf ), that any pair of satellites crossed orbits.  We fit a power law using 50 data points over the 
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same mass factor range yielding  = 4.3 and log  = 14.4.  This is consistent with the power 
law fit using 46 data points found by DL97 of  = 4.10.1 and log  = 14.10.1.  Expanding 
the data to include mass factors of 0.9331.231 and 4064, we find a new power law fit that 
remains consistent with the fit found with the more restricted range of mass factors.  In addition, 
the crossing time we found by direct integration, log tc(mf =1) = 14.5, is consistent with the 
prediction of 14.3.  Table 4 summarizes these results, which are shown graphically in Fig. 4.   

Although the power law seems to work for chaotic systems in general, there is still the 
possibility that, below a particular mass assumption, the system ceases to be sufficiently chaotic 
that orbits would eventually cross.  In this case, the power law would fail and yet we would have 
no indication of that in our current analyses.  The first hint that this may be true was provided by 
the lowest mass factor simulation of the DL97(8J) model that we attempted (mf  = 0.871), which 
was terminated before it found an orbit crossing.  However, the lower bound provided by this 
simulation (1.3301015 sec) is well within the reasonable range of dispersions and thus does not 
prove that the model will never experience an orbit crossing. 

To gain further insight into the situation, we can examine the progress of the orbits 
themselves.  Fig. 5 shows the evolution of the apoapsis and periapsis of Cressida and Desdemona 
for mf  = 0.871, 0.933, and 1.000.  In all three cases, the orbits appear chaotic for the first 81013 
sec.  With mf  = 1 and 0.933, the orbits remain chaotic, leading relatively quickly to orbit 
crossings.  However, with mf  = 0.871, the orbits become stable, experience a brief, unexplained 
interaction around 51014 sec, and then remain stable until ~1.051015 sec, at which point they 
once again become chaotic.  This qualitative difference in behavior from the mf  = 1 and 0.933 
cases may imply that the mf  = 0.871 case is fundamentally different and will not lead to an orbit 
crossing.  However, given the high variability of crossing times, it is also possible that the chaos 
will increase later and eventually cause an orbit crossing.  Only a further exploration of mass 
factors in this area, with simulations run for much longer durations, will answer this question.  
Given the initial similarity of the three simulations considered here (Fig. 5, top), and the 
reappearance of chaos at 51014 sec and 1.051015 sec in the case of mf  = 0.871 after long 
periods of stability, the short simulations used by Dawson et al. (2009, 2010) may not be capable 
of predicting long-term behavior. 

4.3. Multiple power laws 

In both our models and the models of DL97, which pair of satellites crosses first is 
dependent upon the mass factor.  For the I(sat) models, Cupid and Belinda are usually the first 
pair to cross at low mass factors.  However, at higher mass factors, Cressida, Desdemona, and 
Juliet become relatively more unstable and one of these adjacent pairs usually crosses first.  This 
can be seen in Fig. 6 for the I(baseline) model, although a similar trend is present for the other 
models as well. 

In their implementation of the power law, DL97 measured the time until the first pair of 
satellite orbits intersected, no matter which pair.  Most often, it was Cressida and Desdemona, 
although occasionally it was Desdemona and Juliet.  The challenge we have in applying the 
power law to our models is that we include Cupid, which we find to have a substantially shorter 
lifetime under most, but not all, circumstances.  To account for this, we generalize the power law 
concept to one in which each pair of adjacent moons has a crossing time that can be modeled by 
a different power law.  For simplicity, we assume that the distributions are Gaussians in log tc (as 
implied by Section 3.3), where each mean is defined by a power law with a different slope and 
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intercept.  This view of the crossing events as a set of RVs with overlapping probability density 
functions also provides a natural framework within which we can understand a number of our 
anomalous integrations, such as the relatively rare cases where the first crossing involves 
Desdemona and Juliet or Rosalind and Cupid.  Although the concept is valid for an arbitrary 
number of overlapping power laws, for practical reasons we will limit our analysis to two, 
representing CressidaDesdemona and CupidBelinda.  For simplicity, we remove any 
simulations that do not have CupidBelinda or CressidaDesdemona cross first. 

In a given integration, the first crossing time can be regarded as the minimum of two 
independent random variables (RVs), each describing the lifetime of a pair of satellites.  Fig. 7 
shows a Monte Carlo simulation of how the mean value of the minimum relates to the mean and 
standard deviation of the distributions.  When the mean of one distribution is much smaller than 
that of the other, then our measurements are consistent with that distribution alone.  However, if 
the means of the two RVs are comparable, then our crossing time becomes a distinctly biased 
measure of the expected crossing time for either RV alone; the measurements are low by about 
0.5  in the case where the means and standard deviations are equal. 

The figure shows a distinct bend in observed value in this region, but in practice the scatter 
among our chaotic simulations can mask a relatively subtle bend.  An alternative (and very 
intuitive) way to identify the rough location of the bend is the place where the most common first 
crossing transitions from one pair to the other. We can readily identify this situation in our 
integrations because we always know which pair of satellites crosses first. With a sufficient 
number of simulations at different mass factors, we can roughly determine the power laws of the 
satellite pairs independently. 

Our process for determining the two sets of power law parameters (cupid, cupid, cupid, 
cressida, cressida, cressida) begins by running a set of simulations with mf = 264 in steps of 2n/10 
for integer n.  We also include a single simulation with mf  = 1, although the lengthy simulation 
times required for such small mass factors preclude us from running additional simulations with 
mf  < 2.  We discard the results from any simulation where a pair of satellites other than 
CressidaDesdemona or CupidBelinda crosses first.  We next make a visual determination of 
the approximate mass factor where the crossing dominance switches from CupidBelinda to 
CressidaDesdemona.  The values chosen are shown in Table 5, but the exact value chosen does 
not have a strong effect on the end result.  Given this value, which we will call mf,intersect, we 
determine a series of eight metrics from our ensemble of simulations.  These are, for the 
simulations with mass factors less than mf,intersect: the fraction of simulations where 
CupidBelinda cross first, the slope and intercept of the best fit line to the CupidBelinda 
crossings, and the standard deviation of the CupidBelinda crossings about this line; for the 
simulations with mass factors greater than mf,intersect, the metrics are repeated for 
CressidaDesdemona crossings.  Although many different metrics could be used, we find these 
metrics are sufficient to produce good results. 

Given these metrics, we find a set of power law parameters that, when run through our 
Monte Carlo simulation, produces the same values for the metrics.  We do this using a Nelder-
Mead simplex algorithm to optimize the residuals found by computing the sum-of-squares of the 
differences between the eight metrics derived from the original orbital simulations and the eight 
metrics from the Monte Carlo simulations.  We do not weight the metrics differently.  To avoid 
problems with local minima, we run the optimization multiple times using different initial values 
of the power law parameters and then choose the result with the lowest final residual. 
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To determine error bars on the power law parameters, we perform the entire optimization 
procedure multiple times while perturbing the target metrics.  Each time, the slope and intercept 
of the CupidBelinda crossings and the CressidaDesdemona crossings are chosen from a 
normal distribution with a mean of the values computed from the original orbital simulations, 
and a standard deviation computed by the statistical goodness-of-fit of the lines to those 
simulations.  The results for the 27 unit-density models are shown in Table 5, and plots of 
selected solutions are shown in Fig. 8.  In all cases, cupid and cressida are approximately 0.3 and 
are not included in the table.  Note that these uncertainties are similar to those derived from 
perturbing the initial state vectors (Section 3.3), increasing confidence in our methodology. 

4.4. Low satellite density 

The densities of the inner Uranian satellites are unknown, but it is possible to set reasonable 
limits.  Miranda, the innermost of the classical Uranian satellites, is relatively large (235 km 
radius) and has a density of 1.2 g/cm3 (Jacobson et al., 1992).  This value, used by DL97 for all 
the inner satellites, is a conservative upper limit.  However, the inner satellites are much smaller, 
more irregularly shaped, and are likely to be loose rubble piles.  In this way they are more similar 
to the small icy satellites of Jupiter and Saturn than they are to Miranda.  Amalthea, the largest of 
Jupiter’s inner moons, has a radius (83.5 km) similar to that of Portia and Puck and a density of 
0.857 g/cm3 (Anderson et al., 2005).  Saturn’s innermost satellites Pan, Atlas, Prometheus, 
Pandora, and Epimetheus, with sizes comparable to the smaller of the inner Uranian satellites, 
have densities ranging from 0.42 to 0.64 g/cm3, with a general trend of increasing density with 
increasing size (Thomas, 2010).  Finally, Neptune’s satellites Galatea and Despina may have 
densities of 0.4 to 0.8 g/cm3 (Zhang and Hamilton, 2008).  As such, we choose 0.5 g/cm3 as a 
reasonable lower bound on the density of the inner Uranian satellites.  As crossing time increases 
with decreasing mass, we will use this density to place an upper bound on crossing time. 

Running multiple simulations at such a low density is possible, but requires substantial 
computation time.  Instead, once the power law parameters have been found for a unit-density 
model, they can be used to extend the results to non-unit-densities (since our baseline model uses 
unit densities, a non-unit-density is equivalent to a mass factor).  The resulting predicted crossing 
times for  = 0.5 g/cm3 are shown in Table 5 and Fig. 9.  Cupid and Belinda cross orbits on a 
timescale of 1.0105 to 1.6107 years and Cressida and Desdemona cross orbits on a timescale of 
1.3106 to 3.2107 years, depending on the particular model used.  In all cases, the time to first 
crossing is significantly less than the age of the solar system. 

We now have a series of three masses for each satellite (radius decreased by one sigma, 
baseline, and radius increased by one sigma) and the corresponding crossing times for both 
CupidBelinda and CressidaDesdemona for  = 0.5.  By finding significant monotonic changes 
in crossing time with mass (defined here as changes whose 1- uncertainties do not overlap), we 
can determine which satellites most affect the crossing times of these two pairs.  In should be 
noted, however, that our one-sigma changes in radii are based on observational uncertainties, and 
thus the percentage mass change for each satellite is different.  For example, the three mass 
models of Cressida only change mass by a total of 34%, while the three mass models of Belinda 
change mass by nearly a factor of three.  Thus it is not appropriate to rank the level of influence 
of each satellite, only to note that such an influence exists. 

Examining Fig. 9, we find that the stability of CupidBelinda increases with Cupid’s mass, 
but decreases with Belinda’s mass.  We also find that Perdita has a strong influence, with 
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increasing mass decreasing stability.  This is shown in Fig. 8, where the increase in the mass of 
Perdita, the third smallest satellite in the system, results in a pronounced bend in the power law. 

Satellites far away from Cupid and Belinda have unexpected influence as well.  Bianca 
appears to have a noticeable effect, with increasing mass resulting in decreased stability.  Even 
more surprising, Mab appears to have an effect, with increasing mass resulting in increased 
stability.  For the CressidaDesdemona system, the relationships are less clear, perhaps due to 
the greater difficulty in fitting power law parameters to the secondary pair in our process, or 
perhaps due to the relatively small error bars on the masses of Cressida and Desdemona.  
Nevertheless, it appears that both Ophelia and Bianca have an effect on the stability, with 
increased mass resulting in greater stability. 

5. LONG-TERM EVOLUTION  

The power law allows us to explore the evolution of the system after the first orbit crossing, 
which happens on timescales that make direct integration impractical.  To do this, we ran 
simulations with a modified set of satellites.  In each case, two or more adjacent satellites were 
combined, using their initial state vectors, to simulate a perfectly inelastic collision.  The semi-
major axis of the new, combined satellite was derived from the sum of the orbital energies of the 
contributing satellites.  The remaining orbital elements (eccentricity, inclination, argument of 
pericenter, longitude of the ascending node, and mean anomaly) were the mass-weighed mean of 
those from the contributing satellites.  No new orbital fit was performed for the remaining, non-
colliding satellites.  It is important to realize that this methodology does not fully reproduce the 
state of the system at the time of the collision.  In particular, it is likely that the orbits of other 
satellites will have evolved before the collision occurs, and those orbital changes are not being 
considered here.  The likely end result is that the crossing times presented below are 
overestimates, since the non-colliding satellites will have had a chance to develop their chaotic 
interactions during the time required for other satellites to collide. 

Although the chaos of the system makes it impossible to predict an exact cascade of 
collisions, we can nevertheless get an idea of what will happen by examining multiple 
simulations.  To start this process, we examined the 250 position- and mass-perturbed 
simulations discussed in Section 3.3.  224 of these simulations had Cupid and Belinda cross 
orbits first, and thus we feel safe in using this assumption as the root of our cascade.  Using these 
224 simulations, Cupid and Belinda cross at a mean log time of 12.5 (~1.0105 years). 

Performing new simulations with Cupid and Belinda combined into a single satellite, and 
taking advantage of the power law, yields a predicted log crossing time of 13.1 (~4.0105 years).  
In almost all of the simulations used to fit this power law, Cressida and Desdemona are the 
satellites that cross.  We thus ran a new series of simulations with both Cupid and Belinda, and 
Cressida and Desdemona, combined.  Because of the increased run times even at higher mass 
factors, we had to modify the range of mass factors used to 2.82864.  The power law yielded a 
predicted log crossing time of 15.2 (~5.0107  years).  In almost all of these simulations, the 
combined CressidaDesdemona satellite (colloquially named “Cresdemona”) collided with 
Juliet. 

Continuing the process, the combined CupidBelinda satellite next collided with Perdita, 
with a projected log crossing time of 14.3 (~6.3106  years).  Finally, after a combined time of 
~57 million years, we are left with a set of satellites where the two most unstable subsets 
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(CressidaDesdemonaJuliet and CupidBelindaPerdita) have been combined into single 
satellites.  This system took substantially longer to experience crossing events, and we had to 
once again increase the starting mass factor to produce practical simulation times, this time to 
32512.  The power law appears to still be valid in this range, yielding a predicted log crossing 
time of 22.0 (~3.21014 years).  It is evident that at this point the system will remain stable for 
far longer than the predicted survival time of the solar system as a whole. 

We can compare this cascade of collisions to the prediction of the Hill separations (Section 
3.1).  If we once again ignore the possible collision Juliet and Portia since empirically they are 
not as chaotic as predicted, the most favorable cascade is: Cupid and Belinda ( = 10.12), 
Cressida and Desdemona ( = 11.78), CupidBelinda and Perdita ( = 18.38), and 
CressidaDesdemona and Juliet ( = 21.06).  This sequence is similar to the empirical sequence 
above, with the exception that the CupidBelinda and Perdita and the CressidaDesdemona and 
Juliet collisions are swapped.  Thus the Hill separation criterion continues to be a good predictor 
of instability. 

6. DISCUSSION 

All 34 of the new models we investigated by direct integration showed instability and orbit 
crossing (and presumably eventual collisions), with time scales ranging from 1.3103 to 1.6106 
years.  Cupid and Belinda were usually the first satellites to cross orbits.  Using the power law, 
we extended this result to densities of 0.5 g/cm3 and found that Cupid and Belinda crossed on 
time scales of 1.0105 to 1.6107 years while Cressida and Desdemona crossed on time scales of 
1.3106 to 3.2107 years.  Regardless of the particular mass and density assumptions used, it is 
probable that Cupid and Belinda will cross orbits within the next ~10 million years, a small 
fraction of the total time since the formation of the Uranian system.  Likewise, either before or 
after Cupid and Belinda collide, it is probable that Cressida and Desdemona will collide as well, 
and the apparent independence of the two groups of satellites implies that the order of collision is 
irrelevant.  Thus the inner Uranian satellites are unstable on astronomically short timescales, and 
have likely already had multiple interactions since their formation. 

While it is impossible to perform reverse integration on the system to determine the time of 
previous impacts, there is some evidence that such collisions have, in fact, occurred.  Cupid is in 
a particularly precarious orbit and it is unlikely that we just happen to be observing it near the 
end of its lifespan.  It is more likely that Cupid has been recently formed, perhaps as debris from 
a previous collision or as the accretion of dust produced by such a collision.  Likewise, the  ring 
(Showalter and Lissauer, 2006), which exists between Portia and Rosalind, is located very close 
to Uranus’ fluid Roche limit.  As such, it may be in the process of accreting into a satellite. 

The timescale of such an accretion is difficult to determine.  Early works on disrupted 
satellites found that accretion would occur on a timescale of 10100 years if tidal forces were 
ignored (Canup and Esposito, 1995).  However, the  ring is well-entrenched in the Roche zone 
and tidal forces are important.  Canup and Esposito (1995) found that, in this region, even 
perfectly inelastic collisions would only result in accretion under certain circumstances.  In 
particular, the difference in the mass of the two colliding objects needs to be large, because 
otherwise each object will have significant portions existing outside of the Hill sphere of the 
other object and they will not become gravitationally bound.  The mass difference requirement 
causes a bimodal distribution in the size of the resulting bodies as dust fails to aggregate with 
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other dust, but successfully combines with larger bodies.  Such larger bodies have not been 
detected within the  ring, implying that either the  ring is relatively new, or that the largest 
bodies are still smaller than the current detection limit. 

Another influence on the evolution of the satellites is the effect of meteoroid impacts and the 
associated catastrophic disruptions.  Colwell et al. (2000) found that catastrophic disruptions of 
Cressida and Desdemona could occur every 0.96.2 Gyr, depending on assumptions about the 
internal strength of the satellites, while catastrophic disruptions of Belinda could occur every 
1.39.1 Gyr.  Such disruptions have likely already occurred at least once since the formation of 
the Uranian system.  Thus, it is quite likely that even if Cressida and Desdemona, or Cupid and 
Belinda, were able to collide and accrete into a single new body, the resultant body would be 
broken apart by a subsequent meteoroid impact and the eventual stability of the inner Uranian 
satellites discussed in Section 5 will never come to pass. 

In the end, there is little concrete we can say about the history or future of the inner Uranian 
satellites, except that we are undoubtedly not seeing them in their original configuration and 
what we see today will likewise evolve over astronomically short time periods.  This evolution 
will be driven by orbital instabilities and resulting collisions, the dynamics of the accretion of the 
colliding bodies and any dusty rings produced from the collisions, and the random chance of 
catastrophic disruption by meteoroids. 
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Table 1 
Physical and orbital characteristics of Uranian satellites from DL97 model and this work. 

 
 

Satellite 
DL97 GM a 

(km3s2) 
Radius 
(km)  

GM  
(km3s2) 

GM (r 1 )  
(km3s2) 

GM (r +1 ) 
(km3s2) 

Cordelia  213b 0.002589112466095d 0.002589112466095 0.003864797617028 
Ophelia  234b 0.003401547497568d 0.001917581514410 0.005502807544558 
Bianca 0.003569068560288 272b 0.005502807544558d 0.004368306044999 0.006818471432415 
Cressida 0.012051400333440 412b 0.019268353339353d 0.016583906962132 0.022227898158064 
Desdemona 0.008169458879880 354b 0.011986631787478d 0.008328717144741 0.016583906962132 
Juliet 0.024856013187720 534b 0.041621779139926d 0.032891317624839 0.041621779139926 
Portia 0.055853605391520 704b 0.095893054299822d 0.080375712941637 0.113289116721840 
Rosalind 0.008169458879880 366b 0.013043691957471d 0.007548432845759 0.020712899728762 
Cupid    92c 0.000203807686836d 0.000095893054300 0.000372109782137 
Belinda 0.013210188827040 458b 0.025475960854435d 0.014161139590230 0.041621779139926 
Perdita  133c 0.000614218776375d 0.000279571586880 0.001145125219860 
Puck 0.152960081155200 812b 0.148575803703066d 0.137839695623702 0.159855398947324 
Mab  123c 0.000483099702129d 0.000203807686836 0.000943554105720 
Miranda 4.399977849623880  4.403988880239192e   
Ariel 90.29859336378001  86.48943821066345e   
Umbriel 78.20084149059601  81.48337213859010e   
Titania 235.2977975679480  228.6406014922988e   
Oberon 201.1019491218120  190.9467780172403e   
Sources: aDL97; bKarkoschka (2001); cShowalter and Lissauer (2006) with error bars as described in Section 2.2; 
dcomputed from the baseline radius at 1 g/cm3 as described in Section 2.2; eSPICE kernel “ura083.bsp”. 
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Table 2 
Description of models with crossing times and first satellites to cross. 

 
Model Mass Version log 

tc 
Crossing Satellites 

I(baseline/0.5) Baseline (  = 0.5) 13.7 CupidBelinda 
I(baseline/0.7) Baseline (  = 0.7) 12.8 CupidBelinda 
I(baseline) Baseline (  = 1.0) 12.5 CupidBelinda 
I(baseline/1.5) Baseline (  = 1.5) 10.9 CupidBelinda 
I(baseline/2.0) Baseline (  = 2.0) 10.6 CupidBelinda 
I(baseline/3.0) Baseline (  = 3.0) 10.9 CressidaDesdemona 
I(Cordelia) Cordelia r 1r 12.2 CupidBelinda 
I(Cordelia+) Cordelia r +1r 12.4 CupidBelinda 
I(Ophelia) Ophelia r 1r 12.6 CupidBelinda 
I(Ophelia+) Ophelia r +1r 12.9 CupidBelinda 
I(Bianca) Bianca r 1r 12.9 CupidBelinda 
I(Bianca+) Bianca r +1r 12.3 CupidBelinda 
I(Cressida) Cressida r 1r 12.5 CupidBelinda 
I(Cressida+) Cressida r +1r 13.0 CupidBelinda 
I(Desdemona) Desdemona r 1r 13.0 CupidBelinda 
I(Desdemona+) Desdemona r +1r 12.3 CupidBelinda 
I(Juliet) Juliet r 1r 12.5 CupidBelinda 
I(Juliet+) Juliet r +1r 13.1 CressidaDesdemona 
I(Portia) Portia r 1r 12.1 CupidBelinda 
I(Portia+) Portia r +1r 12.6 CupidBelinda 
I(Rosalind) Rosalind r 1r 12.3 CupidBelinda 
I(Rosalind+) Rosalind r +1r 12.3 CupidBelinda 
I(Cupid) Cupid r 1r 12.5 CupidBelinda 
I(Cupid+) Cupid r +1r 12.8 CupidBelinda 
I(Belinda) Belinda r 1r 13.2 CupidBelinda 
I(Belinda+) Belinda r +1r 11.6 CupidBelinda 
I(Perdita) Perdita r 1r 12.9 CupidBelinda 
I(Perdita+) Perdita r +1r 11.9 CupidBelinda 
I(Puck) Puck r 1r 12.1 CupidBelinda 
I(Puck+) Puck r +1r 12.1 CupidBelinda 
I(Mab) Mab r 1r 12.2 CupidBelinda 
I(Mab+) Mab r +1r 13.1 CupidBelinda 
C(baseline) Baseline (  = 1.0) 12.9 CupidBelinda 
IO(baseline) Baseline (  = 1.0) 13.1 CupidBelinda 
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Table 3 
Orbit crossing time of the I(baseline) model with individual satellites removed. 

 
Satellite removed log tc Crossing Satellites 
None 12.5 CupidBelinda 
Cordelia 12.4 CupidBelinda 
Ophelia 12.6 CupidBelinda 
Bianca 11.9 CupidBelinda 
Cressida 12.3 CupidBelinda 
Desdemona 12.3 CupidBelinda 
Juliet 12.1 RosalindCupid 
Portia 12.2 CupidBelinda 
Rosalind 12.5 CupidBelinda 
Cupid 13.5 CressidaDesdemona 
Belinda 13.7 CressidaDesdemona 
Perdita 13.7 CressidaDesdemona 
Puck 12.9 RosalindCupid 
Mab 12.1 CupidBelinda 
 
 

Table 4 
Power law parameters for the DL97(8J) model as published in DL97, reproduced in this work with the same 
mass factor range, and extended with a larger range of mass factors. 

 
Model mf  Range # Data  log  
DL97(8J) (DL97) ~1.340 46 4.10.1 14.10.1 
DL97(8J) (This work) 1.340 50 4.30.0 14.40.1 
DL97(8J) (This work) 0.933064 62 4.10.0 14.30.1 
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Table 5 
Dual power law Monte Carlo fits for CupidBelinda and CressidaDesdemona with extrapolation to  = 0.5 
g/cm3. 

 
      log tc,cupid log tc,cressida 
Model mf,intersect cupid log cupid cressida log cressida ( = 0.5)  ( = 0.5) 
I(baseline) 5.0 -3.10.3 12.50.2 -3.70.1 12.90.2 13.40.2 14.00.2 
I(Cordelia) 4.0 -2.50.3 12.20.1 -3.70.2 13.10.2 12.90.2 14.20.3 
I(Cordelia+) 7.0 -2.80.3 12.40.1 -4.10.2 13.40.2 13.20.2 14.70.2 
I(Ophelia) 8.0 -3.20.2 12.50.2 -3.30.2 12.60.2 13.50.2 13.60.2 
I(Ophelia+) 4.0 -3.40.5 12.70.2 -4.00.2 13.20.2 13.70.3 14.40.2 
I(Bianca) 8.0 -3.40.2 12.50.1 -3.70.2 12.80.2 13.60.2 13.90.2 
I(Bianca+) 6.0 -2.60.3 12.10.2 -4.00.3 13.40.4 12.90.2 14.60.4 
I(Cressida) 5.0 -3.10.3 12.50.2 -4.20.2 13.60.2 13.50.3 14.80.2 
I(Cressida+) 3.0 -3.51.1 13.00.4 -4.20.4 13.40.4 14.00.7 14.70.4 
I(Desdemona) 5.0 -3.30.5 12.90.2 -4.00.2 13.30.2 13.90.3 14.50.2 
I(Desdemona+) 5.0 -2.80.5 12.40.3 -3.80.3 13.00.3 13.20.4 14.20.3 
I(Juliet) 9.0 -3.00.5 12.60.2 -3.80.4 13.40.4 13.50.3 14.60.4 
I(Juliet+) 4.0 -3.60.6 12.90.3 -4.00.3 13.10.3 14.00.4 14.30.3 
I(Portia) 6.0 -2.50.4 12.10.3 -3.80.2 13.20.2 12.80.3 14.30.2 
I(Portia+) 3.5 -2.90.9 12.30.3 -3.90.2 12.90.2 13.20.5 14.00.2 
I(Rosalind) 4.0 -2.40.5 12.30.2 -3.70.2 12.90.2 13.00.3 14.00.2 
I(Rosalind+) 6.0 -3.00.3 12.40.2 -3.90.3 13.10.3 13.30.2 14.30.3 
I(Cupid) 4.0 -2.80.5 12.30.2 -3.90.1 13.10.2 13.10.3 14.30.2 
I(Cupid+) 3.0 -3.70.3 12.90.1 -4.20.2 13.30.2 14.00.2 14.50.2 
I(Belinda) 3.5 -4.20.6 13.40.3 -4.50.3 13.60.3 14.70.4 15.00.3 
I(Belinda+) 10.0 -2.90.3 12.10.2 -3.60.5 13.10.7 13.00.2 14.20.8 
I(Perdita) 3.0 -3.50.6 12.90.3 -4.10.2 13.40.4 13.90.4 14.60.4 
I(Perdita+) 4.0 -2.00.4 11.90.2 -3.90.2 13.10.2 12.50.3 14.30.2 
I(Puck) 8.0 -2.60.3 12.30.2 -4.20.3 13.50.3 13.10.2 14.80.3 
I(Puck+) 3.5 -2.80.6 12.20.2 -3.80.2 12.90.2 13.10.4 14.00.2 
I(Mab) 4.0 -2.90.4 12.30.2 -3.90.1 13.10.2 13.20.3 14.30.2 
I(Mab+) 3.5 -3.60.4 12.80.2 -3.90.2 13.10.3 13.90.2 14.20.2 
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Fig. 1: The apoapsis and periapsis of Cupid (bottom, black) and Belinda (top, grey) until orbit crossing for 
the I(baseline) model. 

 
 

 
Fig. 2: The semi-major axis of Cupid overlaid on the first- and second-order inner Lindblad resonances of 
Belinda for the I(baseline) model (top).  The correlation of the semi-major axis of Cupid with the semi-major 
axis of Belinda (bottom). 
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Fig. 3: The semi-major axis of Cupid overlaid on the first- and second-order inner Lindblad resonances of 
Belinda for the I(baseline) model.  The simulation is shown starting at the time when Cupid becomes 
completely correlated with Belinda until the orbits eventually cross. 
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Fig. 4: Orbit crossing time vs. mass factor for the DL97(8J) model.  The filled circles represent mass factors 
in the range of those covered in the original DL97 paper.  The open circles represent mass factors that were 
added for this study.  The dotted line is the power law fit to the filled circles and the solid line is the power 
law fit to all of the data shown. 
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Fig. 5: Orbital progression of the periapsis and apoapsis of Cressida (bottom of each graph) and Desdemona 
(top of each graph) for the DL97(8J) model with mf  = 1 (green), mf  = 0.933 (red), and mf  = 0.871 (black) for 
the first 1014 sec (top) and for 1.3301015 sec (bottom).  The orbits for mf  = 1 and mf  = 0.933 are displayed 
until first orbit crossing. 

 



  

- 29 - 

Fig. 6: Time of first crossing and which pair of satellites first crossed for various mass factors for the 
I(baseline) model. 
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Fig. 7: Monte Carlo simulation showing the measured minimum time of crossing (green) vs. two power law 
modeled as random variables. 

 

(a) (b)  
 

Fig. 8: Dual-power-law fits for the I(baseline) model (left) and I(Perdita+) model (right).  Crosses indicate 
CupidBelinda crossings and circles indicate CressidaDesdemona crossings. 
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Fig. 9: Log crossing time for  = 0.5 g/cm3 with the baseline mass assumptions (circles, black) and each 
satellite radius increased (+, red) or decreased (, blue) by one sigma. 


